This is the accepted manuscript made available via CHORUS. The article has been published as:

Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces
Raymond C. Clay, III, Markus Holzmann, David M. Ceperley, and Miguel A. Morales
Phys. Rev. B 93, 035121 — Published 19 January 2016
DOI: 10.1103/PhysRevB.93.035121
Benchmarching Density Functionals for Hydrogen-Helium Mixtures with QMC: Energetics, Pressures, and Forces

Raymond C. Clay III,1,* Markus Holzmann,2 David M. Ceperley,1 and Miguel A. Morales3
1Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
2LPMMC, UMR 5493 of CNRS, Université Grenoble Alpes, F-38100 Grenoble, France
3Lawrence Livermore National Laboratory, Livermore, California 94550, USA
(Dated: January 4, 2016)

An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based first principles methods have the potential to provide the accuracy and computational efficiency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quantification of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures at thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by different density functionals. We find that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative differences exhibited by the major classes of functionals, and estimate the magnitudes of these effects when possible.

PACS numbers: 67.80.ff,63.20.dk,62.50.-p,64.70.kt

I. INTRODUCTION

Since the first exoplanet was discovered in 1988, our understanding of other solar systems has been revolutionized by major advancements in observational techniques. As a result of the Kepler mission and other planetary surveys, there are almost 2000 catalogued extrasolar planets. A large fraction of these are Jovian planets and brown dwarf stars whose compositions are more than 90% hydrogen and helium–similar to Jupiter and Saturn. Understanding the evolution of these extrasolar planetary systems would be greatly aided by accurate models. Current planetary models for Jovian planets use a few observables, like the mass, radius, luminosity, and element compositions to determine the interior structure and time evolution of the planet. However, in order to construct accurate models, one needs an accurate equation of state for hydrogen-helium mixtures at all temperatures, pressures, and species concentrations relevant in planetary interiors.

In the absence of experimental data at these extreme conditions, perturbative methods, chemical models and ab initio methods have done an excellent job in identifying phases that could be relevant in planetary models. For instance, dense hydrogen is widely believed to be in a metallic liquid phase at temperatures and pressures appropriate to the core regions of Jovian planets, and should be the source of the planetary dynamo responsible for their large magnetic fields. An important question is whether helium is soluble in dense liquid hydrogen. As a Jovian planet cools, homogeneous H+He mixtures could condense into helium rich droplets, which would rain down deeper into the planet. This process could provide an additional energy dissipation mechanism and alter the mass distribution of helium and heavier elements, and so should be treated accurately in planetary models.

Unfortunately, there are enough quantitative and qualitative differences between ab initio and chemical model based equations of state that planetary scientists routinely treat the equation of state as a free parameter in their models–to be varied to match the experimental data. Recent models which optimize the phase boundaries for helium immiscibility and hydrogen metallization show an excellent ability to reproduce the observed atmospheric depletion of He and excess luminosity in Saturn, the gravitational moments, and estimated ages of both Jupiter and Saturn. However, this gives rise to uncertainties in other areas of the model—for example, in the core mass and composition, the distribution of heavier elements throughout the planet, etc. These uncertainties would be reduced by an accurate equation of state.

To construct accurate ab initio equations of state with well quantified errors, one needs to understand and accommodate for two frequently made approximations. The first is the ideal mixing approximation for the entropy. Used in chemical models and ab initio calculations since the 1970’s, the validity of ideal mixing has only recently been investigated in the context of ab initio simulations using thermodynamic integration (TI) techniques. There is currently a quantitative discrepancy between the works of Morales et al. and Lorenzen et al. amounting to approximately 1000 K in the demixing transition at high pressures, and significant qualitative disagreement at lower pressures. With current compu-
rational resources, this source of error can be effectively
eliminated through the use of TI.

The second and least understood source of error is in
the treatment of electronic correlation effects, typically
through the use of an approximate exchange correlation
functional within density functional theory (DFT). Var-
ious studies have found that the pure hydrogen phase
diagram is extremely sensitive to the choice of exchange
correlation functional, primarily because of the presence
of multiple molecular disassociation and metallization
phase transitions14–21. In contrast, little is known of
the impact that density functionals errors have on the
demixing temperature in dense H+He mixtures.

More accurate alternative methods for solving the elec-
tronic structure problem do exist. In particular, pro-
jector based Quantum Monte Carlo methods like diffu-
sion Monte Carlo (DMC) and reptation Monte Carlo
(RMC) are known to be highly accurate variational
methods.Given a starting guess for a trial wavefunction
|Ψ⟩, these methods work by stochastically projecting
and sampling the ground-state wavefunction. In prac-
tical calculations, simulating systems with many elec-
trons requires that the nodes of the trial wavefunction
be guessed and fixed as a boundary condition to avoid a
sign problem (the “fixed-node approximation”), experi-
ence dictates that the resulting fixed-node wavefunction
⟨Ψ\textsubscript{FN}⟩ dramatically improves on the already reasonable
trial wavefunction used at the variational Monte Carlo
(VMC) level. This has been shown to be very accurate
in low Z materials, successfully capturing the majority
of subtle electronic correlation effects like dispersion and
hydrogen bonding. However QMC is about two orders
of magnitude more expensive than DFT calculations. This
greatly restricts its applications towards computing more
complex properties relevant to planetary physics such as
electrical conductivity and viscosity.

