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We consider superconducting nanowire proximity coupled to superconductor / ferromagnet /
superconductor junction, where the magnetization penetrates into superconducting segment in

nanowire decaying as ∼ exp[− |n|
ξ
], where n is the site index and the ξ is the decay length. We

tune chemical potential and spin-orbit coupling so that topological superconducting regime hosting
Majorana fermion is realized for long ξ. We find that when ξ becomes shorter, zero energy state at
the interface between superconductor and ferromagnet splits into two states at nonzero energy. Ac-
cordingly, the behavior of Josephson current is drastically changed due to this “zero mode-non-zero
mode crossover”. By tuning the model parameters, we find an almost second-harmonic current-
phase relation, sin 2ϕ, where ϕ is the phase difference of the junction. Based on the analysis of
Andreev bound state (ABS), we clarify that the current-phase relation is determined by coupling
of the states within the energy gap. We find that the emergence of crossing points of ABS is a key
ingredient to generate sin 2ϕ dependence in the current-phase relation. We further study both the
energy and ϕ dependence of pair amplitudes in the ferromagnetic region. For large ξ, odd-frequency
spin-triplet s-wave component is dominant. The magnitude of the odd-frequency pair amplitude is
enhanced at the energy level of ABS.

I. INTRODUCTION

It is known that a number of remarkable physical
phenomena occur in superconductor/ferromagnet (S/F)
hybrid structures.1–3 First one is the generation of π-
state4,5 in S/F/S junctions. Since the exchange cou-
pling and spin-singlet Cooper pair are competing each
other, spin-singlet pairs in ferromagnet have a spatial
oscillation with changing sign in the presence of the ex-
change coupling.6–10 Next one is the dominant second-
harmonic in the current-phase relation of Josephson cur-
rent, sin 2ϕ, where ϕ is the phase difference across the
junction. It is known that sin 2ϕ dependence11 appears
near the 0-π transition point.12,13 The third one is the
generation of the odd-frequency pairing in the F region
by proximity effect in S/F hybrid systems.3,14,15 There
have been many theoretical16,17 and experimental18–23

works about proximity effect via odd-frequency pairing
in S/F junctions. The fourth one is the so called inverse
proximity effect where magnetization penetrates into a
superconductor.24–27 The electronic property and pairing
symmetry near the S/F interface is drastically changed
by this effect.

Independently of research directions mentioned above,
study of nanowire on the surface of superconductor in the
presence of applied Zeeman magnetic field has recently
become a hot topic in condensed matter physics.28,29

Due to the strong spin-orbit coupling (SOC) in nanowire,
topological superconducting state is generated. Then, by
the bulk-edge correspondence, superconducting nanowire
hosts Majorana fermion (MF) as the end state,28–30

which is one of important factors to realize quantum

computation.31–34 It has also been reported that a chain
of ferromagnetic atoms on a superconductor forms a
topologically non-trivial state, where the ABS within the
superconducting gap is localized around the edge as a
MF.35–43 The common feature in these one-dimensional
topological superconducting systems is that both pair
potential and magnetization coexist in all sites of the
nanowire.

Up to now, although inverse proximity effect and
topological superconductivity have been studied indepen-
dently, they have not been studied simultaneously. It is a
challenging issue to clarify a new effect where both effects
coexist in the same model. If we consider proximity cou-
pled nanowire on the S/F/S junction, we can divide the
nanowire into the three segments; left superconductor,
middle ferromagnet and right superconductor. Thus, it is
possible to design effective one-dimensional S/F/S junc-
tions in nanowire. We consider the situation where the
ferromagnetic order of F depends on the position in the
S/F/S junction. Besides, to discuss topological super-
conductivity, we consider Rashba-type SOC in nanowire.
If ξ which represents the penetration length of ferromag-
netic order is long, zero energy state is generated at the
S/F interface. On the other hand, if ξ is short, we can
expect that this zero energy state splits into two44–46

around the magnetic impurity. Thus, proximity coupled
nanowire on the S/F/S junction is interesting since we
can study both inverse proximity effect and topological
superconductivity in the same model. If we tune ξ as
a parameter, the present model has a unique feature to
study a new-type of inverse proximity effect including
topological superconductivity.
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In this paper, we study electronic spectra and resulting
Josephson current in this nanowire S/F/S model. First,
we calculate local density of states (LDOS) of isolated
left side superconducting segment where magnetization
penetrates from the right edge proportional to exp[n

