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The nature of the superconducting transition in highly underdoped thick films of La2−xSrxCuO4

(x = 0.07 and 0.08) has been investigated using the in-plane transport measurements. The contribu-
tion of superconducting fluctuations to the conductivity in zero magnetic field, or paraconductivity,
was determined from the magnetoresistance measured in fields applied perpendicular to the CuO2

planes. Both the temperature dependence of the paraconductivity above the transition and the
nonlinear current-voltage (I − V ) characteristics measured across it, exhibit the main signatures of
the Berezinskii-Kosterlitz-Thouless (BKT) transition. The quantitative comparison of the super-
fluid stiffness, extracted from the I − V data, with the renormalization-group results for the BKT
theory, reveals a large value of the vortex-core energy. This finding is confirmed by the analysis
of the paraconductivity obtained using different methods. The results strongly suggest that the
characteristic energy scale controlling the BKT behavior in this layered system corresponds to the
superfluid stiffness of a few layers.

PACS numbers: 74.40.-n, 74.72.Gh, 74.62.En

I. INTRODUCTION

One of the most intriguing phenomena in condensed
matter systems is the occurrence of the so-called
Berezinskii-Kosterlitz-Thouless1–3 (BKT) transition in
two-dimensional (2D) superfluid systems. The main in-
gredients of the BKT physics were described originally
within the context of the two-dimensional XY model,
which is an effective model for the collective phase of the
superfluid order parameter.4,5 Here logarithmically inter-
acting vortex-like topological excitations drive the tran-
sition from the superfluid state, where they are bound
together in vortex-antivortex (V-AV) pairs, to the metal-
lic one, where single vortex excitations proliferate. This
mechanism leads in principle to several peculiar signa-
tures in the physical observables, such as the univer-
sal and discontinuous jump6 of the superfluid density at
TBKT , the observation of which in 4He films7 was the first
experimental proof of the existence of a BKT transition.
Afterwards, interest in BKT physics was triggered mainly
by the possibility to observe it in superconducting (SC)
systems that can be considered to be in the 2D limit.
On very general grounds, this occurs for systems with
low superfluid stiffness Js, defined as the energy scale
associated to the areal density of superfluid electrons:

Js =
~
2nsdBKT

4m
=

~
2c2

16πe2
dBKT

λ2
, (1)

where ns,m denote the superfluid density and mass of
the carriers, respectively, λ is the magnetic penetration
depth and dBKT denotes a transverse length scale over
which the system can be seen as effectively 2D. The pos-
sibility to see BKT physics is connected to a low value of
dBKT /λ

2: indeed, despite the presence of screening su-
percurrents, the interaction between vortices remains log-

arithmic when the Pearl screening length Λ = 2λ2/dBKT

overcomes the system size.8 In addition, since the dis-
tance between TBKT and the ordinary BCS tempera-
ture Tc scales as (Tc − TBKT )/Tc ∝ TBKT /Js, a clear
BKT regime can only be identified when Js gets reduced.
In films of conventional superconductors, these condi-
tions are usually realized when the film thickness d is
reduced. In those cases, by identifying dBKT with d, typ-
ical BKT signatures have been observed9–16 by means of
different experimental probes. The universal jump of the
superfluid density has been seen either via direct mea-
surements of the inverse penetration depth9–14,16 or via
a discontinuous jump of the exponent of the nonlinear
I −V characteristics.9 At the same time, the vortex pro-
liferation above TBKT has been identified9,14,15 from an
exponential divergence of the correlation length above
TBKT , which leads to a peculiar paraconductivity above
the transition.4,17

An alternative route for the observation of BKT
physics is presented by bulk layered systems, in which
the magnetic-field distribution of a vortex differs drasti-
cally from the monopole-like Pearl solution in uniform
films:4,18 the presence of other superconducting layers
squeezes the field of a pancake vortex into a narrow strip
of size λ along the c axis. This in turn implies that the
logarithmic dependence of the interaction potential be-
tween two vortices placed in the same layer persists up
to all length scales, as in a neutral superfluid, making
in principle the stack of uncoupled layers the best pos-
sible system to observe a true BKT transition, with the
2D unit in Eq. (1) corresponding to each isolated plane.
In the presence of Josephson coupling between layers,
the upper cut-off for the logarithmic interaction between
vortices becomes4,18 ΛJ ≃ ξ0/

√

J⊥/J‖, where ξ0 is the
zero-temperature in-plane coherence length, and J‖,⊥ are
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the in-plane and out-of-plane superfluid stiffness, respec-
tively. If the interlayer coupling is weak, i.e. J⊥/J‖ ≪ 1,
this length scale is large enough to allow for a BKT-like
description of the vortex-antivortex interaction, indepen-
dent of the film thickness d. In practice, even if the finite-
size effect due to ΛJ leads to a rounding of the discontin-
uous jump in Js, the analysis of anisotropic 3D XY -like
model19–24 shows that the unbinding of vortex-antivortex
pairs in each plane is still the mechanism driving the tran-
sition, in analogy with the purely 2D case. Therefore, in
a weakly coupled, layered superconductor, one expects
to observe a BKT-like transition at a 3D transition tem-
perature that is slightly higher than the BKT transition
temperature of a single layer of an equivalent uncoupled
system.

Such a description is expected to be appropriate for
underdoped samples of cuprate superconductors, which
are highly anisotropic, layered materials. Here one also
finds that the superfluid stiffness is suppressed by the
proximity to the Mott insulator,25,26 making the separa-
tion between TBKT and Tc large, while avoiding the addi-
tional consequences of an increase of the disorder level, as
it occurs in films of conventional superconductors when
the thickness is reduced. According to this argument,
in bulk samples of underdoped cuprates one should be
able to identify BKT signatures assuming that the fun-
damental 2D unit is represented by isolated CuO2 layers,
i.e. the transverse length scale dBKT in Eq. (1) would
coincide with the interlayer distance dc, as pointed out
in the seminal work by Emery and Kivelson.25 However,
it has been recently shown23 that this picture is some-
how too simplified, since one should also account for the
nontrivial role of the vortex-core energy µ, which is the
energetic cost needed to create the vortex at the small-
est length scale ξ0. Indeed, even if the layers are weakly
coupled, what matters for the vortex proliferation is the
competition at large distances between the effective vor-
tex fugacity and the effective Josephson coupling. As
a consequence, when µ is large, the Josephson coupling
between layers can prevent the vortex unbinding, mov-
ing the BKT transition away from the value expected for
each isolated layer, resulting in an effective dimension
dBKT larger than dc.