In this work, we use projector Quantum Monte Carlo
methods to benchmark a range of density functionals in
thermodynamic regimes relevant for helium sedimenta-
tion in Jovian planets. Our main objective is to iden-
tify and understand qualitative error trends and relative
differences between various classes of density function-
als when used to estimate thermodynamic quantities in
hydrogen-helium mixtures. To achieve this, we bench-
mark the errors occurring in the energetics, pressures,
and forces for each functional, and note how they change
as a function of both density and helium concentration.
In section II, we discuss computational details, in section
III we present the benchmarking results for global and
local energetics, pressures, enthalpies, and forces, in sec-
tion IV, we explain the error trends we observe in terms
of the underlying exchange functional, after which we
conclude.

II. METHOD

In this study, we employ the same general methodol-
yogy we used previously in our work on pure hydrogen16;
here we discuss the computational details particular to
hydrogen-helium mixtures.

A. Test Sets

The relevant thermodynamic variables for describing
the H+He phase diagram are the density \(\rho\), the tem-
perature \(T\), and the helium species fraction \(x_{He}\), defined as:

\[
x_{He} = \frac{N_{He}}{N_H + N_{He}}. \tag{1}
\]

We also specify the density by \(\Omega/N_e = \frac{4}{3}\pi r_s^3\)
where \(N_e\) is the total number of electrons and \(\Omega\) is the
volume.

Our goal is to benchmark the accuracy of density func-
tionals for predicting the helium demixing transition in
Saturn and Jupiter. Thus, our test sets were chosen
to represent the densities \(r_s = 1.10, 1.25, 1.34, 3\) at a
temperature of 7000K. We considered hydrogen helium
mixtures with helium species fractions of 0 – 20.7% and
100%. Calculations used cubic cells with 64 electrons
with differing numbers of H and He ions to ensure charge
neutrality. At each density and helium concentration,
twenty statistically independent samples were generated
from ab-initio quantum molecular dynamics (QMD) sim-
ulations in the NVT ensemble. These QMD simulations
were performed in VASP22–25 using the PBE26 exchange
correlation functional and classical nuclei. As discussed
in our previous hydrogen benchmarking paper, the choice
of functional to generate the test sets is not as important
as the fact that the configurations be “physically reason-
able” for the temperatures and pressures under consider-
ation. PBE through its extensive use in this field and its
sound construction meets the criterion of “physically rea-
sonable” for test set purposes, even if other functionals
produce more accurate local structures.

B. Density Functional Comparison

For all configurations, we calculated the total energy,
pressures, and forces using the following functionals in
Quantum Espresso27 (note the flavor of DFT function
is given in italics): LDA28, (GGA) PBE, revPBE29,
PBEsol30, BLYP31, Wu-Cohen32, (metaGGA) M06L33,
TPSS34: (non-local dispersion corrected) vdW-DF35,
vDW-DF26, vDW-DF-C09, vDW-DF2-C0937, vDW-DF-
CX38, vdW-optB8639, and vDW-optB8840. The LDA
and GGA type functionals require the least computer
time, whereas the metaGGA and nonlocal van der Waals
functionals are about four times slower than GGA func-
tionals.
C. Quantum Monte Carlo calculations

All quantum Monte Carlo calculations were performed using the QMCPACK\cite{43,44} simulation package with a Slater-Jastrow trial function. Single particle orbitals were obtained from Quantum Espresso\cite{45} using the PBE functional, a plane wave cutoff of 200Ry, and the same Troullier-Martins pseudopotentials described previously. All QMC calculations were “all-electron”: we used the bare coulomb interaction between electrons and electrons, and between electrons and nuclei. The pseudopotentials were only used to generate the trial function orbitals within the DFT calculation.

We used short-ranged one-body and two-body functions of b-spline form for the Jastrow factor. For H and He, the one-body terms were spin-independent. The one body term for each species was a sum of two functions. The first was a “core” Jastrow, which had a real space cutoff of \(r_c = 1.0a_0 \), 8 knots, and had the suitable electron-ion cusp condition imposed. The second had a cutoff of \(L/2 \) with 8 knots and no cusp-condition imposed. For the two-body functions, we separately included same-spin and opposite-spin e-e terms, each with a cutoff of \(r_{ee} = L/2 \) and correct cusp conditions imposed.

Our wavefunctions were optimized with the linear method\cite{46}. After obtaining a good initial guess for the Jastrow parameters from a single \(r_s = 1.10 \) configuration with 4 He atoms, all variational parameters were simultaneously optimized using an initial variance minimization step, followed by 10 energy minimization steps. Convergence of the minimization procedure was verified.

Energies, pressures, and the structure factor were calculated using Reptation Monte Carlo (RMC)\cite{47,48}. Our target statistical error bars for the energies and pressures were 0.008 mHa/electron and 0.3GPa respectively. For all but the pure helium configurations, we used a time-step of \(\tau = 0.0075Ha^{-1} \) and projection time of \(\beta = 4.5Ha^{-1} \). These choices were found to yield time-step and mixed-estimator errors for the potential energy within the desired error bars. For the pure helium configurations, we fixed the projection time at \(\beta = 4.5Ha^{-1} \) and ran with time steps of \(\tau = 0.0075Ha^{-1} \) and \(\tau = 0.00375Ha^{-1} \). All estimated properties were then linearly extrapolated to zero time step.