ξ L
]

with site index n < 0 and the decay length ξL. We clarify
that if ξL exceeds a certain value, LDOS has a clear zero
energy peak (ZEP) due to the zero mode at the edge.
On the other hand, when ξL becomes shorter, LDOS has
a peak splitting. We call this effect as “zero mode-non-
zero mode crossover”. Throughout this paper, we intro-
duce zero mode and non-zero mode to distinguish zero
energy state localized at the interface and splitted state.
We study the Josephson current in the S/F/S nanowire
junction by changing the decay length of ferromagnetic
order into the left (right) side superconductor, ξL (ξR),
and chemical potential of ferromagnet. It is seen that
the behavior of Josephson current is quite different when
the decay length becomes shorter due to the “zero mode-
non-zero mode crossover”.
Especially when this non-zero modes44–46 are local-

ized at the boundary between superconductor and fer-
romagnet, we find an anomalous current-phase relation
which can be roughly expressed as sin 2ϕ. In order to
understand the physical origin of the current-phase re-
lation more clearly, we calculate the ABS and provide
an argument that the emergence of crossing points of
ABS is a key ingredient to produce current-phase relation
sin 2ϕ. We find that the emergence of crossing points of
ABS is a key ingredient to generate sin 2ϕ dependence in
current-phase relation. This mechanism is distinct from
preexisting case in S/F/S junctions.1,11–13 We also calcu-
late pair amplitude decomposing into odd-frequency part
and even-frequency one. We focus on s-wave component
of odd-frequency spin-triplet even-parity (OTE) pairing
and show their dependence on energy and phase differ-
ence ϕ. For large magnitude of ξL(R), equal spin OTE
pair amplitude becomes dominant and enhanced at the
energy level of the ABS.
This paper is organized as follows: In Sec. II, we pro-

vide the formulation to calculate LDOS and Josephson
current using recursive Green’s function technique. In
Sec. III A, we calculate LDOS on the edge of isolated
left side superconducting segment with decaying ferro-
magnetic order from the right edge. In Sec. III B, we
analyze the Josephson current in S/F/S junction chang-
ing decay length of ferromagnetic order parameter and
chemical potential of ferromagnet. In Sec. III C, we cal-
culate ABS and discuss the relevance to current-phase
relation in Sec. III B. In Sec. III D, we calculate pair
amplitudes to shed light on these results from different
angles. Finally, we summarize our results in Sec. IV.

II. FORMULATION

In this section we provide a formulation to calculate
LDOS and Josephson current using recursive Green’s

function. The method of calculating ABS is also included
in this section.
First, we review some general aspects of the recursive

Green’s function technique. Its spirit is as follows: to
build the full Green’s function, we start from isolated
blocks and connect them to other parts of the system
by stacking sites one by one along a certain direction.
For example, we consider a one-dimensional atomic chain
along x-direction as shown in Fig. 1(a) and suppose that
the Green’s function of the detached N sites on the left
side has been known. We denote GL

N,N as the Green’s
function at the N site. Consider adding one more site
from the right to this system. Based on Dyson equation,
we have

GL
N+1,N+1 = giso + gisoVN+1,NGL

N,N+1 (1)

GL
N,N+1 = GL

N,NVN,N+1G
L
N+1,N+1, (2)

where giso is the Green’s function of the isolated N + 1
site. Substituting Eq. (1) into Eq. (2), we get

GL
N+1,N+1 =

[

g−1
iso − VN+1,NGL

N,NVN,N+1

]−1

. (3)

LDOS can be calculated as follows:

ρL(E) = −
1

π
ImTr

[

GL
N+1,N+1(E + i0+)

]

, (4)

with infinitesimal positive number 0+. Similarly, one can
determine the Green’s function by stacking from right to
left (in this case the superscript of G is replaced with
R, such as GR

N,N). Provided that we start this stacking
process simultaneously from the two ends, we can obtain
the Green’s function GL

N−1,N−1 at site N − 1 of the left

chain and GR
N+2,N+2 at site N + 2 of the right chain.