So far, the experimental situation in cuprate super-
conductors has been controversial. For example, the di-
rect measurements of the inverse penetration depth have
shown that, in the YBa2Cu3O7−x family, no BKT jump
is observed even in strongly-underdoped thick films27,28

or crystals.29 A BKT-like superfluid-density jump is
only seen in few-unit-cell thick films of YBa2Cu3O7−x

(Ref. 30) or Bi2Sr2CaCu2O8+x(Ref. 31), but even in this
case, as the samples get underdoped, the effective dBKT

seems to cross over to the sample thickness and the
superfluid-density jump gets smeared out. While this
can be explained indeed by an increase of the vortex-
core energy with underdoping,32 one should notice that
the simultaneous appearance of an anomalously large dis-
sipative response suggests that spurious finite-frequency

effects can also be present, as emphasized recently in the
analysis of thin films of NbN.33 These spurious effects are
instead absent in the dc measurements of the I − V ex-
ponent that suggested a BKT-like jump very near Tc in
cuprate samples.34–38 However, this measurement allows
one to extract directly the effective 2D areal stiffness (1),
i.e. the combination dBKT /λ

2, so dBKT can be deter-
mined only if λ is known by measurements in similar sam-
ples. Finally, the analysis of the paraconductivity, i.e. of
the SC fluctuations above Tc, also raises some questions
on the occurrence or not of a BKT transition. Indeed,
on one hand, the SC fluctuations have been proved to
have a strong 2D character in several cuprate families
(e.g. Refs. 39–43) with the typical 2D unit being identi-
fied as the distance between the CuO2 layers dc. On the
other hand, these are ordinary Gaussian (amplitude and
phase) fluctuations, with a BKT regime that, if present,
is restricted to a small range of temperatures near Tc in
the most underdoped samples.37,43

In the present work, we address the issue of the identi-
fication of the scale dBKT in cuprate superconductors by
making a simultaneous analysis of the BKT signatures
both below and above TBKT in two highly underdoped
samples of La2−xSrxCuO4. We first extract the paracon-
ductivity above TBKT (Sec. II B), and then determine
the temperature dependence of the anomalous 2D expo-
nent of the I − V characteristics across it (Sec. II C).
In Sec. III A, the direct comparison of the experimental
I − V data with the renormalization-group results for
the BKT theory allows us to extract a large value of the
vortex-core energy µ, consistent with that obtained from
the analysis of paraconductivity in Sec. II B. According
to earlier theoretical work,23,32 the large value of µ ob-
tained in our study corresponds to dBKT ≃ (2 − 3) dc.
Furthermore, this value of the vortex-core energy can
be used to reduce considerably the fitting parameters in
the well-known Halperin-Nelson formula44 for the para-
conductivity above TBKT , spanning both the BKT and
Aslamazov-Larkin45–47 (AL) regimes of the SC fluctua-
tions. This analysis (Sec. III B) confirms that the effec-
tive length scale dBKT is a few times larger than dc, in
agreement with the expectation23,32 for a layered weakly-
coupled system with a large vortex-core energy. Our
study clarifies how different transverse length scales en-
ter in the analysis of the SC fluctuations above and below
TBKT , solving the apparent contradiction between pre-
vious measurements.

II. EXPERIMENTS

A. Samples and measurement techniques

The samples were La2−xSrxCuO4 (LSCO) films with
the nominal doping x = 0.07 and x = 0.08. They
were patterned into standard Hall bars with the length
L = 2.0 mm and the width W = 0.3 mm; the distance
between voltage contacts was 1.01 mm. The films were
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75 unit cells (150 CuO2 layers) thick (d ≈ 1000 Å) and
grown by molecular beam epitaxy. The films and samples
were described in detail elsewhere.48 The samples become
superconductors below the temperature TR=0(x), defined
as the temperature at which the in-plane resistance R be-
comes zero. The measured TR=0 were (3.9 ± 0.1) K and
(9.7± 0.3) K for samples x = 0.07 and 0.08, respectively.

The in-plane sample resistance and magnetoresistance
were measured in 3He cryostats (base T ≈ 0.25 K) with
a standard four-probe ac method (∼13-16 Hz) in the
Ohmic regime, using either SR7265 lock-in amplifiers or
a LR-700 resistance bridge. The magnetic fields H up to
18 T were applied perpendicular to CuO2 planes (H ‖ c
axis) and swept at constant temperatures. The sweep
rates of 0.02-1 T/min were low enough to avoid the heat-
ing of the sample from eddy currents.

The current-voltage (I-V ) measurements were carried
out at constant temperatures (T ) in H = 0 using 3He and
variable-temperature insert (base T ≈ 1.3 K) cryostats.
DC square pulses provided by a Keithley 6221 current
source were applied to the samples, while a Keithley
2182A nanovoltmeter measured the voltage response.
Each data point on the I-V curve was found by averaging
measurements with positive and negative pulse polarities.
Such a four-point dc method49 avoids possible effects of
parasitic capacitances (e.g. from the sample contacts)
and obviates Joule heating, while retaining the increased
sensitivity of a finite-frequency technique and eliminat-
ing the effects of thermal electromotive forces. Current
excitations between 50 nA and 1 mA were typically used,
depending on the film doping and temperature.

The addition of current noise to a device with an in-
trinsic nonlinear behavior can create an Ohmic response
at low currents50 and, in particular, it can create Ohmic
behavior even below TBKT . Therefore, for the I-V mea-
surements, filtering was provided at room temperature
by a 1.75 nF low-pass π filter in series with a 1 kΩ re-
sistor on each lead to the sample. The π filters and the
resistors were encased in a shielded box attached to the
top of the cryostat probe. This filter box provided a 5 dB
(60 dB) noise reduction at 10 MHz (1 GHz), which en-
abled the observation of nonlinear I-V behavior at low
excitations amid masking current noise.

B. High-field magnetoresistance measurements and
superconducting fluctuations

By approaching the superconducting transition from
above, it is in principle possible to identify the BKT tran-
sition from the temperature dependence of the contribu-
tion of superconducting fluctuations (SCFs) to conduc-
tivity (or “paraconductivity”), ∆σSCF (T ) = ρ(T )−1 −
ρn(T )

−1, where ρ(T ) and ρn(T ) are the measured and
normal-state resistivity, respectively. In cuprates, the de-
termination of ρn(T ) has been somewhat ambiguous and
controversial (see, e.g., Ref. 43 and references therein).
We emphasize, however, that the precise determination

of (finite) ρn is not crucial for the extraction of ∆σSCF

in the regime of interest, very near the BKT transition
where the contribution of SCFs diverges (Eq. (3) below).
On the other hand, it may introduce considerable er-
rors into the values of ∆σSCF far from it.43 This issue is
demonstrated and discussed further in Sec. III B.

In this Section, we adopt a method that uses trans-
verse (H ‖ c) magnetoresistance measurements to deter-
mine the extent of SCFs. In particular, above a suffi-
ciently high magnetic field H ′

c(T ), SCFs are completely
suppressed (i.e. they become unobservable in the ex-
periment) and the normal state is fully restored. In the
normal state, the magnetoresistance of cuprates increases
as H2 at low fields43,48,51–60 (ωcτ ≪ 1, where ωc is the
cyclotron frequency and τ is the scattering time), similar
to the classical orbital effect in conventional metals:61

ρn(H)− ρn(0)

ρn(0)
= (ωcτ)

2 ∝ H2, (2)

Therefore, the values of H ′
c can be found from the down-

ward deviations from such quadratic dependence that
arise from SCFs when H < H ′

c.
43,48,56,58,59 The SCF con-

tribution to the conductivity can be determined then as
∆σSCF (T,H) = ρ(T,H)−1 − ρn(T,H)−1, where ρ(T,H)
is the measured resistivity and ρn(T,H) is obtained by
extrapolating the region of H2 magnetoresistance ob-
served at high enough H and T . The advantages of this
method43,56 over some of the earlier ones (e.g. Refs. 41
and 62) are that it does not rely on any assumptions
about the T dependence of ρn, and it makes it possible to
determine both the paraconductivity ∆σSCF (T,H = 0)
and the SCF contribution to conductivity in the presence
of magnetic field.

