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2LPMMC, UMR 5493 of CNRS, Université Grenoble Alpes, F-38100 Grenoble, France

3Lawrence Livermore National Laboratory, Livermore, California 94550, USA
(Dated: January 4, 2016)

An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a
crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar
planets. Though DFT based first principles methods have the potential to provide the accuracy
and computational efficiency required for this task, recent benchmarking in hydrogen has shown
that achieving this accuracy requires a judicious choice of functional, and a quantification of the
errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a
wide range of density functionals for use in hydrogen-helium mixtures at thermodynamic conditions
relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and
pressures, but we deploy QMC based force estimators and use them to gain insights into how well
the local liquid structure is captured by different density functionals. We find that TPSS, BLYP
and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy,
and pressure errors are very well behaved as a function of helium concentration. Beyond this, we
highlight and analyze the major error trends and relative differences exhibited by the major classes
of functionals, and estimate the magnitudes of these effects when possible.

PACS numbers: 67.80.ff,63.20.dk,62.50.-p,64.70.kt

I. INTRODUCTION

Since the first exoplanet was discovered in 1988, our
understanding of other solar systems has been revolu-
tionized by major advancements in observational tech-
niques. As a result of the Kepler mission and other plan-
etary surveys, there are almost 2000 catalogued extraso-
lar planets1. A large fraction of these are Jovian plan-
ets and brown dwarf stars whose compositions are more
than 90% hydrogen and helium–similar to Jupiter and
Saturn. Understanding the evolution of these extrasolar
planetary systems would be greatly aided by accurate
models. Current planetary models for Jovian planets use
a few observables, like the mass, radius, luminosity, and
element compositions to determine the interior structure
and time evolution of the planet. However, in order to
construct accurate models, one needs an accurate equa-
tion of state for hydrogen-helium mixtures at all temper-
atures, pressures, and species concentrations relevant in
planetary interiors.

In the absence of experimental data at these extreme
conditions, perturbative methods2, chemical models3 and
ab initio methods4–9 have done an excellent job in identi-
fying phases that could be relevant in planetary models.
For instance, dense hydrogen is widely believed to be
in a metallic liquid phase at temperatures and pressures
appropriate to the core regions of Jovian planets, and
should be the source of the planetary dynamo responsi-
ble for their large magnetic fields. An important question
is whether helium is soluble in dense liquid hydrogen.
As a Jovian planet cools, homogeneous H+He mixtures
could condense into helium rich droplets, which would
rain down deeper into the planet10,11. This process could

provide an additional energy dissipation mechanism and
alter the mass distribution of helium and heavier ele-
ments, and so should be treated accurately in planetary
models.

Unfortunately, there are enough quantitative and qual-
itative differences between ab initio and chemical model
based equations of state that planetary scientists rou-
tinely treat the equation of state as a free parameter
in their models–to be varied to match the experimen-
tal data12,13. Recent models which optimize the phase
boundaries for helium immsicibility and hydrogen met-
allization show an excellent ability to reproduce the ob-
served atmospheric depletion of He and excess luminosity
in Saturn, the gravitational moments, and estimated ages
of both Jupiter and Saturn12,13. However, this gives rise
to uncertainties in other areas of the model–for exam-
ple in the core mass and composition, the distribution of
heavier elements throughout the planet, etc. These un-
certainties would be reduced by an accurate equation of
state.

To construct accurate ab initio equations of state
with well quantified errors, one needs to understand and
accommodate for two frequently made approximations.
The first is the ideal mixing approximation for the en-
tropy. Used in chemical models and ab initio calcula-
tions since the 1970’s, the validity of ideal mixing has
only recently been investigated in the context of ab ini-
tio simulations using thermodynamic integration (TI)
techniques8,9. There is currently a quantitative discrep-
ancy between the works of Morales et al. and Lorenzen et
al6,7 amounting to approximately 1000K in the demixing
transition at high pressures, and significant qualitative
disagreement at lower pressures. With current compu-



2

tational resources, this source of error can be effectively
eliminated through the use of TI.

The second and least understood source of error is in
the treatment of electronic correlation effects, typically
through the use of an approximate exchange correlation
functional within density functional theory (DFT). Var-
ious studies have found that the pure hydrogen phase
diagram is extremely sensitive to the choice of exchange
correlation functional, primarily because of the presence
of multiple molecular disassociation and metallization
phase transitions14–21. In contrast, little is known of
the impact that density functionals errors have on the
demixing temperature in dense H+He mixtures.

More accurate alternative methods for solving the elec-
tronic structure problem do exist. In particular, pro-
jector based Quantum Monte Carlo methods like diffu-
sion Monte Carlo (DMC) and reptation Monte Carlo
(RMC) are known to be highly accurate variational
methods.Given a starting guess for a trial wavefunction
|ΨT 〉, these methods work by stochastically projecting
and sampling the ground-state wavefunction. In prac-
tical calculations, simulating systems with many elec-
trons requires that the nodes of the trial wavefunction
be guessed and fixed as a boundary condition to avoid a
sign problem (the “fixed-node approximation”), experi-
ence dictates that the resulting fixed-node wavefunction
|ΨFN 〉 dramatically improves on the already reasonable
trial wavefunction used at the variational Monte Carlo
(VMC) level. This has been shown to be very accurate
in low Z materials, successfully capturing the majority
of subtle electronic correlation effects like dispersion and
hydrogen bonding. However QMC is about two orders of
magnitude more expensive than DFT calculations. This
greatly restricts its applications towards computing more
complex properties relevant to planetary physics such as
electrical conductivity and viscosity.