Forces were computed using the Chiesa, Ceperley, Zhang estimator\cite{49} adapted to periodic boundary conditions. We used a real-space cutoff of \(R = 1.0a_0 \) and a smoothing polynomial of degree \(M = 3 \). Based on several statistical tests detailed in the supplemental information\cite{50}, we found that this choice of parameters yielded systematic errors that were less than the error bar on the hydrogen force components; approximately 2mHa/bohr. This resolution was sufficient to distinguish between different functionals. We used diffusion Monte Carlo with a time-step of \(\tau = 0.01Ha^{-1} \) and a population size of 512 walkers, which we found converged the local energy (but not the local potential energy) to within error bars. To correct for the mixed-estimator of the density we used extrapolated force estimates. All systematic errors are expected to be less than the statistical error bar.

In order to minimize finite-size errors, we first used canonical twist-averaged boundary conditions (TABC) on a 4x4x4 Monkhorst-Pack (MP) grid\cite{51}. For the potential energy correction, we used the leading order Chiesa correction based on pure estimates of \(S_{ee}(k) \)\cite{52}. Details of the kinetic energy correction are given in the supplemental information. Since most configurations are in the metallic state, there is also a kinetic energy error arising from the fact that we are attempting to reproduce a fermi-surface with only 64 electrons. To correct for this, we used the PBE functional to estimate the energy error between a twist-averaged unit cell and a 7x7x7 MP grid. This correction scheme was tested against several supercell calculations at \(r_s = 1.10 \) and \(r_s = 1.34 \) across all helium concentrations. We expect the absolute energy errors (across all densities and helium concentrations) to be less than 0.5mHa/electron, and the pressure errors to be approximately 1GPa. Twist-averaging was also used to minimize of the finite-size error in the forces. There could be a residual error coming from the fact that \(\rho(r) \) is not necessarily converged to the thermodynamic limit. By comparing the forces from a twist-averaged Kwee-Zhang-Krakauer density functional\cite{53} estimate in the supercell with those of a converged 7x7x7 MP grid, we estimate that the standard deviation of the residual finite-size error in the force estimates to be approximately
D. Error Analysis

1. Scalar Quantities

As in our previous paper, we consider a test set S with M configurations, $\{R_0, \ldots, R_M\}$. For each configuration R_i, we define the density functional error $\delta \mathcal{A}(R_i) = A^{DF}(R_i) - A^{QMC}(R_i)$, where \mathcal{A} is some observable (e.g. total energy, pressure), with “DF” the density functional, and “QMC” the QMC values.

In addition to defining average errors over a test set S, which we denote $\langle \delta \mathcal{A}^{DF} \rangle_S$, we define a general class of shifted mean absolute errors as:

$$\langle |\tilde{\delta} \mathcal{A}| \rangle_S = \frac{1}{M} \sum_{R_i \in S} |\delta \mathcal{A}^{DF}(R_i) - c^{DF}|.$$ \hspace{1cm} (2)

Here, c^{DF} is a density functional dependent offset. The standard “mean absolute error” corresponds to the choice of $c^{DF} = 0$, which we will label as $\langle |\delta \mathcal{A}| \rangle_S$. However, we will in this paper make other choices of c^{DF} for different observables, specifically for measures of “global” and “local” energetics.

2. Forces

Let f_i denote the force on ion i, and $F = \{f_1, f_2, \ldots, f_N\}$ the 3N dimensional vector of all ionic force components. Because of the large number of force components, we construct a few overall measures of the force errors. One of the simplest is the mean absolute force error $\langle |\delta f^{DF}| \rangle_S$: the ensemble average magnitude of the force error vector $\delta f_i = f_i^{DF} - f_i^{QMC}$.

The mean force error can be related to how a DFT functional could distort the local structure of the system. Consider the “potential of mean force” $w(r)$, defined in terms of the pair correlation function by $g(r) = \exp(-\beta w(r))$. For weak perturbations, changes in $g(r)$ can be related to changes in $w(r)$ and hence to errors in the average forces between ions separated by a distance r.

For each density functional, we will define the following error measure. Let i_{μ} and j_{ν} denote two particles of species μ and ν respectively. Denoting $r_{i_{\mu} j_{\nu}} = r_{i_{\mu}} - r_{j_{\nu}}$, we define

$$\langle \delta f_{i_{\mu} j_{\nu}}^{DF}(r) \rangle = \frac{\int dR e^{-\beta E^{PBE}(R)} \delta(r - r_{i_{\mu} j_{\nu}}) \hat{f}_{i_{\mu} j_{\nu}} \cdot \delta f_{i_{\mu} j_{\nu}}^{DF}}{\int dR e^{-\beta E^{PBE}(R)} \delta(r - r_{i_{\mu} j_{\nu}})}.$$ \hspace{1cm} (3)

Based on this definition, if $\langle \delta f_{i_{\mu} j_{\nu}}^{DF}(r) \rangle$ is positive (negative), it overbinds (underbinds) species of type μ and ν at a distance r.