Figure 1(a) shows representative ρ(H) curves (H ‖ c)
obtained on the x = 0.07 LSCO sample. The condition
for the weak-field limit is satisfied in the entire regime of
interest as ωcτ ≈ 0.5 at 18 T and 5 K, where it reaches
its maximum value. By tracking the gradual evolution
of the magnetoresistance curves measured at different T
[Fig. 1(b)], from the high-T region where the H2 depen-
dence is unambiguous, to lower T where SCFs are more
pronounced, we were able to determine the values of the
onset fields H ′

c(T ) (see Appendix A for a more detailed
discussion).

Figure 2(a) inset shows H ′
c(T ), determined from

Fig. 1(b) for the x = 0.07 sample and fitted by a sim-
ple quadratic expression H ′

c(T ) = H ′
c(0)[1 − (T/T2)

2],
similar to earlier studies.43,48,56,58,59 In zero field, SCFs
become observable below T2 = 29 K. In Sec. III B, we
show explicitly that the exact determination of ρn, and
thus the determinations of H ′

c(T ) and T2, does not affect
our conclusions. Hereafter we focus only on the zero-field
behavior.

Figure 2(a) shows that ∆σSCF (H = 0)/σn(H = 0),
where σn = 1/ρn, increases by several orders of mag-
nitude as temperature is reduced towards TR=0 ≈ 4 K,
reminiscent of the exponential divergence expected at the
BKT transition. Indeed, in 2D the paraconductivity can
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FIG. 1. (Color online) x = 0.07 LSCO film. (a) Resistivity
vs. transverse magnetic field (H ‖ c) up to 18 T for differ-
ent T , as shown. The highest T data are also shown in the
inset for clarity. (b) Magnetoresistance data from (a) plot-
ted vs H2. Symbols (black diamonds) show H ′

c(T ), the fields
above which SCFs are fully suppressed and the H2 depen-
dence of the normal-state resistivity ρn is observed. Dashed
lines are linear fits representing the contributions from normal
state transport, i.e. they correspond to [ρ(H)− ρ(0)]/ρ(0) =
[ρn(0) − ρ(0)]/ρ(0) + [ρn(0)/ρ(0)]atransH

2.
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FIG. 2. (Color online) x = 0.07 LSCO film. (a) Symbols
show ∆σSCF (T,H = 0)/σn(H = 0) vs T , as determined from
Fig. 1. The solid line is a fit to Eq. (4) with TBKT = 3.8 K
and fitting parameters A = 17.9, b = 2.9; the dashed line
corresponds to TBKT = 4.0 K, A = 29, b = 3.3. Inset: The
onset field H ′

c(T ) below which SCFs become observable. The
dashed line is a fit H ′

c = H ′
c(0)[1− (T/T2)

2], with µ0H
′
c(0) =

15 T and T2 = 29 K. (b) ρ vs T in H = 0. Arrows point at
TBKT= TR=0 and Tc; Tc was estimated as shown in the inset.
Inset: The temperature at the inflection point of the ρ(T )
curve, where dρ/dT has a maximum, is taken as an estimate
of Tc in the calculation of α from Eq. (5).

always be expressed as

∆σSCF /σn =

[

ξ(T )

ξ0

]2

, (3)

where ξ(T ) is the SC correlation length, whose tempera-
ture dependence depends on the nature of the SC fluctu-
ations. The usual Aslamazov-Larkin45–47 (AL) paracon-
ductivity describes the fluctuating Cooper pairs above
the mean-field temperature Tc, and leads to a power-law
divergence of the coherence length ξ2 ∼ (T − Tc)

−1. In
contrast, within BKT theory, ξ2(T ) ∼ 1/nF measures
the inverse density nF of free vortices above TBKT , and
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diverges exponentially as T → TBKT . An interpolation
formula between these two regimes was first proposed by
Halperin and Nelson44

∆σSCF

σn

=

(

2

A
sinh

b√
t

)2

, T & TBKT , (4)

where t = (T −TBKT )/TBKT , and A and b are numerical
constants. More recently, a renormalization-group (RG)
study63 of the BKT transition showed that parameter b
is strictly connected to two relevant physical quantities:

b ≃ 2α
√
tc, α = µ/µXY , (5)

where tc is the distance between the mean-field and BKT
critical temperatures

tc ≡
Tc − TBKT

TBKT

, (6)

while α is the vortex-core energy µ expressed in units of
the conventional value µXY that it assumes in the XY
model (see also Eq. (16) below). According to Eq. (3),
the exponential BKT behavior is limited to the range of
temperatures t ≪ tc, while above it, one recovers the
usual AL paraconductivity.

The paraconductivity shown in Fig. 2(a) has been fit-
ted to Eq. (4) by taking TBKT = TR=0 = (3.9 ± 0.1) K
[Fig 2(b)]. Surprisingly, it is possible to get a good fit
to the data even up to very high temperatures ∼ 20 K
with reasonable values of A and b [e.g. dashed line in
Fig. 2(a)]. However, within the error for TBKT , the lower-
T data up to ∼ 10 K are described better with the fitting
parameters in the range A = 13−20 and b = 2.5−3.0 [e.g.
solid line with A = 17.9 and b = 2.9 in Fig. 2(a)]. Assum-
ing that Tc ∼ 7 K, i.e. of the order of the temperature
where dρ/dT has a maximum [Fig 2(b) inset], Eq. (5)
then yields enhanced values of the vortex-core energy,
µ/µXY ≃ 1.4− 1.7, consistent with previous work.23,32

The above analysis of the SCFs above a SC transition,
which occurs at TBKT = TR=0, suggests the presence of
a BKT fluctuation regime at TBKT < T < Tc ∼ 7 K,
followed by a crossover to the AL regime at T > Tc. It is
worth noting that the crossover to the AL regime gives
some indication on the transverse length scale controlling
the Gaussian fluctuations in the sample. Indeed, when
t ≫ tc, Eq. (4) reduces to

∆σSCF

σn

≃ 4b2

A2

TBKT

T − TBKT

≃ κBKT

Tc

T − Tc

, (7)

where, on the r.h.s., κBKT ≡ 4b2TBKT/(A
2Tc) and we

replaced T −TBKT with ≃ T −Tc, which is correct when
T is sufficiently larger than Tc so that the difference be-
tween Tc and TBKT can be neglected. We note that, in
films of conventional superconductors,14,64 usually tc is at
most of order 0.1, so the crossover from the pure BKT be-
havior to the AL one occurs for relatively small reduced
temperatures t. In our samples, tc is as large as 0.7,
so the asymptotic AL behavior (7) is reached at higher

temperatures. On the other hand, since the SCFs regime
extends up to reduced temperatures as large as t ∼ 3− 4
[Fig. 2(a)], there is still a large temperature regime where
the approximation (7) is valid. This expression has to be
compared with the usual AL formula45–47 that gives

∆σAL

σn

=
ρn/dAL

16Rc

Tc

T − Tc

≡ κAL

Tc

T − Tc

, (8)

where Rc = ~/e2 = 4.1 kΩ. By mapping the expres-
sions (7) and (8), we can see that the high-T limit of the
interpolating HN formula also fixes the prefactor κAL

that controls the strength of the AL fluctuations in the
Gaussian regime at T ≥ Tc. The latter one depends
in turn on the transverse length scale dAL that identi-
fies the 2D unit for AL fluctuations [see Eq. (8)]. By
using the estimates of b, A given above, we obtain that
κBKT = 4b2TBKT /(A

2Tc) ≃ 0.1. Thus, from the mea-
sured ρn ≃ 1 mΩ cm and by matching κBKT and κAL, we
conclude that dAL is of the same order as the interlayer
distance dc, in full agreement with previous work in the
literature.41,42 In other words, as far as the Cooper-pair
fluctuations are concerned, the fluctuation regime dis-
plays marked 2D character with decoupled layers, consis-
tent with the standard expectation for a weakly-coupled
layered superconductor.47 On the other hand, the BKT
paraconductivity does not allow us to extract any pre-
cise information on the scale dBKT controlling the vor-
tex physics below TBKT . To address this issue, and to
confirm the fit based on the paraconductivity data ex-
tracted from the high-field magnetoresistance measure-
ments [Fig. 2(a)], we analyze the I − V characteristics,
whose behavior is, in fact, one of the key signatures of
the BKT transition.