From Eq. (3), we know that the process of adding the

FIG. 1: (a) A schematic picture of one-dimensional chain
which is created by adding sites from left to right. (b) A
schematic picture of one-dimensional chain which is created
by stacking sites both from left to right and right to left and
finally connect the two chains.

site N in the left chain generates

GL
N,N =

[

g−1
iso − VN,N−1G

L
N−1,N−1VN−1,N

]−1

, (5)
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and similarly

GR
N+1,N+1 =

[

g−1
iso − VN+1,N+2G

R
N+2,N+2VN+2,N+1

]−1

,

(6)
from adding the site N + 1 in the right chain. Now we
connect the two chains (light-blue dashed line in Fig.
1(b)) and denote the Green’s function of this combined
chain as G. Based on Dyson equation we get following
equations:

GN,N =
[

G−1L
N,N − VN,N+1G

R
N+1,N+1VN+1,N

]−1

, (7)

GN+1,N+1 =
[

G−1R
N+1,N+1 − VN+1,NGL

N,NVN,N+1

]−1

(8)

GN,N+1 = GL
N,NVN,N+1GN+1,N+1 (9)

GN+1,N = GR
N+1,N+1VN+1,NGN,N . (10)

Suppose hopping amplitude of adjacent sites is given by
t, we can calculate the current

J = −ietkBT
∑

ωn

Tr
[

GN+1,N (ωn)−GN,N+1(ωn)
]

, (11)

with Boltzman constant kB, temperature T , and Mat-
subara frequency ωn.

Next, we construct the model Hamiltonian of the semi-
conducting nanowire on top of the S/F/S junction (Fig.
2(a)). We separate this nanowire into three parts by in-
troducing

S1 =
{

n|1 ≤ n ≤ LSC

}

S2 = {n|LSC + 1 ≤ n ≤ LSC + LFM}

S3 = {n|LSC + LFM + 1 ≤ n ≤ 2LSC + LFM} (12)

with site index n. We denote the equal site length of each
side of superconductors as LSC and that of ferromagnet
as LFM. We define Hamiltonian as follows:

H = −t
∑

〈m,n〉
σ

c†mσcnσ +
∑

n∈S1

n∈S3

(
A

2
c†n↑cn+1↓ −

A

2
c†n↓cn+1↑ +H.c.)−

∑

n∈S1

σ

µc†nσcnσ +
∑

n∈S1

(∆c†n↑c
†
n↓ +H.c.)

−
∑

n∈S3

σ

µc†nσcnσ +
∑

n∈S3

(∆eiϕc†n↑c
†
n↓ +H.c.)−

∑

n∈S2

σ

µFMc†nσcnσ +
∑

n∈S2

Vz(c
†
n↑cn↑ − c†n↓cn↓)

+
∑

n∈S1

Vz exp
[n− LSC

ξL

]

(c†n↑cn↑ − c†n↓cn↓) +
∑

n∈S3

Vz exp
[LSC + LFM + 1− n

ξR

]

(c†n↑cn↑ − c†n↓cn↓) (13)

where c†nσ(cnσ) is the electron creation (annihilation) op-
erator with site n and spin σ, t is the hopping matrix
between the nearest neighbor 〈i, j〉, A is the Rashba spin
orbit coupling (SOC), µ(µFM) is chemical potential in
superconductor (ferromagnet) segment, ∆ is the pair po-
tential, ϕ is the phase difference of superconductors, Vz

is the ferromagnetic order, and ξR(L) is the decay length
of ferromagnetic order in the right (left) superconductor.
Unlike the model Hamiltonian on top of the supercon-
ductor with uniform ferromagnetic order, in this model
construction, we assume that ferromagnetic order pene-
trates into right (left) superconductor segment decaying
as ∼ exp[−n

ξR
](exp[ n

ξL
]) as described in Eq. (13). As for

Rashba SOC, we do not include the second term in Eq.
(13) at the interface between superconductor and ferro-
magnet since it does not affect our results.