In this work, we use projector Quantum Monte Carlo
methods to benchmark a range of density functionals in
thermodynamic regimes relevant for helium sedimenta-
tion in Jovian planets. Our main objective is to iden-
tify and understand qualitative error trends and relative
differences between various classes of density function-
als when used to estimate thermodynamic quantities in
hydrogen-helium mixtures. To achieve this, we bench-
mark the errors occurring in the energetics, pressures,
and forces for each functional, and note how they change
as a function of both density and helium concentration.
In section II, we discuss computational details, in section
III we present the benchmarking results for global and
local energetics, pressures, enthalpies, and forces, in sec-
tion IV, we explain the error trends we observe in terms
of the underlying exchange functional, after which we
conclude.

II. METHOD

In this study, we employ the same general methodol-
ogy we used previously in our work on pure hydrogen16;
here we discuss the computational details particular to
hydrogen-helium mixtures.

A. Test Sets

The relevant thermodynamic variables for describing
the H+He phase diagram are the density ρ, the temper-
ature T , and the helium species fraction xHe, defined as:

xHe =
NHe

NH +NHe
. (1)

We also specify the density by rs defined as Ω/Ne = 4
3πr

3
s

where Ne is the total number of electrons and Ω is the
volume.

Our goal is to benchmark the accuracy of density func-
tionals for predicting the helium demixing transition in
Saturn and Jupiter. Thus, our test sets were chosen
to represent the densities rs = 1.10, 1.25, 1.34, all at a
temperature of 7000K. We considered hydrogen helium
mixtures with helium species fractions of 0− 20.7% and
100%. Calculations used cubic cells with 64 electrons
with differing numbers of H and He ions to ensure charge
neutrality. At each density and helium concentration,
twenty statistically independent samples were generated
from ab-initio quantum molecular dynamics (QMD) sim-
ulations in the NVT ensemble. These QMD simulations
were performed in VASP22–25 using the PBE26 exchange
correlation functional and classical nuclei. As discussed
in our previous hydrogen benchmarking paper, the choice
of functional to generate the test sets is not as important
as the fact that the configurations be “physically reason-
able” for the temperatures and pressures under consider-
ation. PBE through its extensive use in this field and its
sound construction meets the criterion of “physically rea-
sonable” for test set purposes, even if other functionals
produce more accurate local structures.

B. Density Functional Comparison

For all configurations, we calculated the total energy,
pressures, and forces using the following functionals in
Quantum Espresso27 (note the flavor of DFT function
is given in italics): LDA28; (GGA) PBE, revPBE29,
PBEsol30, BLYP31, Wu-Cohen32, (metaGGA) M06L33,
TPSS34; (non-local dispersion corrected) vdW-DF35,
vdW-DF236, vdW-DF-C09, vdW-DF2-C0937, vdW-DF-
CX38, vdW-optB86B39, and vdW-optB8840. The LDA
and GGA type functionals require the least computer
time, whereas the metaGGA and nonlocal van der Waals
functionals are about four times slower than GGA func-
tionals.
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For all above functionals, we used a plane wave cutoff
of 800 Ry and a 7x7x7 Monkhorst-Pack grid with an off-
set. We used hard Troullier-Martins pseudopotentials41

(no core electrons for either H or He) generated with
Opium42 using the PBE functional. To ensure no pseu-
dopotential overlap in our test-set, we chose real space
cutoffs of rc = 0.37a0 and rc = 0.5a0 for the H and He
pseudopotentials respectively.

We also tested the exact-exchange HSE functional,
however due to computational and memory limitations,
we took the following cost saving measures. At ev-
ery density and helium concentration we considered,
we performed only 10 HSE calculations, reduced the
Monkhorst-Pack grid to 5x5x5 (the same grid used to
evaluate the Fock operator), and ran the calculations
with VASP because of its compact PAW formalism. A
planewave cutoff of 1500eV and 96 bands were used for all
calculations. We found that this gave the desired accu-
racy for energy and pressure differences within configura-
tions at the same density and helium concentration, how-
ever comparisons between different densities and helium
concentrations might be slightly underconverged–not ex-
ceeding 1.5mHa/electron for the energies and 1GPa for
the pressures. Since we had a limited choice of pseu-
dopotentials, we were unable to perform calculations at
rs = 1.10 and guarantee the desired level of accuracy for
VASP calculations.

C. Quantum Monte Carlo calculations

All quantum Monte Carlo calculations were performed
using the QMCPACK43,44 simulation package with a
Slater-Jastrow trial function. Singe particle orbitals
were obtained from Quantum Espresso27 using the PBE
functional, a planewave cutoff of 200Ry, and the same
Troullier-Martins pseudopotentials described previously.
All QMC calculations were “all-electron”: we used the
bare coulomb interaction between electrons and elec-
trons, and between electrons and nuclei. The pseudopo-
tentials were only used to generate the trial function or-
bitals within the DFT calculation.