Note that we use E^{PBE} in this definition, since our configurations are sampled from QMD using the PBE functional. However, if we could replace E^{PBE} with E^{QMC}, then $\langle \delta f_{i_{\mu} j_{\nu}}^{DF}(r) \rangle_{QMC}$ would be related to the density functional error in the potential of mean forces $\delta w_{\mu \nu}^{DF}(r)$ (relative to the QMC distribution) by

$$\langle \delta f_{i_{\mu} j_{\nu}}^{DF}(r) \rangle_{QMC} = -\frac{\partial}{\partial r} \delta w_{\mu \nu}^{DF}(r)$$ \hspace{1cm} (4)

In any case, given that E^{QMC} and E^{PBE} produce qualitatively similar distributions of ionic configurations, $\langle \delta f_{i_{\mu} j_{\nu}}^{DF}(r) \rangle$ allows us to estimate when a density functional overbinds or underbinds, and how a density functional will affect the $g(r)$.

III. RESULTS

A. Global Energetics

Suppose we are interested in assessing to what extent the average error in the total energy changes as a function of helium concentration. An error in the energy will change both the Helmholtz and Gibbs free-energies of mixing, which could then bias the estimated location of the H+He immiscibility transition.

To measure this quantity, we define a measure of “global energetics” as follows: for a given ρ, we build an aggregated test set $S'(\rho)$ which is the union of all test sets at all helium concentrations with a given electronic density ρ. We then choose $c^{DF}(\rho)$ to be the median of $\langle \delta E^{DF} \rangle_{S'(\rho)}$. We define the “global energetic error” $\langle |\delta E^{DF}| \rangle_{S,S}$ of the test set $S(\rho, x_{He})$ by Eq. 2.

In Fig. 1, we show the global energetic error for all functionals at three densities, averaged over all helium concentrations. The different bar colors/patterns denote the different densities.

![FIG. 1: $\langle |\delta E^{DF}| \rangle_{global}$ averaged over all helium concentrations for all considered functionals. The different bar colors/patterns denote the different densities.](image)
the best performing functionals are the semi-local GGA’s BLYP and revPBE, followed by optB86b-vdW and vdW-DF. The worst performing functionals are LDA, HSE, PBEsol, and WC, with global energetic errors approximately twice that of PBE. Though PBE has better than average performance in this regime, one can gain nearly a millihartree in accuracy by switching to a metaGGA or a properly tuned GGA.

It is also useful to consider how accurately the energy difference between systems with different helium concentrations are captured with a density functional. For specificity, we look at \(\langle \delta E(x_{He}) - E(x_{He} = 1) \rangle \) vs. \(x_{He} \) for all considered functionals at (left) \(r_s = 1.10 \), (middle) \(r_s = 1.25 \), and (right) \(r_s = 1.34 \). All energies are measured relative to the average energy of all pure helium configurations at the specified density.

In contrast to our previous hydrogen benchmarking study, BLYP performs noticeably better than vdW-DF in global energetics, whereas vdW-DF is now comparable to PBE. This does not pose a contradiction to our previous work, which we explain in section IV.A.

B. Local Energetics

Even if the mean total energy error for a DFT-MD simulation is small, it is still possible for energy differences between similar configurations to have large errors. To measure the spread of the total energy error distribution, we use the following: for each test set \(S(\rho, x_{He}) \) corresponding to a given density \(\rho \) and helium concentration \(x_{He} \), we set \(c^{DF}_S \) to be the median of \(\{\delta E^{DF}\}_{S(\rho,x_{He})} \). Using Eq. 2 with this choice gives our “local energy” measure, which we denote as \(\langle \delta E^{DF} \rangle_{S,L} \). Note that this is similar to the “global energetic error” measure used previously, except now the test set \(S \) and the reference set \(S' \) are the same.

In Fig. 3, we show \(\langle \delta E^{DF} \rangle_{local} \) averaged over all helium concentrations for all considered functionals. The different bar colors/patterns denote the different densities.

In Fig. 3, we show \(\langle \delta E^{DF} \rangle_{local} \) at three different densities for all functionals considered. We note that the characteristic error scale is now 0.25 mHa/electron, and that the differences between density functionals is significantly less pronounced than in the global energetic case. This cannot be used to discriminate between most functionals, but the outliers are worth mentioning. LDA, PBEsol, vdW-DF2, and M06L are the worst performers, whereas HSE is perhaps the best. These trends are consistent with the global energetic trends, with two notable exceptions. M06L accurately captures global energetics, and HSE exhibits poor global energetic performance. Though it is hard to tell whether BLYP or vdW-DF is better, the fact that they are comparable is consistent with our previous hydrogen-only benchmarking study.

C. Pressures

For all test sets and functionals, we computed \(\langle \delta P^{DF} \rangle_S \) and \(\langle \delta P^{DF} \rangle_{S,L} \). As previously observed in pure hydrogen, we found that \(\langle \delta P^{DF} \rangle_S \) is indistinguishable from
the QMC statistical noise. \(\langle \delta P^{DF} \rangle_S \) on the other hand can be quite sizable. Due to the wide range of pressures that occur across different helium concentrations and densities, we will plot relative mean pressure errors instead of absolute errors for the remainder of this section.