Now we apply the recursive Green’s function technique
to calculate LDOS, Josephson current and ABS. The re-
tarded and Matsubara Green’s function of the isolated

site can be described as

giso(E) =
1

(E + i0+)−Hiso
(14)

giso(ωn) =
1

iωn −Hiso
(15)

where Hiso is

Hiso = c†nĤisocn

Ĥiso =











−µσ0τz − σyτy∆, n ∈ S1

−µFMσ0τz , n ∈ S2

−µσ0τz − σyτ↓∆eiϕ − σyτ↑∆e−iϕ, n ∈ S3

(16)

with the basis cn = (cn↑, cn↓, c
†
n↑, c

†
n↓). σ0,x,y,z(τ0,x,y,z)

is Pauli matrix in spin (particle-hole) space and τ↑ =
(τx + iτy)/2, τ↓ = (τx − iτy)/2. Hopping matrix can be
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FIG. 2: (a) A schematic picture of a nanowire on top of S/F/S
junction. (b) Chemical potential of a nanowire in the super-
conductor segment (left) and ferromagnet segment (right).

written as follows:

Vn,n+1 = c†nV̂n,n+1cn+1

Vn+1,n = c†n+1V̂n+1,ncn,

V̂n,n+1 =

{

−tσ0τz − iA2 τzσy, n ∈ S1, n ∈ S3

−tσ0τz, n ∈ S2
(17)

V̂n+1,n =

{

−tσ0τz + iA2 τzσy, n ∈ S1, n ∈ S3

−tσ0τz, n ∈ S2
(18)

In the next section, we will calculate the LDOS on the
edge of the nanowire with proximity coupled pair poten-
tial and decaying ferromagnetic order, Josephson current
and ABS of the nanowire on S/F/S junction. LDOS is
given by

ρL(E) = −
1

π
ImTr

[

GL
LSC,LSC

(E + i0+)
]

. (19)

From Eq. (24), Josephson current and ABS are described
as follows:

J(ϕ) = −ietkBT
∑

ωn

Tr
[

Gn+1,n(ωn)−Gn,n+1(ωn)
]

, n ∈ S2

(20)

ρ(E,ϕ) = −
1

π
ImTr

[

Gn,n(E + i0+)
]

, n ∈ S2 (21)

where ϕ is the macroscopic phase difference of pair po-
tential between two superconductors. We can calculate
ϕ dependence explicitly.

III. RESULTS

This section consists of four parts: in subsection A,
we study the LDOS on the edge of the nanowire with
both pair potential and decaying ferromagnetic order and
exhibit the evolution of the surface resonance modes.
In subsection B, we then calculate Josephson current
S/F/S junctions of the nanowire with several different
decay length. It shows that at specific parameter tuning,
anomalous current-phase relation which can be roughly
regarded as sin 2ϕ appears. In subsection C, we calcu-
late ABS. From the spectrum of ABS, we will provide
a simple argument of explanation that the emergence of
crossing points of ABS is the important factor to real-
ize the current-phase relation sin 2ϕ. In subsection D,
we finally analyze the symmetry of pair amplitudes in
this junction especially focusing on odd-frequency pair-
ing. Odd-frequency spin-triplet pairing is enhanced when
the Majorana like zero energy state is generated at the
S/F (F/S) interface.47 Throughout this section, we fix
the parameters as follows: ∆/t = 0.1, µ/t = −1, A/t =
1, Vz/t = 1.5. With this choice of parameters, condition
of topological non-trivial state29 is satisfied when ferro-
magnetic order is uniform. We set the number of sites of
superconductor segment long enough so that the effect of
overlapping between two zero energy modes on the edges
of segment is negligible. In actual numerical calculation,
we fix the number of sites of superconductor segment as
LSC = 4000 and ferromagnet one as LFM = 4. To cal-
culate retarded Green’s function, we set the infinitesimal
positive number 0+ as 0+/t = 0.001.