We used short-ranged one-body and two-body func-
tions of b-spline form for the Jastrow factor. For H
and He, the one-body terms were spin-independent. The
one body term for each species was a sum of two func-
tions. The first was a “core” Jastrow, which had a real
space cutoff of rc = 1.0a0, 8 knots, and had the suit-
able electron-ion cusp condition imposed. The second
had a cutoff of L/2 with 8 knots and no cusp-condition
imposed. For the two-body functions, we separately in-
cluded same-spin and opposite-spin e-e terms, each with
a cutoff of rc = L/2 and correct cusp conditions imposed.

Our wavefunctions were optimized with the linear
method45. After obtaining a good initial guess for the
Jastrow parameters from a single rs = 1.10 configura-
tion with 4 He atoms, all variational parameters were
simultaneously optimized using an initial variance mini-

mization step, followed by 10 energy minimization steps.
Convergence of the minimization procedure was verified.

Energies, pressures, and the structure factor were cal-
culated using Reptation Monte Carlo (RMC)46,47. Our
target statistical error bars for the energies and pres-
sures were 0.008 mHa/electron and 0.3GPa respectively.
For all but the pure helium configurations, we used a
time-step of τ = 0.0075Ha−1 and projection time of
β = 4.5Ha−1. These choices were found to yield time-
step and mixed-estimator errors for the potential energy
within the desired error bars. For the pure helium con-
figurations, we fixed the projection time at β = 4.5Ha−1

and ran with time steps of τ = 0.0075Ha−1 and τ =
0.00375Ha−1. All estimated properties were then lin-
early extrapolated to zero time step.

Forces were computed using the Chiesa, Ceperley,
Zhang estimator48 adapted to periodic boundary con-
ditions. We used a real-space cutoff of R = 1.0a0
and a smoothing polynomial of degree M = 3. Based
on several statistical tests detailed in the supplemental
information49, we found that this choice of parameters
yielded systematic errors that were less than the error
bar on the hydrogen force components; approximately
2mHa/bohr. This resolution was sufficient to distinguish
between different functionals. We used diffusion Monte
Carlo with a time-step of τ = 0.01Ha−1 and a popula-
tion size of 512 walkers, which we found converged the
local energy (but not the local potential energy) to within
error bars. To correct for the mixed-estimator of the den-
sity we used extrapolated force estimates. All systematic
errors are expected to be less than the statistical error
bar.

In order to minimize finite-size errors, we first used
canonical twist-averaged boundary conditions (TABC)
on a 4x4x4 Monkhorst-Pack (MP) grid50. For the poten-
tial energy correction, we used the leading order Chiesa
correction based on pure estimates of See(k)51,52. Details
of the kinetic energy correction are given in the supple-
mental information. Since most configurations are in the
metallic state, there is also a kinetic energy error aris-
ing from the fact that we are attempting to reproduce a
fermi-surface with only 64 electrons. To correct for this,
we used the PBE functional to estimate the energy er-
ror between a twist-averaged unit cell and a 7x7x7 MP
grid. This correction scheme was tested against several
supercell calculations at rs = 1.10 and rs = 1.34 across
all helium concentrations. We expect the absolute en-
ergy errors (across all densities and helium concentra-
tions) to be less than 0.5mHa/electron, and the pressure
errors to be approximately 1GPa. Twist-averaging was
also used to minimize of the finite-size error in the forces.
There could be a residual error coming from the fact that
ρ(r) is not necessarily converged to the thermodynamic
limit. By comparing the forces from a twist-averaged
Kwee-Zhang-Krakauer density functional53 estimate in
the supercell with those of a converged 7x7x7 MP grid,
we estimate that the standard deviation of the residual
finite-size error in the force estimates to be approximately
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2mHa/bohr.

D. Error Analysis

1. Scalar Quantities

As in our previous paper, we consider a test set S
with M configurations, {R0 . . .RM}. For each configura-
tion Ri, we define the density functional error δA(Ri) =
ADF (Ri)−AQMC(Ri), where A is some observable (e.g.
total energy, pressure), with “DF” the density functional,
and “QMC” the QMC values.

In addition to defining average errors over a test set S,
which we denote 〈δADF 〉S , we define a general class of
shifted mean absolute errors as:

〈|δ̃A|〉S =
1

M

∑
Ri∈S

|δADF (Ri)− cDF |. (2)

Here, cDF is an density functional dependent offset. The
standard “mean absolute error” corresponds to the choice
of cDF = 0, which we will label as 〈|δA|〉S . However, we
will in this paper make other choices of cDF for differ-
ent observables, specifically for measures of “global” and
“local” energetics.

2. Forces

Let fi denote the force on ion i, and F = {f1, f2, . . . , fN}
the 3N dimensional vector of all ionic force components.
Because of the large number of force components, we
construct a few overall measures of the force errors. One
of the simplest is the mean absolute force error 〈|δfDF |〉S :
the ensemble average magnitude of the force error vector

δfi = fDFi − fQMC
i .

The mean force error can be related to how a DFT
functional could distort the local structure of the sys-
tem. Consider the “potential of mean force” w(r), de-
fined in terms of the pair correlation function by g(r) =
exp(−βw(r)). For weak perturbations, changes in g(r)
can be related to changes in w(r) and hence to errors in
the average forces between ions separated by a distance
r. For each density functional, we will define the follow-
ing error measure. Let iµ and jν denote two particles of
species µ and ν respectively. Denoting riµjν = riµ − rjν
we define ,

〈δfDFµ−ν(r)〉 =

∫
dRe−βE

PBE(R)δ(r − riµjν ) r̂iµjν · δfDFiµ∫
dRe−βEPBE(R)δ(r − riµjν )

.