C. Current-voltage characteristics and superfluid
stiffness

The most famous hallmark of the BKT transition is
observed by approaching TBKT from below. In particu-
lar, the superfluid stiffness Js, defined in Eq. (1), exhibits
the so-called universal jump at the transition, i.e.

Js(T
−
BKT ) =

2

π
TBKT , Js(T

+
BKT ) = 0. (9)

Here the T dependence of Js(T ) includes both the quasi-
particle excitations, which would drive Js continuously to
zero at Tc, and vortex-like phase fluctuations, which are
instead responsible for the discontinuous jump (9). The
latter directly influences the behavior of the exponent a
in the I − V characteristics:

V ∝ Ia(T ), a(T ) =
πJs(T )

T
+ 1. (10)

The superlinear behavior in Eq. (10) is due to the ability
of a sufficiently large current to unbind vortex-antivortex
pairs. From Eq. (9), it follows then that a should jump
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from a = 3 at T = T−
BKT to a = 1 at T = T+

BKT .
Below TBKT , the exponent a is expected to increase with
decreasing T since the superfluid density increases.

The voltage-current characteristics are shown in
Figs. 3(a) and 3(b) on a log-log scale for the x = 0.07
and x = 0.08 films, respectively. The power-law behav-
ior V ∝ Ia(T ) is observed at all T in the low-current
limit. In that regime, the V (I) dependence is thought
to arise from the thermally dissociated vortex-antivortex
pairs for T > TBKT and from current-induced dissocia-
tion for T < TBKT . At the highest currents in Figs. 3(a)
and 3(b), heating effects become important. The temper-
ature dependent exponents a(T ) were determined as the
slopes of the linear fits of the data at the lowest currents
[Figs. 3(a) and 3(b)]. We note that, due to a large value
of tc, the fitting range, both in current and in tempera-
ture, is much wider than usual, i.e. compared to systems
that are clearly 2D, such as interfaces65 and films.66 The
values of a(T ) are presented in Fig. 3(c) for both samples.
A steep change of a from its Ohmic value (a = 1) at high
T to large values > 3 is indeed observed with decreasing
T . In particular, a(T ) in the x = 0.08 sample exhibits a
jump-like behavior as expected, but the a(T ) dependence
is smoother in a more highly underdoped sample. Never-
theless, a reaches 3 at T = (3.6±0.1) K and (9.4±0.1) K
for samples x = 0.07 and x = 0.08, respectively, close to
their TR=0 values and consistent with the assumption in
Sec. II B that TR=0 = TBKT .

Even though the TBKT values will be determined more
precisely in Sec. III A by the theoretical analysis that
takes into account the smearing of the BKT jump by the
presence of inhomogeneities, we can estimate the order
of magnitude of Js(TBKT ) from the temperature where
a(T ) = 3 using Eq. (9). In the x = 0.07 sample, for
example, we have Js(TBKT ≈ 3.6 K) ≈ 2.3 K. Using this
value and Eq. (1) expressed as64

Js[K] = 0.62
dBKT [Å]

λ2[µm2]
, (11)

we find that, if the effective transverse length scale
dBKT coincides with the film thickness (≈ 103 Å),
λ(TBKT ) ≈ 16 µm, while for dBKT ≃ dc ≈ 7 Å we obtain
λ(TBKT ) ≈ 1.4 µm. Based on the doping and tempera-
ture dependences of the penetration depth measured in
similar LSCO films,67 we estimate that λ(TBKT ) does not
exceed a value of 2-3 µm for our x = 0.07 sample. There-
fore, we find much better agreement between the results
of our I−V measurements and penetration depth studies
by assuming that the effective sample thickness is some-
what larger than the interlayer spacing, but not as large
as the whole thickness of the sample. As we shall see be-
low, this conclusion is confirmed by a detailed comparison
between Js(T ) extracted from the a(T ) exponent and the
theoretical prediction for the BKT behavior, when the
non-trivial role of the vortex-core energy is taken into
account.

Finally, we remark that, in our samples, we do not
expect to observe the Ohmic response in the I −V char-
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FIG. 3. (a), (b) Voltage-current characteristics on a log-log
scale for x = 0.07 and x = 0.08 samples, respectively, at differ-
ent T , as shown. At the lowest excitations, V ∝ Ia(T ), where
the solid lines are linear fits with the slopes corresponding to
a(T ). In both panels, the dashed lines with slopes a = 1 and
a = 3 guide the eye. (c) a(T ) for both samples. The dashed
line a = 3 crosses the data at (3.6± 0.1) K and (9.4± 0.1) K
for samples x = 0.07 and x = 0.08, respectively.
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acteristics caused by finite-size effects.68–71 Indeed, it is
known that the dc I − V curves probe the contribution
of dissociated vortex-antivortex pairs separated by a dis-
tance r∗ = 2πJscW/Φ0I. Therefore, at small currents,
which probe r∗ larger than the sample width (W < L),
the free vortices will dominate the resistance and the
I − V characteristics will be Ohmic. On the other hand,
the nonlinear behavior (10) of the I − V characteristics
can only be seen when r∗ < W , i.e. above a threshold
current4,63 I∗,

I∗ =
2Jsπc

Φ0
≃ 4kBTBKT c

Φ0
. (12)

By using the above estimate TBKT ≈ 3.6 K for the x =
0.07 sample, one gets I∗ ≃ 2.68×10−8(A/K)TBKT [K] ∼
1×10−7 A. In the presence of inhomogeneous domains of
size L′ < L, the threshold current I∗ is expected63 to in-
crease with respect to the estimate (12). However, since
the homogeneous value (12) we found is considerably
smaller than the currents at which the measurements are
performed, finite-size effects are not expected to man-
ifest themselves in our experiment. Indeed, Figs. 3(a)
and 3(b) show that, below TBKT , the crossover from
the nonlinear behavior (10) back to the Ohmic one is not
observed even at the lowest measured current.