A. LDOS

In this subsection, we examine the LDOS on the edge
of nanowire which is calculated from Eq. (19). The situ-
ation is illustrated in Fig. 3(a), where the pair potential
and decaying ferromagnetic order coexist. The intensity
of LDOS is plotted in Fig. 3(b). It is shown that for the
long decaying of Vz (ξL > 10), there is a single resonance
peak at zero energy. This is in agreement with the finding
that in the asymptotic scenario when Vz is spatially uni-

form at infinite ξL, such nanowire is topologically non-
trivial which can be confirmed by the sign of Pfaffian with
our choice of parameters.31 However, in the presence of
spatially nonuniform ferromagnetic order, the preexist-
ing topological argument is no longer valid. Thus, it is
remarkable to see here that even if the ferromagnetic or-
der is non-uniform, LDOS with zero energy peak can still
appear on the edge of the nanowire within the numerical
accuracy. On the opposite, with the decay length less
than around ξL ∼ 10, this zero mode splits into two res-
onance peaks symmetric to zero energy. Owing to the
localized ferromagnet at the end of nanowire, this find-
ing associates with another important physical results
known as Shiba states.44–46 It is well known that when
a magnetic impurity is put on the superconductor, there
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FIG. 3: (a) A schematic picture of a nanowire on top of super-
conductor with decaying ferromagnetic order. (b) The inten-
sity plot of LDOS on the edge (i.e. n = LSC) of the nanowire
shown in (a). (c) The spatial profiles of ferromagnetic or-
der with different decay length, ξL = 25 (black solid line),
ξL = 5 (red dotted line), ξL = 1 (green dashed line), and
ξL = 0.2 (blue 2 dotted line). (d)-(g) LDOS on the edge of
the nanowire with different decay length.

is a bound state around the impurity inside the super-
conducting energy gap. In the present model, we can
control the “zero mode-non-zero mode crossover” with
decreasing the decay length of ferromagnetic order. In
Figs. 3(d)-(g), we plot the LDOS for a selected decay
length ξL = 25, 5, 1, and 0.2 respectively (see also Fig.
3(c) where the spatial profiles of ferromagnetic order are
shown for four different decay length). When ξL = 25,
we see the zero energy mode, on the other hand, in the
rest of the cases (Figs. 3(e)-(g)), we find non-zero modes
in the energy gap of superconducting region.

In Appendix A, we consider the overlapping of two zero
energy modes in the shorter length system and also com-
pare non-uniform ferromagnetic case and uniform case,
which leads that two zero energy modes appeared in non-

uniform situation can be regarded as two MFs.

B. Josephson current

In this subsection, we study Josephson currents for var-
ious decay lengths of ferromagnetic order on both sides
of the superconductor. On the left side, we are inter-
ested in three typical decay lengths ξL = 25, 1, and 0
(i.e., ferromagnetic order does not penetrate into the left
superconductor). In each case, we will tune the decay
length ξR as well as the chemical potential of the ferro-
magnet segment (µFM/t = −2,−1, 0, and 1, see also Fig.
2(b)).

FIG. 4: (a)-(d) Josephson current of the nanowire on top of
S/F/S junction in the case of ξL = 25 with four different
chemical potentials of ferromagnetic layer listed above each
figure. There are four lines in each figure: ξL = 25, ξR = 25
(black solid line), ξL = 25, ξR = 5 (red dashed line), ξL =
25, ξR = 1 (green dashed line), and ξL = 25, ξR = 25 (blue 2
dotted line).