(3)
Based on this definition, if 〈δfDFµ−ν(r)〉 is positive (nega-
tive), it overbinds (underbinds) species of type µ and ν
at a distance r.

Note that we use EPBE in this definition, since our
configurations are sampled from QMD using the PBE
functional. However, if we could replace EPBE with

EQMC , then 〈δfDFµ−ν(r)〉QMC would be related to the
density functional error in the potential of mean force
δwDFµν (r) (relative to the QMC distribution) by

〈δfDFµ−ν(r)〉QMC = − ∂

∂r
δwDFµν (r) (4)

In any case, given that EQMC and EPBE produce
qualitatively similar distributions of ionic configurations,
〈δfDFµ−ν(r)〉 allows us to estimate when a density func-
tional overbinds or underbinds, and how a density func-
tional will affect the g(r).

III. RESULTS

A. Global Energetics

Suppose we are interested in assessing to what extent
the average error in the total energy changes as a func-
tion of helium concentration. An error in the energy will
change both the Helmholtz and Gibbs free-energies of
mixing, which could then bias the estimated location of
the H+He immiscibility transition.

To measure this quantity, we define a measure of
“global energetics” as follows: for a given ρ, we build
an aggregated test set S′(ρ) which is the union of all
test sets at all helium concentrations with a given elec-
tronic density ρ. We then choose cDF (ρ) to be the median
of {δEDF }S′(ρ). We define the “global energetic error”,

〈| ˜δEDF |〉g,S of the test set S(ρ, xHe) by using Eq. 2.

LD
A

PB
E

re
vP

BE
PB

Es
ol

W
C

BL
YP

O
LY

P
op

tB
88

op
tB

86
B-

vd
W

vd
W

-D
F

vd
W

-D
F2

vd
W

-D
F2

-C
09

vd
W

-D
F-

C0
9

vd
W

-D
F-

CXHSE
M

06
L

TP
SS

0

1

2

3

4

〈 |δ̃E
D
F
|〉 gl

ob
a
l (

m
H

a
/e

le
ct

ro
n
)

rs =1.10 rs =1.25 rs =1.34

FIG. 1: 〈| ˜δEDF |〉global averaged over all helium concentra-
tions for all considered functionals. The different bar col-
ors/patterns denote the different densities.

In Fig. 1, we show the global energetic error for all
functionals at three densities, averaged over all helium
concentrations. We see that the best performing func-
tionals over all densities are the meta-GGA functionals
TPSS and M06-L respectively, with global energetic er-
rors that are less than half of those of PBE. After these,



5

the best performing functionals are the semi-local GGA’s
BLYP and revPBE, followed by optB86b-vdW and vdW-
DF. The worst performing functionals are LDA, HSE,
PBEsol, and WC, with global energetic errors approxi-
mately twice that of PBE. Though PBE has better than
average performance in this regime, one can gain nearly
a millihartree in accuracy by switching to a metaGGA or
a properly tuned GGA.
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FIG. 2: 〈δ[E(xHe)− E(xHe = 1)]〉 vs. xHe for all considered
functionals at (left) rs = 1.10, (middle) rs = 1.25, and (right)
rs = 1.34. All energies are measured relative to the aver-
age energy of all pure helium configurations at the specified
density.

It is also useful to consider how accurately the en-
ergy difference between systems with different helium
concentrations are captured with a density functional.
For specificity, we look at 〈δ[E(xHe, ρ)−E(xHe = 1, ρ)]〉
in Fig. 2 for all considered functionals and helium con-
centrations. Relative to the pure helium configurations,
BLYP, vdW-DF, and vdW-DF2 overestimate the energy
difference between the mixed hydrogen/helium configu-
rations, whereas all other functionals underestimate this
difference. Additionally, though all curves exhibit notice-
able nonlinearity in the xHe = 0− 20% range, almost all
curves have magnitudes that monotonically decrease to
zero. The exception is TPSS which changes signs at least
once in the the range xHe = 0− 20%.

In contrast to our previous hydrogen benchmarking
study, BLYP performs noticeably better than vdW-DF
in global energetics, whereas vdW-DF is now compara-
ble to PBE. This does not pose a contradiction to our
previous work, which we explain in section IV.A.

B. Local Energetics

Even if the mean total energy error for a DFT-MD sim-
ulation is small, it is still possible for energy differences
between similar configurations to have large errors. To
measure the spread of the total energy error distribution,
we use the following: for each test set S(ρ, xHe) corre-
sponding to a given density ρ and helium concentration
xHe, we set cDF to be the median of {δEDF }S(ρ,xHe).
Using Eq. 2 with this choice gives our “local energy”

measure, which we denote as 〈| ˜δEDF |〉`,S . Note that this
is similar to the “global energetic error” measure used
previously, except now the test set S and the reference
set S′ are the same.
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FIG. 3: 〈| ˜δEDF |〉local averaged over all helium concentra-
tions for all considered functionals. The different bar col-
ors/patterns denote the different densities.