III. THEORETICAL ANALYSIS OF THE DATA

A. Superfluid stiffness

We extract from Eq. (10) the temperature depen-
dence of the superfluid stiffness Js(T ), which we analyze
along the lines of the approach discussed earlier for both
conventional14,33,63,64 and cuprate superconductors.23,32

In Eq. (10), the temperature dependence of the super-
fluid stiffness Js(T ) is due to both quasiparticle excita-
tions, which induce a BCS-like suppression of JBCS(T )
at all temperatures up to Tc, and vortex-like excitations,
which become relevant near TBKT < Tc. Since our I−V
measurements are rather close to Tc, we can assume for
JBCS(T ) a linear behavior,

JBCS(T ) = J0

(

Tc − T

Tc

)

. (13)

The effect of vortices is taken into account by solving
the BKT renormalization-group equations, whose rele-
vant variables are

K =
πJBCS(T )

T
, (14)

g = 2πe−βµ, (15)

where g is called the vortex fugacity (β = 1/kBT ). Here
JBCS(T ) determines the value of K at the shortest length
scale of the problem, i.e. the SC coherence length ξ0,
while the large-distance behavior will be determined by

the presence or not of free-vortex excitations, described
by the large-distance behavior of the vortex fugacity. The
physical superfluid stiffness Js is then obtained by the
numerical solution of the RG equations at large distances
(see Appendix B for more details).

Apart from the starting value of JBCS(T ), which can
be determined by comparison with the data far from
TBKT , the second relevant energy scale in the problem is
the ratio µ/Js. Here we take it as a free parameter, to
be determined by the fit to the experimental data. This
has to be contrasted to the usual XY -model description
of the BKT transition, where µ/Js is constrained to the
value

µXY =
π2

2
Js. (16)

In general, the value of µ/Js determines the tempera-
ture scale where significant deviations of Js from the
BCS temperature dependence JBCS(T ) start to become
visible. Indeed, even though free vortices only start to
proliferate at TBKT , if a significant density of vortex-
antivortex pairs already exists below TBKT , it can renor-
malize (i.e. suppress) the large-distance superfluid stiff-
ness Js(T ) with respect to its BCS behavior counterpart
much before the BKT transition. In thin films of con-
ventional superconductors it has been shown that this
is the case.14,64 Here µ/Js ≃ 1, as expected in ordinary
BCS superconductors, and the measured Js(T ) deviates
from the BCS behavior significantly before the univer-
sal jump (9) occurs. In contrast, it has been argued23,32

that, in cuprate superconductors, µ/Js can even exceed
the (large) value ≈ 4.9 in Eq. (16), where Js is now the
stiffness of a single layer (i.e. with dBKT = dc in Eq. (1)).
As we shall see below, this has relevant consequences for
the determination of the effective transverse scale dBKT

for the BKT transition in a bulk material or in a thick
film, as it is in our case.

A second effect to be taken into account in the analysis
of the experiments is the presence of inhomogeneity of the
local SC properties, which have been clearly shown to be
relevant in underdoped cuprates by means of STM analy-
sis of underdoped samples.72,73 Here we model14,32,64 the
presence of inhomogeneities by assuming that the local
BKT critical temperature has a finite distribution about
the most probable value, represented by the curve labeled
“Homogeneous” in Fig. 4. The main effect of the inho-
mogeneity is then to smear out the universal jump (9),
the effect being larger for a wider probability distribu-
tion of the local TBKT values. More details are given in
Appendix B.

The results for the two samples x = 0.07 and x = 0.08
are shown in Fig. 4, and the fitting parameters are sum-
marized in Table I. The BCS temperature dependence
(13), shown in the figure with a dotted line, reproduces
the data below the BKT transition very well, in partic-
ular for the x = 0.08 sample where more experimental
points are available. Here the sample inhomogeneity is
very small (width of the distribution δ/J0 = 0.01; see also
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FIG. 4. Temperature dependence of the superfluid stiffness
for the x = 0.08 (a) and x = 0.07 (b) samples: Comparison
between the experiment and the theory, as described in the
main text. The fitting parameters are listed in Table I.

TABLE I. Fitting parameters for Fig. 4.

doping J0 (K) Tc (K) TBKT (K) µ/Js δ/J0 tc btheo

0.07 6.5 6.5 4 6.3 0.1 0.625 2.02

0.08 41 11.3 9.7 7 0.01 0.16 1.15

Appendix B) and, accordingly, the homogeneous and in-
homogeneous curves almost coincide, with a sharp down-
turn of Js(T ) near TBKT . TBKT is defined here as the
transition temperature for the homogeneous curve, which
represents the most probable transition temperature for
the sample. We note that, since we also included the ef-
fects of the finite size of the system, which lead to some
rounding of the Js(T ) jump before TBKT , even in the
homogeneous case we do not observe a strictly discon-
tinuous jump as in Eq. (9), but Js vanishes continuously
over a temperature range of a few mK. For the x = 0.07
sample, the inhomogeneity is larger (δ/J0 = 0.1), as ex-
pected for a more underdoped sample, and this leads in

particular to a longer superfluid tail above TBKT . In
both samples, we extract a large value of the vortex-core
energy, i.e. µ/Js = 6− 7 or µ/µXY ≈ 1.4. As explained
above, this implies that the deviations of Js(T ) from the
BCS curve only occur near TBKT . As a consequence,
TBKT can be very well estimated by using the universal
relation (9) with Js(T

−
BKT ) replaced by JBCS(T−

BKT ),
i.e.

JBCS(TBKT ) ≃
2TBKT

π
⇒ tc ≃

2Tc

πJ0
, (17)

which is in very good agreement with the tc values listed
in Table I, obtained by the RG results. It is apparent
that the large separation between Tc and TBKT in our
samples is due to the presence of two concomitant ef-
fects in underdoped cuprate films: (i) the large mean-field
critical temperature and (ii) the low superfluid stiffness,
proportional to J0 in Eq. (17), due to correlations.25,26

This has to be contrasted to conventional superconduc-
tors, where the BKT regime can only become visible
when J0 is suppressed by strong disorder, which also
brings along unavoidable spurious effects connected to
the inhomogeneity.14,33,64 In addition, in systems like
NbN, it has been shown that µ/Js ≃ 1, so the devia-
tions of Js(T ) from the BCS behavior occur much before

the intersection with the BKT line,14,64 making the ap-
proximate estimate (17) much less reliable.

Our finding of the large value of µ is an important re-
sult, since it confirms previous theoretical analysis23,32

in cuprates, and it allows us to understand the estimated
value of dBKT & dc in our film, as discussed in Sec. II C.
Since the measurements of a(T ) only access the areal
superfluid stiffness (1) and thus do not allow for a sep-
arate determination of dBKT and λ, the comparison of
the experimental data and the theory shown in Fig. 4
has been done for the BKT transition in the pure 2D
case. On the other hand, we also know that our films
are comprised of ∼ 102 layers, with a weak interlayer
Josephson coupling between them. In this case, it has
been proven by previous theoretical work23,32 that, when
µ/µXY > 1, the BKT transition TBKT moves away from
the value expected for a single, isolated layer T n=1

BKT . In
particular, according to the analysis of Refs. 23 and 32,
for the value of µ found above, one could expect that
T n
BKT is about 30% larger than T n=1

BKT , corresponding to
dBKT ≃ (2− 3) dc. Indeed, by assuming dBKT ≃ 2 dc for
the x = 0.07 sample, for example, one can easily estimate
TBKT = T n=2

BKT ≃ 1.3T n=1
BKT using the r.h.s. of Eq. (17).

The value dBKT ≃ (2 − 3) dc is consistent with the esti-
mate based on the comparison to the penetration-depth
measurements discussed in Sec. II C.