First, we look at the case ξL = 25. As the previ-
ous discussion shows, there is zero energy mode on the
edge of the left nanowire. In Figs. 4(a)-(d), we plot
Josephson currents for µFM/t = −2,−1, 0, and 1, respec-
tively. In each figure, we take four values of ξR: 25, 5,
1 and 0.2. The phase dependence of the current in all
cases has the dominant coupling proportional to sinϕ.
Interestingly, for µFM/t = −2,−1 and 0, the Joseph-
son current in symmetric junctions abruptly changes its
sign at ϕ = π as shown in Figs. 4(a), (b) and (c), re-
spectively. In asymmetric junctions, such jump is ab-
sent. Notice that our system considered here has no per-
fect transmissivity and is closely similar to that of two
d-wave superconductor with zero energy ABSs,48–50 p-
wave superconductors51,52 or Kitaev chains junction sys-
tem where MFs are coupled each other.31,53 Therefore,
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the abrupt jump can only be explained by the existence
of robust zero energy ABSs,54–58 i.e., MFs.31 However,
in the non-uniform ferromagnetic order, the formation
of zero modes are distinct from p-wave superconductor
or Kitaev model. It is interesting that the similar be-
havior of Josephson current is found even in the present
model. For µFM/t = 1, we obtain π-state and the current
are quite small compared to the other cases of chemical
potentials. In this case, there is one band at the chemi-
cal potential in ferromagnetic region which has opposite
spin compared to the ferromagnetic order in SCs. Thus,
the transparency of the junction is greatly reduced and
π-state can appear as a result of misaligned magnetiza-
tions.

FIG. 5: (a)-(d) Josephson current of the nanowire on top
of S/F/S junction in the case of ξL = 1 with four different
chemical potentials of ferromagnetic layer listed in above each
figure. There are four lines in each figure: ξL = 1, ξR = 25
(black solid line), ξL = 1, ξR = 5 (red dashed line), ξL =
1, ξR = 1 (green dashed line), and ξL = 1, ξR = 0.2 (blue 2
dotted line).

Second, we focus on the case ξL = 1 where non-zero
modes are localized on the left segment. As for µFM/t =
−2 and −1 (Figs. 5(a) and (b)), we find the current-
phase relation sinϕ in three cases: ξR = 25 (black solid
line), ξR = 5 (red dotted line), and ξR = 1 (green dashed
line). On the other hand Josephson current is almost zero
when ξR = 0.2 (blue 2 dashed line). Surprisingly, when
µFM/t = −2, ξR = 5 and ξR = 1 (Fig. 5(c) red dotted
and green dashed lines), we find the anomalous current-
phase relation which can be roughly regarded as sin 2ϕ.
As we will see in the next subsections, the coupling of
non-zero modes produces this anomalous current-phase
relation especially when the emergence of crossing points
of ABS becomes the important factor. For µFM/t = 1,
all of the Josephson currents are suppressed compared to

the other cases of chemical potential.

FIG. 6: (a) A schematic picture of a nanowire on top of S/F/S
junction. (a)-(d) Josephson current of the nanowire on top of
S/F/S junction in the case of ξL = 0, that is, ferromagnetic
order does not penetrate into left superconductor segment.
Results are shown with four different chemical potentials of
ferromagnetic layer listed above each figure. There are four
lines in each figure: ξL = 0, ξR = 25 (black solid line), ξL =
0, ξR = 5 (red dashed line), ξL = 0, ξR = 1 (green dashed
line), and ξL = 0, ξR = 25 (blue 2 dotted line).

Finally, we study the case ξL = 0, i.e., the ferromag-
netic order does not penetrate into the left supercon-
ductor segment. When µFM/t = −2,−1 and 1 (Figs.
6(b), (c), and (d), respectively), Josephson current is al-
most zero, on the other hand, when µFM/t = 0, we see
current-phase relation sin 2ϕ with decay length on the
right ξR = 5 (dotted red line) and − sinϕ with other
decay length.