In Fig. 3, we show 〈| ˜δEDF |〉local at three different
densities for all functionals considered. We note that the
characteristic error scale is now 0.25 mHa/electron, and
that the differences between density functionals is sig-
nificantly less pronounced than in the global energetic
case. This cannot be used to discriminate between most
functionals, but the outliers are worth mentioning. LDA,
PBEsol, vdW-DF2, and M06L are the worst performers,
whereas HSE is perhaps the best. These trends are con-
sistent with the global energetic trends, with two notable
exceptions. M06L accurately captures global energet-
ics, and HSE exhibits poor global energetic performance.
Though it is hard to tell whether BLYP or vdW-DF is
better, the fact that they are comparable is consistent
with our previous hydrogen-only benchmarking study.

C. Pressures

For all test sets and functionals, we computed 〈δPDF 〉S
and 〈|δPDF |〉S . As previously observed in pure hydro-
gen, we found that 〈|δPDF |〉S is indistinguishable from
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the QMC statistical noise. 〈δPDF 〉S on the other hand
can be quite sizable. Due to the wide range of pres-
sures that occur across different helium concentrations
and densities, we will plot relative mean pressure errors
instead of absolute errors for the remainder of this sec-
tion.

In Fig. 4, we plot 〈δPDF 〉S/〈PQMC〉 (averaged over all
helium concentrations) at three different densities for all
functionals considered. The trend observed is very much
the same as in our previous benchmarking studies of pure
hydrogen: accurate energetics are compensated by poor
pressure estimation. PBESol, Wu-Cohen, and LDA all
have pressure errors less than 1% despite their poor en-
ergetic performance. The worst functionals for pressures
happen to be vdW-DF and BLYP, which were known for
their accurate energetics. vdW-DF2 is an exception in
that it has poor energy and poor pressure estimation.
Note that TPSS and M06-L functionals are not plotted
because their pressure errors are so large as to be off the
scale: averaged over all three densities, M06-L and TPSS
have pressure errors of -31% and -17% respectively, with
errors increasing as the density is decreased.

In Fig. 5, we plot the mean pressure error versus he-
lium concentration for all considered functionals. We ob-
serve that the dependence of the pressure errors on xHe
is very well behaved across all densities and function-
als. The magnitudes for almost all functionals increases
monotonically as xHe increases, reaching its maximum
error for pure He. The exceptions are OLYP, where the
pressure error has a positive slope and changes sign at
some nonzero xHe, and WC, which reaches a maximum
at some nonzero xHe and then decreases towards a mini-
mum at xHe = 1. Though we did not investigate helium
concentrations higher than about 20%, the smoothness
of the pressure errors as a function of xHe is reassuring,
as it opens up the possibility of fitting these errors and
correcting for them.

D. Enthalpies

The mean enthalpy error 〈δHDF 〉S is given by
〈δHDF 〉S = 〈δEDF 〉S + V 〈δPDF 〉S , which we can com-
bine with the results from III B and III C to study the
errors in the predicted DFT enthalpy.

In Fig. 6, we show the the average enthalpy er-
ror 〈δHDF 〉S versus helium concentration for rs =
1.10, 1.25, 1.34. At fixed density ρ, HDF is measured rel-
ative to the enthalpy of pure helium at density ρ. What
we see is for the most part qualitatively similar to what
we saw for the energy errors in Fig. 2. However, the
tested functionals possess varying degrees of error can-
cellation. Some functionals noticeably benefit from er-
ror cancellation: specifically vdW-DF, LDA, and HSE.
This can reduce the absolute enthalpy by as much as 3-4
mHa/electron depending on the functional and density.
Others suffer from error addition, such as PBE and most
dramatically OLYP, which has an enthalpy error almost
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FIG. 4: 〈δPDF 〉/〈PQMC〉 in units of (%) averaged over all
helium concentrations for all considered functionals. The dif-
ferent bar colors/patterns denote the different densities. Not
shown: M06-L and TPSS.
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broken axis, which shows the mean relative pressure error for
the pure helium configurations.

10mHa/electron higher than its corresponding energy er-
ror. Lastly, there are some functionals which exhibit nei-
ther error cancellation nor addition, namely BLYP and
all of the newer van der Waals functionals.
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FIG. 7: 〈|δfDFH |〉 aggregated over all helium concentrations
for all considered functionals. The different colors denote dif-
ferent densities.

The most natural question we can ask ourselves is
which functional has the most accurate forces on aver-
age. To this end, in Fig. 7 we compute 〈|δfDF |〉 over
all atoms and helium concentrations. Before interpreting

Fig. 7 however, we mention an important caveat. Be-
cause of the large statistical noise relative to the magni-
tude of individual force components, any mean absolute
error measure is going to be affected by the statistical
noise. Thus, the absolute magnitude of the mean abso-
lute force error is not directly related to the error in the
density functional force. However, because the statisti-
cal noise is identical across all functionals, we are able to
compare different functionals and establish which ones
are better and by how much.

With this in mind, we note in Fig. 7 that the trend in
mean absolute force errors is similar to the trends we saw
in the local energetic errors. Specifically, HSE is among
the best, whereas vdW-DF2, LDA, and M06-L are among
the worst. There are some slight differences however.
TPSS and optB86b-vdW seem to perform better for force
error measures than the local energetics would suggest.
Additionally, though BLYP and vdW-DF still seem to
outperform PBE, the difference is not nearly as large as
the local energetics would suggest.