B. Paraconductivity

We note also that the value of µ extracted from the
behavior of Js(T ) is consistent with that obtained in
Sec. II B from the analysis of the paraconductivity above
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TBKT , even though the fits presented there do not in-
clude the effect of SC inhomogeneities. Indeed, we can
show that for our samples the inhomogeneity has a rela-
tively minor effect on the determination of the parame-
ters entering the paraconductivity fit. To show this, we
analyze the paraconductivity above TBKT by refining the
analysis of Sec. II B with the inclusion of inhomogeneity.

We can describe the measured resistivity as

R

Rn

=

(

1 +
∆σSCF

σn

)−1

=

(

1 +

(

2

A
sinh

b√
t

)2
)−1

.

(18)
In order to compare the theoretical predictions to a
larger number of data points, in ∆σSCF (T ) = ρ(T )−1 −
ρn(T )

−1, we approximate ρn = 1/σn with a constant,
zero-field value measured at T ≫ TBKT . Even though
this procedure is less accurate far from TBKT , this is
not relevant for the discussion of the effects near TBKT ,
where the SCFs contribution diverges. This is exempli-
fied in Fig. 5, where paraconductivity obtained using this
method is compared to that extracted from measure-
ments in high magnetic fields (Sec. II B). Indeed, the
exact determination of ρn becomes crucial only far from
Tc, where ∆σSCF /σn becomes comparable to the differ-
ence (∼ 10%) between its values obtained using those
two methods.

For the x = 0.07 sample, we choose Rn ≡ R(T =
20 K), where the SCFs contribution to conductivity is
only a few per cent [Fig. 2(a)]. To account for the inho-
mogeneity, we follow the procedure discussed in Ref. 14,
and outlined in Appendix B. We use the same distri-
bution of local critical temperatures extracted from the
analysis of Js(T ) to generate a distribution of local re-
sistivity values Ri/Rn described by Eq. (18) with the
same local values T i

BKT , T
i
c computed above. Thus, only

A, b in Eq. (18) are the fitting parameters. The global
resistance of the sample is then determined by the cor-
responding random-resistor-network problem by means
of the effective-medium approximation. Once again, to
elucidate the role of inhomogeneity, we compare the re-
sults for the homogeneous and inhomogeneous case. The
“Homogenous” curve in Fig. 5 refers to the paraconduc-
tivity of a system with a single TBKT and Tc realization,
corresponding to the most probable value in the sample.
Thus, this is the paraconductivity expected for a homo-
geneous system whose superfluid stiffness below TBKT

is described by the “Homogeneous” Js(T ) curve in Fig.
4(b).

The results are shown in Fig. 5 for the parameters A =
14 and b = 2.55, which are in good agreement with the
results of the analysis in Sec. II B. The differences are
due to the effect of the inhomogeneity, which is known74

to affect the slope of R(T ) above the transition. More
importantly, b = 2.55 is very close to the theoretical value
btheo = 2 calculated from Eqs. (5), i.e.

btheo =
4

π2

µ

Js

√
tc, (19)
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. .

R/
R

n
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x=0.07

FIG. 5. Comparison between the R(T )/Rn experimental
data and the theoretical prediction obtained in the homoge-
nous or inhomogeneous case. In the latter case, R(T ) is ob-
tained as solution of a random-resistor-network problem in the
effective-medium approximation, as explained in Appendix B.
Solid diamonds: Paraconductivity was extracted from mea-
surements in high magnetic fields (Sec. II B).

by using the values of µ/Js and tc extracted from the
analysis of the I − V characteristics below TBKT , and
listed in Table I. The fit accurately reproduces the data
up to T ≃ 10 K, which is an extremely large range of
SCFs, similar to Fig. 2(a). However, the BKT fluctua-
tion regime only extends up to Tc ≈ 6.5 K and, above it,
ordinary AL-like Gaussian fluctuations are at play. Fi-
nally, we note that some deviations start to occur above
T ≃ 10 K. As we discuss in Appendix B, this effect has
already been observed in several families of cuprates,41,42

and it can be interpreted as a signature of a pseudogap
state above Tc.41,75

IV. DISCUSSION

The analysis carried out in the previous Sections
clearly demonstrates the occurrence of a BKT-like tran-
sition in our LSCO samples. This is confirmed both by
the analysis of the paraconductivity above TBKT and by
the analysis of the superfluid stiffness below TBKT , as
extracted from the I − V measurements. Even though
our films are thick, in the sense that d is much larger
than the SC coherence length, the possibility to see BKT
physics is guaranteed by the layered nature of the sys-
tem. As we discussed in Sec. I, a weakly-coupled layered
superconductor is an ideal candidate for observing the
BKT physics, since a layered structure ensures the best
screening of the charged supercurrents. Indeed, in this
case the interaction between vortices in each plane is log-
arithmic up to a scale ΛJ ≃ ξ0/

√

J⊥/J‖ that grows as
the stiffness anisotropy increases. While the behavior of
J⊥/J‖ as a function of doping in the LSCO family has
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not been systematically explored, in other cuprates it has
been shown to decrease significantly with underdoping,76

along with a general suppression27,67 of J‖ due to cor-
relation effects.25,26 Under these conditions, one could
expect to identify signatures reminiscent of the typical
2D BKT physics, such as an almost discontinuous sup-
pression of the superfluid stiffness, even in a layered bulk

sample.19,20,23,24 On general grounds, the starting point
of this reasoning is that, as demonstrated within several
models19–24 the physics of a layered superconductor with
a very weak interlayer coupling closely approaches that
of an isolated 2D system. Indeed, even though the tran-
sition will ultimately have a 3D character, the 3D critical
region is extremely reduced for weak interlayer Josephson
coupling,19,21 and it could even be masked in the experi-
ments due to finite-size effects or inhomogeneities of the
type discussed in this manuscript.

Since in the BKT picture there exists a universal re-
lation (9) between the transition temperature and the
smallest superfluid stiffness beyond which vortex unbind-
ing occurs, the idea that each layer is isolated can lead
to the naive expectation that TBKT is controlled by the
stiffness of each isolated layer, i.e. the value (1) with
dBKT = dc. However, as predicted theoretically,23 this
simple picture should be in part revised when the role of
the vortex-core energy µ, controlling the vortex fugacity
g ∼ e−βµ, is taken into account. Indeed, in a layered
BKT model the transition temperature is not controlled
by the “bare” (i.e. short-distance) values of J⊥/J‖ and of
the vortex density g, but by their large-distance behavior.
Both energy scales grow at large distances, with opposite
consequences: the increasing of J⊥/J‖ tries to keep the
system superconducting, while the increase of g implies
that vortices would like to proliferate making the system
non-superconducting. While at some temperature g will
ultimately win, the counter-action of the interlayer cou-
pling can move TBKT away from the temperature scale
connected to the single-layer stiffness. Thus, the effective
stiffness to be used in Eq. (9) has to be computed from
the definition (1) with a transverse length scale dBKT

somewhat larger than dc. In particular, as µ increases,
the transition temperature moves farther away from the
single-layer temperature scale.23 The large value of the
vortex-core energy obtained in our measurements sug-
gests that, in strongly-underdoped LSCO samples, the
relevant length scale controlling the BKT transition in-
volves a few coupled layers, i.e. dBKT & dc. This
conclusion is in agreement with the estimate based on
the measured superfluid stiffness (1), i.e. a combination
dBKT /λ

2, and the comparison to λ measured in similar
films.