In Fig. 4, we plot \(\langle \delta P^{DF} \rangle_S / \langle P^{QMC} \rangle \) (averaged over all helium concentrations) at three different densities for all functionals considered. The trend observed is very much the same as in our previous benchmarking studies of pure hydrogen: accurate energetics are compensated by poor pressure estimation. PBEsol, Wu-Cohen, and LDA all have pressure errors less than 1% despite their poor energetic performance. The worst functionals for pressures happen to be vDW-DF and BLYP, which were known for their accurate energetics. vDW-DF2 is an exception in that it has poor energy and poor pressure estimation. Note that TPSS and M06-L functionals are not plotted because their pressure errors are so large as to be off the scale: averaged over all three densities, M06-L and TPSS have pressure errors of -31% and -17% respectively, with errors increasing as the density is decreased.

In Fig. 5, we plot the mean pressure error versus helium concentration for all considered functionals. We observe that the dependence of the pressure errors on \(x_{He}\) is very well behaved across all densities and functionals. The magnitudes for almost all functionals increases monotonically as \(x_{He}\) increases, reaching its maximum error for pure He. The exceptions are OLYP, where the pressure error has a positive slope and changes sign at some nonzero \(x_{He}\), and WC, which reaches a maximum at some nonzero \(x_{He}\), and then decreases towards a minimum at \(x_{He} = 1\). Though we did not investigate helium concentrations higher than about 20%, the smoothness of the pressure errors as a function of \(x_{He}\) is reassuring, as it opens up the possibility of fitting these errors and correcting for them.

D. Enthalpies

The mean enthalpy error \(\langle \delta H^{DF} \rangle_S \) is given by \(\langle \delta H^{DF} \rangle_S = \langle \delta E^{DF} \rangle_S + V\langle \delta P^{DF} \rangle_S \), which we can combine with the results from III B and III C to study the errors in the predicted DFT enthalpy.

In Fig. 6, we show the the average enthalpy error \(\langle \delta H^{DF} \rangle_S \) versus helium concentration for \(r_s = 1.10, 1.25, 1.34\). At fixed density \(\rho\), \(H^{DF}\) is measured relative to the enthalpy of pure helium at density \(\rho\). What we see is for the most part qualitatively similar to what we saw for the energy errors in Fig. 2. However, the tested functionals possess varying degrees of error cancellation. Some functionals noticeably benefit from error cancellation: specifically vdW-DF, LDA, and HSE. This can reduce the absolute enthalpy by as much as 3-4 mHa/electron depending on the functional and density. Others suffer from error addition, such as PBE and most dramatically OLYP, which has an enthalpy error almost 10mHa/electron higher than its corresponding energy error. Lastly, there are some functionals which exhibit neither error cancellation nor addition, namely BLYP and all of the newer van der Waals functionals.
Fig. 7 however, we mention an important caveat. Because of the large statistical noise relative to the magnitude of individual force components, any mean absolute error measure is going to be affected by the statistical noise. Thus, the absolute magnitude of the mean absolute force error is not directly related to the error in the density functional force. However, because the statistical noise is identical across all functionals, we are able to compare different functionals and establish which ones are better and by how much.

With this in mind, we note in Fig. 7 that the trend in mean absolute force errors is similar to the trends we saw in the local energetic errors. Specifically, HSE is among the best, whereas vDW-DF2, LDA, and M06-L are among the worst. There are some slight differences however. TPSS and optB86-b-vdW seem to perform better for force error measures than the local energetics would suggest. Additionally, though BLYP and vDW-DF still seem to outperform PBE, the difference is not nearly as large as the local energetics would suggest.

2. Local Force Errors

We now consider how the average density functional force errors depend on the distance between ions, \(\langle \delta f^{DF}_\mu (r) \rangle \), as described in Section II D 2. In principle, these force errors will not only depend on the density functional, but also on density and helium concentration. We will address these later two points first, as they will greatly simplify the analysis.

The first question is how does the average force change as a function of density. We show in Fig. 8 \(\langle \delta f^{PBE}_\mu (r) \rangle \) versus \(r / r_s \) calculated using the PBE functional. We consider H-H (top), H-He (middle), and He-He (bottom) forces. The first two were calculated at a helium fraction of 20.75%, the He-He forces were computed in pure helium to enhance the statistical sampling. For each plot, we overlay the plots of \(\langle \delta f^{DF}_\mu (r) \rangle \) at the densities \(r_s = 1.10, 1.25, 1.34 \). We observe no statistically significant density dependence in any of the major types of mean force errors.

The second question is how does the average force change as a function of helium concentration. In Fig. 9, we show the same general plots of \(\langle \delta f^{PBE}_\mu (r) \rangle \) using the PBE functional as in Fig. 8, but this time overlaying plots of different helium concentrations instead of different densities. All plots were calculated at a density of \(r_s = 1.25 \). Note that within error bars, \(\langle \delta f^{PBE}_\mu (r) \rangle \) do not depend on helium concentration.

Given the insensitivity of the average force errors for PBE to both density and helium concentration, we plot in Fig. 10, \(\langle \delta f^{DF}_\mu (r) \rangle \) for all considered functionals. The helium fraction was chosen to be 1.6% for the H-H (top), 20.75% H-He (middle) plots, and 100% for the He-He plot. The density was chosen to be \(r_s = 1.25 \). Recalling from Section II D 2 that \(\langle \delta f^{DF}_\mu (r) \rangle > 0 \) implies overbinding relative to QMC.
For the H-H forces at the top of Fig. 10, the BLYP, vdW-DF, and vdW-DF2 functionals all exhibit a strong propensity to overbind in the $1 < r/r_s < 1.5$, with vdW-DF2 overbinding the most. TPSS overbinds the least in the region $1 < r/r_s < 1.2$ but then underbinds slightly up to $r/r_s = 2.2$. All other functionals underbind in the region $1 < r/r_s < 1.5$, with HSE underbinding the least and LDA the most. Though its hard to tell with the noise, HSE has the least absolute error in the region $1 < r/r_s < 1.5$, followed by optB86b-vdW, vdW-DF and BLYP, and then by the combination revPBE, PBE, vdW-DF-CX, vdW-DF-C09, and vdW-DF2-C09.