2. Local Force Errors

We now consider how the average density func-
tional force errors depend on the distance between ions,
〈δfDFµ−ν(r)〉, as described in Section II D 2. In principle,
these force errors will not only depend on the density
functional, but also on density and helium concentration.
We will address these later two points first, as they will
greatly simplify the analysis.

The first question is how does the average force change
as a function of density. We show in Fig. 8 〈δfPBEµ−ν (r)〉
versus r/rs calculated using the PBE functional. We
consider H-H (top), H-He (middle), and He-He (bottom)
forces. The first two were calculated at a helium frac-
tion of 20.75%, the He-He forces were computed in pure
helium to enhance the statistical sampling. For each
plot, we overlay the plots of 〈δfDFµ−ν(r)〉 at the densities
rs = 1.10, 1.25, 1.34. We observe no statistically signif-
icant density dependence in any of the major types of
mean force errors.

The second question is how does the average force
change as a function of helium concentration. In Fig.
9, we show the same general plots of 〈δfPBEµ−ν (r)〉 using
the PBE functional as in Fig. 8, but this time overlaying
plots of different helium concentrations instead of differ-
ent densities. All plots were calculated at a density of
rs = 1.25. Note that within error bars, 〈δfPBEµ−ν (r)〉 do
not depend on helium concentration.

Given the insensitivity of the average force errors for
PBE to both density and helium concentration, we plot
in Fig. 10, 〈δfDFµ−ν(r)〉 for all considered functionals. The
helium fraction was chosen to be 1.6% for the H-H (top),
20.75% H-He (middle) plots, and 100% for the He-He
plot. The density was chosen to be rs = 1.25. Recalling
from Section II D 2 that 〈δfDFµ−ν(r)〉 > 0 implies overbind-
ing relative to QMC.
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For the H-H forces at the top of Fig. 10, the BLYP,
vdW-DF, and vdW-DF2 functionals all exhibit a strong
propensity to overbind in the 1 < r/rs < 1.5, with vdW-
DF2 overbinding the most. TPSS overbinds the least in
the region 1 < r/rs < 1.2 but then underbinds slightly
up to r/rs = 2.2. All other functionals underbind in the
region 1 < r/rs < 1.5, with HSE underbinding the least
and LDA the most. Though its hard to tell with the
noise, HSE has the lowest absolute error in the region
1 < r/rs < 1.5, followed by optB86b-vdW, vdW-DF
and BLYP, and then by the combination revPBE, PBE,
vdW-DF-CX, vdW-DF-C09, and vdW-DF2-C09.

For the H-H forces at the top of Fig. 10, there seem
to be three distinct regions, defined by when the DF
errors cross the r-axis. We refer to these as region I
(1 < r/rs < 1.5), region II (1.5 < r/rs < 2.2), and region
III (r/rs > 2.2) and roughly correspond to the first, sec-
ond, and third coordination shells. Notice that with the
exception of TPSS and M06-L, if a functional overbinds
in region I, it will almost certainly underbind in region
II, and overbind again in region III. This is not entirely
unexpected. The ion-ion force depends only on electron
density, and so if two protons overbind because of an in-
creased electronic charge between them, this decreases
the electronic charge elsewhere, leading to underbinding
in the charge depleted region.

There are only a few functionals that overbind the H-
H interaction in region I: BLYP, vdW-DF, and vdW-
DF2, and TPSS (only for r/rs ≈ 1). The rest underbind,
though to varying degrees. If we try to determine which
functionals have the smallest error magnitudes in region
I, we find that the trend is very similar to what we saw
before in the mean absolute force and local energetic sec-
tions. HSE, vdW-DF, BLYP, TPSS, and optB86b-vdW
have the smallest errors in regions I, though further dis-
crimination is difficult given the error bars. In region
II on the other hand, HSE and optB86b-vdW seem to
have measurably smaller error magnitudes than vdW-
DF, BLYP, and TPSS.

For the H-He forces in the middle of Fig. 10, the dif-
ferences between different functionals are more striking.
HSE and TPSS have the best average performance in
the region 1.5 < r/rs < 2.0. However, BLYP also per-
forms exceptionally well, slightly underbinding hydrogen-
helium pairs by less than 1mHa/bohr. The worst per-
forming functionals are LDA, which overbinds the H-He
interaction, and vdW-DF2, which underbinds.

Lastly, we consider the He-He forces at the bottom of
Fig. 10. The error bars are somewhat large, but there are
some obvious trends still visible. All functionals overbind
the He-He interaction, although LDA overbinds the most.
The functionals that overbind the least are vdW-DF2,
HSE, or TPSS, followed by vdW-DF and then BLYP.

IV. DISCUSSION

A. Energeties

In this section, we will try to reconcile the observed
differences between the local and global energetic trends.
We believe that the trends observed in the local ener-
getic errors are mostly described by the impact that the
density functional has on the charge density and forces,
we will discuss in section IV D. For now, we will try to
grapple with how little bearing the local energetic errors
had on the global energetic errors.

The main point to realize is that the global energetic
errors are going to be dominated by errors in the energy
differences between configurations with different helium
concentrations. Calculating these types of energy differ-
ences accurately means having small total energy errors,
having error cancellation, or both. Error cancellation is
possible only if the H-H, H-He, and He-He interactions
err in a similar fashion–all overbinding or underbinding
by roughly the same magnitude. For example, if the H-
H interaction is overbound, the average energy difference
between pure hydrogen and pure helium can still be accu-
rately captured if the He-He interaction is also similarly
overbound.