These findings, based on the analysis of the super-
fluid stiffness below TBKT , are confirmed by the anal-
ysis of the paraconductivity above it. In particular, we
have shown that the SC fluctuations above TBKT exhibit
a BKT character near the transition, and then evolve
into the ordinary Aslamazov-Larkin-type behavior ex-
pected for Gaussian (amplitude and phase) fluctuations.

We fitted the data with the well-known Halperin-Nelson
formula,44 which interpolates between the two regimes,
by constraining the fitting parameters according to the
theoretical expectations for them.63 This procedure not
only provides a consistency check of the validity of the
BKT analysis, but it also allows us to confirm the esti-
mate of the vortex-core energy extracted by the analysis
of superfluid density. In agreement with previous findings
in bulk cuprates,42,43,56 most of the fluctuation regime
is dominated by Gaussian fluctuations with a marked
2D character, where the characteristic 2D unit is rep-
resented by a single layer, i.e. dAL = dc. It is worth
stressing that this result is not in contradiction with the
finding dBKT & dc for the BKT behavior. Indeed, in
the case of Gaussian fluctuations, the dimensionality of
the fluctuations is controlled only by the band-parameter
anisotropy, i.e. the ratio t⊥/t‖ between interlayer and in-
tralayer hopping, respectively. When this ratio is small,
as it is in cuprates, one can see 2D fluctuations over a
a broad temperature range.47 The crossover to 3D be-
havior, expected in bulk materials, is here preceded by
the vortex fluctuations, which drive the system towards a
2D BKT transition. Even if the transition will ultimately
have a 3D character, we do not identify the crossover to
3D fluctuations. This is consistent with the fact that
the 3D critical regime, especially above the transition,21

is extremely reduced in a weakly-coupled layered system
and, in addition, it gets masked by inhomogeneous effects
that are mostly relevant at the transition.

V. CONCLUSIONS

We have presented measurements of the in-plane trans-
port properties of two strongly underdoped thick films of
La2−xSrxCuO4. Our results have (i) established the oc-
currence of a BKT-like transition and (ii) identified the
typical transverse length scale that defines the equivalent
two-dimensional unit controlling the BKT signatures in
this layered system.

The most striking signature of a vortex-driven phase
transition emerges from the superfluid stiffness Js, ex-
tracted from the exponent of the nonlinear I − V char-
acteristics across TBKT . In both samples, we observe a
rapid downturn of Js reminiscent of the well-known uni-
versal jump expected in a 2D superconductor. A quanti-
tative comparison with the theoretical predictions, which
also include the effect of some unavoidable degree of in-
homogeneity in the samples, strongly suggests a large
energetic cost to create the vortex cores in the SC state.
As a consequence, even though the interlayer Josephson
coupling is weak, the vortex-pair unbinding occurs at a
temperature larger than the one where each isolated layer
would undergo the BKT transition.23 In other words, the
characteristic energy scale controlling the BKT proper-
ties corresponds to the superfluid stiffness of a few lay-
ers. These results are confirmed by the analysis of the
paraconductivity above TBKT . Thanks to the few-K dis-
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tance between the BKT (TBKT ) and mean-field (Tc) crit-
ical temperatures, we can clearly see that an initial BKT
regime of fluctuations crosses over to an extended regime
of 2D Aslamazov-Larkin-type Gaussian fluctuations.

As we remarked above, the advantage of using highly
underdoped thick films is that the intrinsically low value
of the superfluid stiffness, due to the proximity to the
Mott-insulating phase,25,26 allows us to achieve a large
separation between TBKT and Tc without simultane-
ously introducing a large disorder-driven inhomogeneity
of the local SC properties. This has to be contrasted
with the case of few-unit-cell thick films of cuprates,30,31

which are usually much more sensitive to disorder, so
that the BKT jump of the superfluid stiffness is usu-
ally lost with underdoping.31 We note also that finite-
frequency probes, such as the two-coil mutual induc-
tance technique used in Ref. 31, can be potentially much
more sensitive to disorder-induced inhomogeneity, as dis-
cussed recently within the context of films of conventional
superconductors.33 In contrast, the superfluid density ex-
tracted from the I−V characteristics is a purely dc probe,
and this can explain why we see a relatively sharp BKT
jump even in our strongly underdoped samples. Whether
these features are common to other families of cuprates
is an interesting open question that certainly deserves
further experimental and theoretical investigation.
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Appendix A: Magnetoresistance

The H2 dependence of the magnetoresistance is clearly
observed at the highest T and H [Fig. 1(b)]. As the tem-
perature is lowered and SCFs become stronger, the H2 re-
gion gets pushed to higher fields and the curvature of the
ρ(H) dependence at high H , in the normal state, becomes
less obvious. The same kind of behavior has been ob-
served in other cuprates, e.g. in YBa2Cu3O7−x (Ref. 56)
and in overdoped,55,57,58 underdoped,55 and even non-
superconducting48,55 LSCO very close to the onset of su-
perconductivity.

In underdoped LSCO, it is well known55,77–79 that the
resistivity at high H increases with decreasing T (i.e.

dρ/dT < 0), as seen also in Fig. 1(a), reflecting the ten-
dency towards an insulating ground state at high fields.59

Nevertheless, deviations from Eq. (2) still provide a good
estimate of H ′

c(T ), as discussed below. While the precise
reason for the applicability of Eq. (2) remains an open
problem beyond the scope of this study, we note that, in
the regime of interest, the system remains in the (poor)
metallic regime, as kF l & 1 (kF – Fermi wave vector, l –
mean free path), i.e. the resistance per square per CuO2

layer . h/e2.
The quadratic dependence H ′

c(T ) = H ′
c(0)[1−(T/T2)

2]
(see Fig. 2(a) inset) was found also in YBa2Cu3O7−x

(Refs. 43 and 56) and overdoped LSCO (Ref. 58) giv-
ing us further confidence that the values of H ′

c(T ) are
reliable. Furthermore, the H = 0 onset temperature for
SCFs, T2 = 29 K, is consistent with the results from tera-
hertz spectroscopy80 obtained on similar films, and those
determined from the onset of diamagnetism81 and the
Nernst effect82 in LSCO crystals with similar ρ(T ) and
Tc values. We also find that µ0H

′
c(0) ≃ 15 T is in agree-

ment with the value of the upper critical field obtained
from specific-heat measurements83 on LSCO with a sim-
ilar Tc. Therefore, even though the magnetoresistance
method that we employed to determine H ′

c and ρn(H)
has an inherent limitation in accuracy, we conclude that
both the magnitude and the temperature dependence of
the onset fields H ′

c are fairly consistent with those from
other types of studies. This consistency check confirms
further that the observed onset of the H2 magnetoresis-
tance corresponds to the return to the normal state.