For the H-H forces at the top of Fig. 10, there seem to be three distinct regions, defined by when the DF errors cross the r-axis. We refer to these as region I ($1 < r/r_s < 1.5$), region II ($1.5 < r/r_s < 2.2$), and region III ($r/r_s > 2.2$) and roughly correspond to the first, second, and third coordination shells. Notice that with the exception of TPSS and M06-L, if a functional overbinds in region I, it will almost certainly underbind in region II, and overbind again in region III. This is not entirely unexpected. The ion-ion force depends only on electron density, and so if two protons overbind because of an increased electronic charge between them, this decreases the electronic charge elsewhere, leading to underbinding in the charge depleted region.

There are only a few functionals that overbind the H-H interaction in region I: BLYP, vdW-DF, and vdW-DF2, and TPSS (only for $r/r_s \approx 1$). The rest underbind, though to varying degrees. If we try to determine which functionals have the smallest error magnitudes in region I, we find that the trend is very similar to what we saw before in the mean absolute force and local energetic sections. HSE, vdW-DF, BLYP, TPSS, and optB86b-vdW have the smallest errors in regions I, though further discrimination is difficult given the error bars. In region II on the other hand, HSE and optB86b-vdW seem to have measurably smaller error magnitudes than vdW-DF, BLYP, and TPSS.

For the H-He forces in the middle of Fig. 10, the differences between different functionals are more striking. HSE and TPSS have the best average performance in the region $1.5 < r/r_s < 2.0$. However, BLYP also performs exceptionally well, slightly underbinding hydrogen-helium pairs by less than 1mHa/bohr. The worst performing functionals are LDA, which overbinds the H-He interaction, and vdW-DF2, which underbinds.

Lastly, we consider the He-He forces at the bottom of Fig. 10. The error bars are somewhat large, but there are some obvious trends still visible. All functionals overbind the He-He interaction, although LDA overbinds the most. The functionals that overbind the least are vdW-DF2, HSE, or TPSS, followed by vdW-DF and then BLYP.

IV. DISCUSSION

A. Energetics

In this section, we will try to reconcile the observed differences between the local and global energetic trends. We believe that the trends observed in the local energetic errors are mostly described by the impact that the density functional has on the charge density and forces, we will discuss in section IV D. For now, we will try to grapple with how little bearing the local energetic errors had on the global energetic errors.

The main point to realize is that the global energetic errors are going to be dominated by errors in the energy differences between configurations with different helium concentrations. Calculating these types of energy differences accurately means having small total energy errors, having error cancellation, or both. Error cancellation is possible only if the H-H, H-He, and He-He interactions err in a similar fashion—all overbinding or underbinding by roughly the same magnitude. For example, if the H-H interaction is overbound, the average energy difference between pure hydrogen and pure helium can still be accurately captured if the He-He interaction is also similarly overbound.

We observed from our force discussion that many functionals will overbind one type of interaction while underbinding another. Consider vdW-DF and BLYP. Both have very similar performances for forces and local energetics, with vdW-DF having a slight edge on both. However, BLYP has noticeably smaller global energetic errors than vdW-DF. Looking at the force errors, BLYP and vdW-DF overbind the H-H interaction in almost the exact same way. However, vdW-DF overbinds the He-He interaction noticeably less than BLYP does. This means that the BLYP will predict a higher total energy for pure He configurations than vdW-DF will. However, both vdW-DF and BLYP will overestimate the total energy of sampled pure hydrogen configurations by about the same amount. As a result of error cancellation, $\delta E(x_{He} = 0) - E(x_{He} = 1)$ will actually be larger for vdW-DF than it will be for BLYP. Extending this argument to intermediate helium concentrations explains why decent local energetics do not imply decent global energetics, since global energetics performance is largely determined by error cancellation.

B. Pressures

As in our previous hydrogen benchmarking work, we observed that favorable energetic errors were anti-correlated with favorable pressure errors—the most dramatic cases being LDA and vdW-DF/BLYP. Though this might seem paradoxical, the recognition of a tradeoff between accurate lattice constants and cohesive energies is well known. Perdew et al.\cite{Perdew1981} argue that this tradeoff is a necessary consequence of the limited form of the GGA
functional. Assuming an exchange enhancement factor of the form $F_X(s) = \mu s^2 + \ldots$, accurate binding and atomization energies require a μ that is larger than what perturbation theory on the homogeneous electron gas would predict. We find that almost all the best performing functionals for pressure have a μ which is chosen to insure that the slowly-varying homogeneous electron gas limit is recovered as $s \to 0$. Specifically, the LDA, Wu-Cohen, and PBEsol functionals satisfy this constraint.