We observed from our force discussion that many func-
tionals will overbind one type of interaction while under-
binding another. Consider vdW-DF and BLYP. Both
have very similar performances for forces and local ener-
getics, with vdW-DF having a slight edge on both. How-
ever, BLYP has noticeably smaller global energetic er-
rors than vdW-DF. Looking at the force errors, BLYP
and vdW-DF overbind the H-H interaction in almost the
exact same way. However, vdW-DF overbinds the He-
He interaction noticeably less than BLYP does. This
means that the BLYP will predict a higher total energy
for pure He configurations than vdW-DF will. How-
ever, both vdW-DF and BLYP will overestimate the to-
tal energy of sampled pure hydrogen configurations by
about the same amount. As a result of error cancella-
tion, δ[E(xHe = 0)−E(xHe = 1)] will actually be larger
for vdW-DF than it will be for BLYP. Extending this ar-
gument to intermediate helium concentrations explains
why decent local energetics do not imply decent global
energetics, since global energetics performance is largely
determined by error cancellation.

B. Pressures

As in our previous hydrogen benchmarking work,
we observed that favorable energetic errors were anti-
correlated with favorable pressure errors–the most dra-
matic cases being LDA and vdW-DF/BLYP. Though this
might seem paradoxical, the recognition of a tradeoff be-
tween accurate lattice constants and cohesive energies is
well known. Perdew et al.30 argue that this tradeoff is
a necessary consequence of the limited form of the GGA
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functional. Assuming an exchange enhancement factor of
the form FX(s) = µs2 + . . ., accurate binding and atom-
ization energies require a µ that is larger than what per-
turbation theory on the homogeneous electron gas would
predict. We find that almost all the best performing func-
tionals for pressure have a µ which is chosen to insure
that the slowly-varying homogeneous electron gas limit
is recovered as s→ 0. Specifically, the LDA, Wu-Cohen,
and PBEsol functionals satisfy this constraint.

The hybrid functional HSE is an exception, which
instead relies on reducing the self-interaction error to
achieve better pressure estimates. Not only did we
observe reasonably accurate pressure estimations from
HSE, but it additionally had some of the smallest errors
with local energetics and forces. The global energetics
errors were among the worst of the functionals, but this
might be due primarily to the lack of error cancellation
discussed in the previous section.

C. Enthalpies

When constructing the equation of state for H+He
mixtures, accurate enthalpies are important. One can
cut the enthalpy errors by approximately 50-60% rela-
tive to PBE (from 11mHa/electron to 4mHa/electron
in pure hydrogen) by using either BLYP or vdW-DF.
Improving the enthalpy errors beyond this without us-
ing post-processed corrections is difficult. The 4mHa
for vdW-DF and BLYP is in large part due to signifi-
cant (though noticeably incomplete) error cancellation.
Given the inherent tradeoff between energy errors and
pressure errors discussed previously, one should be ex-
tremely careful about correcting the energy and pressure
contributions individually, especially in the absence of
some rudimentary error quantification.

D. Forces

From our analysis of local energetic errors and forces,
we saw that there is a strong though not perfect correla-
tion between small energetic errors and small force errors.
Accurate electron-ion forces depends on the ability of a
functional to accurately reproduce the electronic charge
density. While this contribution is included in measuring
local energetic errors, the treatment of electron-electron
correlation also contributes. The superior performance
of the HSE functional in minimizing the local energetic
errors and force errors most likely stems from its ability
to produce a reasonable charge-density. The introduc-
tion of exact exchange favors charge localization through
the reduction of self-interaction errors. After HSE, TPSS
seems to produce reasonable charge densities. Among the
GGA’s and vdW corrected GGA’s, the vdW-DF, BLYP,
and optB86b-vdW functionals seem to produce reason-
able charge densities, most likely because the underlying

exchange functionals are skewed to favor bonding and
charge localization.

E. Role of Exchange

We believe the difference in the performance of the
functionals stems from the treatment of exchange, rather
than the addition of sophisticated non-local correlation
effects. This conclusion follows from two pieces of evi-
dence. Firstly, one would expect that if vdW type corre-
lation were necessary for an accurate description of dense
H+He, no GGA would be able to compete with a prop-
erly tuned non-local van der Waals functional. How-
ever, the two energetically best performing functionals
are vdW-DF, a non-local vdW functional, and BLYP, a
GGA. Beyond having comparable performance, the to-
tal magnitudes and scaling of local and global energy
errors with these two functionals are very similar. This
strongly suggests that the energetic contributions made
by the non-local van der Waals effects are small compared
to the traditional GGA type exchange and correlation.

The other piece of evidence comes from comparing the
performance of the non-local van der Waals function-
als. vdW-DF, vdW-DF-C09, and vdW-DF-CX all use
the same non-local correlation functional, differing only
in their choice of exchange functional. The same is true
of vdW-DF2 and vdW-DF2-C09. We found that vdW-
DF-C09 and vdW-DF2-C09 were virtually indistinguish-
able energetically, indicating the small role played by the
difference in the van der Waals correlation piece. How-
ever, there are significant differences between vdW-DF-
C09 and vdW-DF, and likewise between vdW-DF2-C09
and vdW-DF2. These pairs demonstrate a propensity to
underbind or overbind the H-H interaction respectively
relative to QMC.