Before we proceed, it is instructive to summarize the
interesting phenomena we have found in this subsection.
In the case of ξL = 25 and µFM/t = −2,−1, 0, we see the
abrupt sign reversal of current at ϕ = π. In the case of
ξL = 25 and µFM/t = 1, the amplitude of Josephson cur-
rent is suppressed. When ξL = 1, µFM/t = 0, and ξR = 5
or 1, we obtain current-phase relation approximated as
sin 2ϕ. We also find this current-phase relation sin 2ϕ in
the case of ξL = 0, µFM/t = 0, and ξR = 5.
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C. ABS

In this subsection, we study the ABS of nanowire on
S/F/S junction with different decay length and relate
it to the behavior of Josephson current obtained in the
previous subsection. We mainly focus on the case of
µFM/t = 0. It is well known that when the magnitudes of
the pair potential are the same on the left and right side
of superconductor, Josephson current can be calculated
by:

J(ϕ) =
2e

h

∂F (ϕ)

∂ϕ
, (22)

where F is free energy. In one dimension, F can be writ-
ten as

F = −kBT
∑

n

log
(

2 cosh
( εn
2kBT

)

)

(23)

where εn is the energy of ABS59. Therefore, Josephson
current is

J(ϕ) = −
2e

h
kBT

∑

n

1

cosh
(

εn
2kBT

) sinh
( εn
2kBT

) 1

2kBT

∂εn
∂ϕ

= −
∑

n

e

h
tanh

( εn
2kBT

)∂εn
∂ϕ

(24)

At low temperature, J(ϕ) can be approximated as

J(ϕ) ∼ −
e

h

∑

n

sgn(εn)
∂εn
∂ϕ

. (25)

sgn(εn) gives +1(−1) when εn is positive (negative). In
the above, n denotes the band index of ABS. Due to the
particle-hole symmetry, we can only take the ABSs below
the zero energy into account. Thus, Josephson current
can be approximated as the derivative of ABSs below the
zero energy.
First, we look at the case ξL = ξR = 25 where the zero

energy modes are located on both sides. These two zero
modes hybridize as indicated in Fig. 7(a). The crossing
point at ϕ = π explains the sudden drop of Josephson
current which can lead to the unusual 4π periodicity of
current-phase relation if we consider AC Josephson cur-
rent. As the decay length on the right decreases, the
zero energy mode on the left does not hybridize with
the states on the right, which can be seen from the flat
ABS as a function of ϕ in Figs. 7(b)-(d). The con-
tribution of Josephson current is mainly carried by the
ABSs away from zero energy. With this estimation, we
can relate ABS to the behavior of Josephson current
in the previous subsection. If we look at Figs. 7(b)
and (c) ((d)), ABSs below the zero energy change as
∼ − cosϕ (∼ cosϕ) which leads to current-phase rela-
tion sinϕ (− sinϕ). This consideration corresponds well
to the black solid line and red dotted line (green dashed
line) in Fig. 4(c). If we tune the chemical potential of
ferromagnetic layer as µFM/t = 1, the ABSs are almost

FIG. 7: (a)-(d) ABS (the intensity plot of LDOS at the fer-
romagnet segment within the superconducting energy gap) in
the case of µFM/t = 0 and ξL = 25 with different decay length
ξR.