The hybrid functional HSE is an exception, which instead relies on reducing the self-interaction error to achieve better pressure estimates. Not only did we observe reasonably accurate pressure estimations from HSE, but it additionally had some of the smallest errors with local energetics and forces. The global energetics errors were among the worst of the functionals, but this might be due primarily to the lack of error cancellation discussed in the previous section.

C. Enthalpies

When constructing the equation of state for H+He mixtures, accurate enthalpies are important. One can cut the enthalpy errors by approximately 50-60\% relative to PBE (from 11mHa/electron to 4mHa/electron in pure hydrogen) by using either BLYP or vdW-DF. Improving the enthalpy errors beyond this without using post-processed corrections is difficult. The 4mHa for vdW-DF and BLYP is in large part due to significant (though noticeably incomplete) error cancellation. Given the inherent tradeoff between energy errors and pressure errors discussed previously, one should be extremely careful about correcting the energy and pressure contributions individually, especially in the absence of some rudimentary error quantification.

D. Forces

From our analysis of local energetic errors and forces, we saw that there is a strong though not perfect correlation between small energetic errors and small force errors. Accurate electron-ion forces depends on the ability of a functional to accurately reproduce the electronic charge density. While this contribution is included in measuring local energetic errors, the treatment of electron-electron correlation also contributes. The superior performance of the HSE functional in minimizing the local energetic errors and force errors most likely stems from its ability to produce a reasonable charge-density. The introduction of exact exchange favors charge localization through the reduction of self-interaction errors. After HSE, TPSS seems to produce reasonable charge densities. Among the GGA’s and vdW corrected GGA’s, the vdW-DF, BLYP, and optB86b-vdW functionals seem to produce reasonable charge densities, most likely because the underlying exchange functionals are skewed to favor bonding and charge localization.

E. Role of Exchange

We believe the difference in the performance of the functionals stems from the treatment of exchange, rather than the addition of sophisticated non-local correlation effects. This conclusion follows from two pieces of evidence. Firstly, one would expect that if vdW type correlation were necessary for an accurate description of dense H+He, no GGA would be able to compete with a properly tuned non-local van der Waals functional. However, the two energetically best performing functionals are vdW-DF, a non-local vdW functional, and BLYP, a GGA. Beyond having comparable performance, the total magnitudes and scaling of local and global energy errors with these two functionals are very similar. This strongly suggests that the energetic contributions made by the non-local van der Waals effects are small compared to the traditional GGA type exchange and correlation.

The other piece of evidence comes from comparing the performance of the non-local van der Waals functionals. vdW-DF, vdW-DF-C09, and vdW-DF-CX all use the same non-local correlation functional, differing only in their choice of exchange functional. The same is true of vdW-DF2 and vdW-DF2-C09. We found that vdW-DF-C09 and vdW-DF2-C09 were virtually indistinguishable energetically, indicating the small role played by the difference in the van der Waals correlation piece. However, there are significant differences between vdW-DF-C09 and vdW-DF, and likewise between vdW-DF2-C09 and vdW-DF2. These pairs demonstrate a propensity to underbind or overbind the H-H interaction respectively relative to QMC.

It turns out that the best performing density functionals exhibit some common trends in their underlying exchange functionals. The exchange functionals for GGA’s are given by $F_x[\rho] = \int dr \rho(r) e_{x}^{\text{hom}}(r) F_x(s(r))$, where e_{x}^{hom} is the Slater-type exchange for the homogeneous electron gas, F_x is the “enhancement factor”, and $s = |\nabla \rho|/(2(3\pi^2)^{1/3} \rho^{4/3})$ is the “reduced density gradient”. Before getting into similarities in F_x, responsible for decent or poor energetic or pressure performance, we need to know which values of s are relevant in our system. After analyzing the PBE and BLYP charge densities for a single sample configuration from each density and helium concentration, we conclude that s is bounded by $0 < s < 1.8$ for all configurations of interest ($s \leq 0.8$ for pure H configurations). Unsurprisingly, the largest gradients occur in pure hydrogen configurations at low density, whereas the smallest gradients occur in pure helium at high density.

Within the semilocal GGA functionals, we can explain better or worse energetic performance relative to PBE by looking at F_x. We saw that the global energetic, local energetic, and force errors followed this progres-
sion of decreasing accuracy: BLYP, revPBE, PBE, and PBEsol. Looking at the underlying enhancement factors (BLYP uses B88 exchange), we see the following trend: \(F_{x}^{B88} > F_{x}^{revPBE} > F_{x}^{PBE} > F_{x}^{PBEsol} \) for all “s” in the relevant range for hydrogen. \(F_{x}^{revPBE} > F_{x}^{B88} \) from about \(s = 0.8 \) onwards (they cross again at much larger \(s \)), but this does not affect the description of hydrogen. This implies that the best performing functionals for energies and forces work by lowering the energy contributions coming from the larger reduced gradients, which favors charge localization and bonding.

We also note that the electronic structure around protons is very sensitive to the treatment of exchange at these densities. Despite the qualitatively different energetics and H-H force errors between PBE and BLYP, we see that the relative difference in the exchange enhancement factors \(F_{s}^{B88} - F_{s}^{PBE} \approx 0.005 \) at \(s = 0.4 \). In contrast, the electronic structure near the helium nuclei doesn’t seem to be nearly as sensitive to the choice of exchange functional. This conclusion is based on how similar the local energetic errors and He-He forces were in pure helium configurations across different functionals.