It turns out that the best performing density func-
tionals exhibit some common trends in their underly-
ing exchange functionals. The exchange functionals for
GGA’s are given by Ex[ρ] =

∫
drρ(r)εhomx (r)Fx(s(r)),

where εhomx is the Slater-type exchange for the homoge-
neous electron gas, Fx is the “enhancement factor”, and
s = |∇ρ|/[2(3π2)1/3ρ4/3] is the “reduced density gradi-
ent”. Before getting into similarities in Fx responsible
for decent or poor energetic or pressure performance, we
need to know which values of s are relevant in our system.
After analyzing the PBE and BLYP charge densities for
a single sample configuration from each density and he-
lium concentration, we conclude that s is bounded by
0 < s < 1.8 for all configurations of interest (s ≤ 0.8 for
pure H configurations). Unsurprisingly, the largest gra-
dients occur in pure helium configurations at low density,
whereas the smallest gradients occur in pure hydrogen at
high density.

Within the semilocal GGA functionals, we can explain
better or worse energetic performance relative to PBE
by looking at Fx. We saw that the global energetic,
local energetic, and force errors followed this progres-
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sion of decreasing accuracy: BLYP, revPBE, PBE, and
PBEsol. Looking at the underlying enhancement factors
(BLYP uses B88 exchange), we see the following trend:
FB88
x > F revPBEx > FPBEx > FPBEsolx for all “s” in

the relevant range for hydrogen. F revPBEx > FB88
x from

about s = 0.8 onwards (they cross again at much larger
s), but this does not affect the description of hydrogen.
This implies that the best performing functionals for en-
ergies and forces work by lowering the energy contribu-
tions coming from the larger reduced gradients, which
favors charge localization and bonding.

We also note that the electronic structure around pro-
tons is very sensitive to the treatment of exchange at
these densities. Despite the qualitatively different en-
ergetics and H-H force errors between PBE and BLYP,
we see that the relative difference in the exchange en-
hancement factors FB88

x − FPBEx ≈ 0.005 at s = 0.4. In
contrast, the electronic structure near the helium nuclei
doesn’t seem to be nearly as sensitive to the choice of
exchange functional. This conclusion is based on how
similar the local energetic errors and He-He forces were
in pure helium configurations across different functionals.

One can perform the same type of analysis with the
vdW-DF type functionals. vdW-DF, optB86b-vdW, and
vdW-DF-CX use the revPBE, optB86b, CX exchange
functionals respectively. We previously saw that for ener-
getic and force errors, the progression towards decreasing
accuracy follows the sequence vdW-DF, optB86b-vdW,
and vdW-DF-CX. Looking at the underlying enhance-
ment factors, we find that F revPBEx > F optB86b

x > FCXx .
vdW-DF and optB86b-vdW perform comparably, but
vdW-DF overbinds relative to QMC whereas optB86-
vdW underbinds. We forgo a direct exhange functional
comparison between the vdW functionals and the GGA’s,
primarily because of the “exchange consistency” compli-
cation stemming from the use of a different “outer” and
“inner” exchange correlation functional.

Deeper relationships between the functional form of
Fx(s) and corresponding errors can be deduced from the
previous discussion. However, we leave these consider-
ations to future publications, since our current focus is
on hydrogen-helium thermodynamics and not on density
functional development.

V. CONCLUSIONS

In this paper, we have used projector Quantum Monte
Carlo to benchmark some of the most popular density

functionals, ranging from GGA, to non-local dispersion
corrected, to meta-GGA. We were able to quantify the
errors for most quantities that are relevant for construct-
ing an equation of state: specifically the pressures, local
and global energy differences. As a result of our analysis,
we can conclude that significant reduction of enthalpy er-
rors and a much better energetic description of hydrogen
helium interactions can be attained by using the TPSS
metaGGA, the BLYP GGA, or the nonlocal vdW-DF
functional. For the pressure on the other hand, there
are several functionals that have errors around 1% for all
densities and helium concentrations considered: optB88,
WC, PBESol, and vdW-DF-C09.

Beyond just identifying the most accurate density func-
tional and quantifying its errors, we have demonstrated
the common features of the best performing functionals,
specifically in the shape and limiting behavior of the en-
hancement factors for the exchange functionals. The un-
derlying exchange pieces for both vdW-DF, BLYP, and
revPBE tend to emphasize bonding in the energetics,
which is well known in the DFT literature. The impor-
tance of this work is that it specifies quantitatively just
how important this bonding character is for an accurate
description of dense hydrogen-helium mixtures. Know-
ing this, and how much the various exchange correlation
functionals overbind or underbind, should facilitate the
optimization and deployment of new functionals for map-
ping out the H+He phase diagram.
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FIG. 8: 〈δfPBEµ−ν (r)〉 vs. r/rs as density is changed. The differ-
ent marker colors/styles represent different densities. (Top)
〈δfPBEH−H(r)〉 calculated at xHe = 20.7%, (middle) 〈δfPBEH−He(r)〉
calculated at xHe = 20.7%, (middle) 〈δfPBEHe−He(r)〉 calculated
at xHe = 100%
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FIG. 10: 〈δfDFµ−ν(r)〉 vs. r/rs as the functional is changed.
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xHe = 100%. All configurations are at a density of rs = 1.25.
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