Appendix B: Renormalization-group analysis of the
BKT transition for an inhomogeneous system

The BKT RG equations describe the large-distance be-
havior of the dimensionless quantities K and g introduced
in Eqs. (14)-(15) above. They are given by3,4,17

dK

dℓ
= −K2g2, (B1)

dg

dℓ
= (2 −K)g, (B2)

where ℓ = ln r/ξ0 is the rescaled length scale with respect
to the short-distance cut-off for the problem, represented
by the SC coherence length ξ0. The initial values of K
and g are determined by the BCS value of the superfluid
stiffness, Eq. (14), which includes only the temperature
dependence due to quasiparticle excitations. The effect of
vortices is accounted by the RG flow at large distances, so
that the physical superfluid stiffness (1) is identified with
the limiting value of K as one goes to large distances:6

Js ≡
TK(ℓ → ∞)

π
. (B3)

The basic idea of the RG equations is to look at the
competition at large scales between the superfluid stiff-
ness and the vortex fugacity. When g → 0, it means that
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single-vortex excitations are ruled out from the system,
which then remains superconducting. Indeed, as one can
see from Eqs. (B1) and (B2), when g → 0, K goes to a
constant and then Js from Eq. (B3) is finite. If instead
g → ∞ at large distances, it means that vortices prolif-
erate and drive the transition to the non-SC state, since
K → 0. The large-scale behavior depends on the ini-
tial values of the coupling constants K, g, which in turn
depend on the temperature. The BKT transition tem-
perature is defined as the highest value of T such that K
flows to a finite value, so that Js is finite. This occurs
at the fixed point K = 2, g = 0, so that at the transition
one always has K(ℓ = ∞) = 2, corresponding to the uni-
versal relation (9) quoted above. By numerically solving
Eqs. (B1)-(B2) at each temperature, while taking Tc and
µ/JBCS as free parameters in the initial value, we obtain
the curve labeled as “Homogeneous” in Fig. 4, with the
parameters reported in Table I.

To account for the presence of inhomogeneities, we fol-
low the procedure discussed in previous publications for
both conventional14 and cuprate32 superconductors. We
assume that the BCS superfluid density is described by
Eq. (13) with the initial value J i

0 randomly distributed
according to a probability density P (J i

0) that we take,
for instance, as Gaussian:

P (J i
0) =

1√
2πδ

exp
[

−(J i
0 − J0)

2/2δ2
]

. (B4)

In the homogeneous case, the Gaussian distribution has
zero width and only the value J0 is allowed. In this case,
one obtains the Js(T ) curve labeled as “Homogeneous”
in Fig. 4, and the corresponding Tc, TBKT are the ones
reported in Table I. As we remarked in the text, we
also add finite-size effects, by stopping the RG flow at
the scale ℓmax = L/ξ0 of the system size. As a conse-
quence, even for the homogeneous case Js(T ) does not
display a real jump, but an extremely rapid downturn
occurring over a few-mK temperature range. In the inho-
mogeneous case, for each J i

0 value distributed according
to Eq. (B4), we rescale the corresponding BCS tempera-
tures as J i

0/T
i
c = J0/Tc and we compute J i

s(T ) and the
corresponding BKT temperatures T i

BKT by the numeri-
cal solution of the RG equations (14)-(15) above. After
obtaining this set of J i

s(T ) curves, we compute the sam-
ple stiffness as the average one Jav, defined as

Jav(T ) =
∑

i

P (J i
0)J

i
s(T ). (B5)

When all the stiffness values J i
s(T ) are different from

zero, as it is the case at low temperatures, the aver-
age stiffness will be centered around the center of the
Gaussian distribution (B4), so that it will coincide with
JBCS(T ). However, by approaching TBKT defined by
the average JBCS(T ), not all the patches make the tran-
sition at the same temperature, so that the BKT jump is
rounded and Jav remains finite above the average TBKT ,
in agreement with the experiments. In this analysis, we

then have a second free parameter that is the width δ/J0
of the Gaussian distribution (B4), However, all four pa-
rameters of the fit (average J0 and Tc, ratio µ/Js and
δ/Js) affect in a rather independent way the shape of
the overall stiffness. Indeed, J0 and Tc are essentially
determined by the slope of the stiffness before the BKT
transition, µ/Js determines the location of the univer-
sal jump, whose smearing is controlled by δ. Thus, even
though some flexibility is possible in the values of the pa-
rameters listed in Table I, these variations are expected
to be within 10%− 20% of the quoted values.

The inhomogeneity also influences the paraconductiv-
ity above TBKT . To show this, we proceed in analogy
with Ref. 14 by mapping the spatial inhomogeneity of
the sample in a random-resistor-network problem. In
particular, we associate to each patch of initial stiff-
ness value J i

0 a normalized resistance ρi = Ri/Rn ob-
tained from Eq. (18) by using the corresponding local
values of T i

c and T i
BKT computed as outlined above.

The overall sample normalized resistance ρ = R/Rn is
then calculated in the so-called effective-medium-theory
(EMT) approximation,84 where ρ is the solution of the
self-consistent equation

∑

i

Pi(ρ− ρi)

ρ+ ρi
= 0. (B6)

Here Pi is the occurrence probability of each resistor,
which coincides with the distribution function (B4) of
the local J i

0 value used to compute the corresponding
ρi(T ). The resulting R(T ) = ρRn is shown in Fig. 5, and
it is compared to the one of the homogeneous case, i.e.

the R(T ) curve obtained when only the most-probable
J0 value of the distribution (B4) is realized.

As we observed in Sec. III, for T & 10 K the ex-
perimental paraconductivity saturates more rapidly than
what is predicted by the HN interpolating formula. Since
in this regime we are already exploring Gaussian fluctu-
ations, such a failure is not correlated with the BKT
character of the fluctuations, but it pertains instead to
the regime of ordinary Cooper-pairs fluctuations. In-
terestingly, such behavior has been already observed in
several families of cuprates,41,42 and it has been inter-
preted theoretically41,75 as an effect of the pseudogap.
Indeed, by phenomenological modelling of the suppres-
sion in the electronic density of states characteristic of
a preformed pseudogap, one can reproduce a faster de-
cay of the Cooper-pairs correlation length ξ(T ) in Eq.
(3) with respect to the standard AL prediction. Even
though a detailed analysis of this issue is beyond the
scope of the present manuscript, we nonetheless observed
that a similar effect seems to be at play also in the case
of our sample. To account for it within the HN interpola-
tion scheme, we can for instance multiply the correlation
length entering the paraconductivity formula (3) by a
function suppressing it around a temperature T ∗ larger
than Tc, such as

ξ(T ) =
2

A
sinh

b√
t
exp(−(T/T ∗)4). (B7)
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By introducing this correction factor in each normalized
resistivity ρi appearing in Eq. (B6), we obtain the (ho-
mogeneous and inhomogeneous) curves displayed in Fig.
6. Here we used T ∗ = 19 K, that is, approximately the
temperature where magnetoresistance saturates. As one
can see in Fig. 6, our scheme now gives an excellent agree-
ment with the experimental data up to T ≃ 20 K. In this
high-temperature regime, the deviations of R(T ) from
the magnetic-field extracted paraconductivity (symbols
in Figs. 5 and 6) become sizeable, and the expression
(B7) reproduces the latter points well.

4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0

 R(T )/R(20 K)
 Paraconductivity
 Effective Medium
 Homogeneous

. .

R/
R

n

T (K)

x=0.07

FIG. 6. Comparison between the R(T )/Rn experimental data
and the theoretical prediction obtained in the homogenous or
inhomogeneous case for the modified HN correlation length
(B7), including phenomenologically the pseudogap effect in
the AL fluctuations. Solid diamonds: Paraconductivity ex-
tracted from measurements in high magnetic fields (Sec. II B).
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