One can perform the same type of analysis with the vdW-DF type functionals. vdW-DF, optB86b-vdW, and vdW-DF-CX use the revPBE, optB86b, CX exchange functionals respectively. We previously saw that for energetic and force errors, the progression towards decreasing accuracy follows the sequence vdW-DF, optB86b-vdW, and vdW-DF-CX. Looking at the underlying enhancement factors, we find that \(F_{x}^{revPBE} > F_{x}^{optB86b} > F_{x}^{CX} \). vdW-DF and optB86b-vdW perform comparably, but vdW-DF overbinds relative to QMC whereas optB86b-vdW underbinds. We forgo a direct exchange functional comparison between the vdW functionals and the GGA’s, primarily because of the “exchange consistency” complication stemming from the use of a different “outer” and “inner” exchange correlation functional.

Deeper relationships between the functional form of \(F_{s}(s) \) and corresponding errors can be deduced from the previous discussion. However, we leave these considerations to future publications, since our current focus is on hydrogen-helium thermodynamics and not on density functional development.

V. CONCLUSIONS

In this paper, we have used projector Quantum Monte Carlo to benchmark some of the most popular density functionals, ranging from GGA, to non-local dispersion corrected, to meta-GGA. We were able to quantify the errors for most quantities that are relevant for constructing an equation of state: specifically the pressures, local and global energy differences. As a result of our analysis, we can conclude that significant reduction of enthalpy errors and a much better energetic description of hydrogen helium interactions can be attained by using the TPSS metaGGA, the BLYP GGA, or the nonlocal vdW-DF functional. For the pressure on the other hand, there are several functionals that have errors around 1% for all densities and helium concentrations considered: optB88, WC, PBEsol, and vdW-DF-C09.

Beyond just identifying the most accurate density functional and quantifying its errors, we have demonstrated the common features of the best performing functionals, specifically in the shape and limiting behavior of the enhancement factors for the exchange functionals. The underlying exchange pieces for both vdW-DF, BLYP, and revPBE tend to emphasize bonding in the energetics, which is well known in the DFT literature. The importance of this work is that it specifies quantitatively just how important this bonding character is for an accurate description of dense hydrogen-helium mixtures. Knowing this, and how much the various exchange correlation functionals overbind or underbind, should facilitate the optimization and deployment of new functionals for mapping out the H+He phase diagram.

Acknowledgments

MAM was supported by the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. MAM, RC and DMC were supported through the Predictive Theory and Modeling for Materials and Chemical Science program by the Basic Energy Science (BES), DOE. RC, and DMC were also supported by DOE DE-NA0001789. MH and DMC acknowledge support from the Fondation Nanosciences de Grenoble.

Computer time was provided by the US DOE INCIITE program, Lawrence Livermore National Laboratory through the 7th Institutional Unclassified Computing Grand Challenge program and PRACE project n 2011050781.

* rcclay2@illinois.edu

49. See Supplemental Material at [URL will be inserted by publisher for [the supplemental material]].

\[\langle \delta f_{H-H}(r) \rangle \] (mHa/bohr)

\[\langle \delta f_{PBE-H}(r) \rangle \] calculated at \(x_{He} = 20.7\% \), (middle) \(\langle \delta f_{PBE-He}(r) \rangle \) calculated at \(x_{He} = 20.7\% \), (middle) \(\langle \delta f^{PBE}_{He-He}(r) \rangle \) calculated at \(x_{He} = 100\% \)

FIG. 8: \(\langle \delta f^{PBE}_{\mu\nu}(r) \rangle \) vs. \(r/r_s \) as density is changed. The different marker colors/styles represent different densities. (Top) \(\langle \delta f^{PBE}_{H-H}(r) \rangle \) calculated at \(x_{He} = 20.7\% \), (middle) \(\langle \delta f^{PBE}_{H-He}(r) \rangle \) calculated at \(x_{He} = 20.7\% \), (middle) \(\langle \delta f^{PBE}_{He-He}(r) \rangle \) calculated at \(x_{He} = 100\% \)
FIG. 9: \(\langle \delta f_{PBE}^{PBE}(r) \rangle \) vs. \(\tau/r_s \) as helium concentration is changed. The different marker colors/styles represent different helium concentrations. (Top) \(\langle \delta f_{H-H}^{PBE}(r) \rangle \), (middle) \(\langle \delta f_{H-He}^{PBE}(r) \rangle \), (middle) \(\langle \delta f_{He-He}^{PBE}(r) \rangle \). All configurations are at a density of \(r_s = 1.25 \).
FIG. 10: $\langle \delta f_{\mu_{\nu}}^{DF}(r) \rangle$ vs. τ/r_s as the functional is changed. The different marker colors/styles represent different density functionals. (Top) $\langle \delta f_{\mu_{\nu}}^{PBE}(r) \rangle$ at $x_{He} = 1.6\%$, (middle) $\langle \delta f_{\mu_{\nu}}^{PBE}(r) \rangle$ at $x_{He} = 20.7\%$, (middle) $\langle \delta f_{\mu_{\nu}}^{PBE}(r) \rangle$ at $x_{He} = 100\%$. All configurations are at a density of $r_s = 1.25$.
FIG. 11: Plot of enhancement factors $F_x(s)$ for all the best performing functionals.