flat which do not make contribution to the Josephson
current (Fig. 8). Indeed, the amplitude of Josephson
currents are almost zero as shown in Fig. 4(d).
Next, we focus on the case ξL = 1, when non-zero

modes are localized at the interface between left super-
conductor and ferromagnet segment. When decay length
ξR = 25 (Fig. 9(a)), the zero energy mode is located on
the right segment. This mode is not coupled with the
left non-zero modes. The major change of ABSs below
the zero energy can be regarded as ∼ − cosϕ (Fig. 9(a))
which contributes sinϕ to the Josephson current (Fig.
5(c) black solid line).
In the case of ξR = 5 and ξR = 1, when the anomalous

current-phase relation sin 2ϕ can be seen, we find that
non-zero modes on the both sides hybridize and these
states are crossed at two values of ϕ: one is located at
between ϕ = 0 and π, another is between ϕ = π and
ϕ = 2π (Figs. 9(b) and (c)). As we discuss later, this
crossing points of ABS is important to realize current-
phase relation sin 2ϕ. For ξR = 0.2, all of the ABSs
change as cosϕ (Fig. 9(d)) which gives current-phase
relation sinϕ (Fig. 5(c) blue 2 dotted line).
Finally, we focus on the case ξL = 0, i.e., ferromagnetic

order is absent in the left superconductor side (Fig. 10).
If we set ξR = 25, all of the ABSs becomes flat as a func-
tion of ϕ which leads to almost zero Josephson current
(Fig. 6(c) black solid line). For ξR = 1, 0.2, the change
of ABS below the zero energy obeys ∼ cosϕ (Figs. 10(c)
and (d)), thus, current-phase relation is− sinϕ (Fig. 6(c)
green dashed line and blue 2 dotted line). On the other
hand, in the case of ξR = 5, when we see current-phase
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FIG. 8: (a)-(d) ABS (the intensity plot of LDOS at the fer-
romagnet segment within the superconducting energy gap) in
the case of µFM/t = 1 and ξL = 25 with different decay length
ξR.

relation sin 2ϕ, we again find two crossing points of ABS
(Fig. 10(b)).
From these analysis explained above, we find that the

behavior of Josephson current can be determined by the
hybridization of ABSs and when this hybridization pro-
duces the two crossing points at the zero energy, current-
phase relation sin 2ϕ can be seen. Now we consider the
simplified situation where there are two crossing points
of ABSs: we have only two states within the energy gap
(blue area in Fig. 11 top) which are labeled by εA and εB
(Fig. 11 top). We assume εA (εB) is written as ∼ − cosϕ
(cosϕ) and crossing points are located at ϕ = π

2 and 3π
2 .

According to Eq. (25) and particle-hole symmetry, we
can focus on the states below the zero energy to esti-
mate Josephson current. We separate the region of ϕ
into three: I {ϕ|0 ≤ ϕ < π

2 }, II {ϕ|π2 ≤ ϕ < 3π
2 },

III {ϕ| 3π2 ≤ ϕ < 2π} (Fig. 11 top). In I and III,
ABS below the zero energy obeys − cosϕ, thus, Joseph-
son current reads ∼ sinϕ, while in II, ABS transforms
into sinϕ which gives Josephson current − sinϕ. We
plot Josephson current as a function of ϕ (0 ≤ ϕ < 2π)
in bottom of Fig. 11. Due to the different curve that
ABS obeys in I and II (II and III), there is a jump at
the boundary between I and II (II and III) which gen-
erates current-phase relation sin 2ϕ. Up to now, sin 2ϕ
dependence of Josepshon current has been discussed in
S/ferromagnetic insulator/S junction,11 S/F/S with dif-
fusive F near the vicinity of 0− π transition point,1,12,13

d-wave superconductor junctions49,60–62 and s-wave/spin
triplet p-wave superconductor junctions.60,63 Our setup
of realizing sin 2ϕ dependence is distinct from the preex-

FIG. 9: (a)-(d) ABS (the intensity plot of LDOS at the fer-
romagnet segment within the superconducting energy gap) in
the case of µFM/t = 0 and ξL = 1 with different decay length
ξR.

isting cases.

D. Symmetries of Cooper pair

In this subsection, we focus on the symmetry of
Cooper pair in the present one-dimensional S/F/S junc-
tions. In odd-frequency pairing state, the pair amplitude
changes its sign with the exchange of times of two paired
electrons.64 Taking account of this symmetry class, sym-
metry of Cooper pair is classified into (1) even-frequency
spin-singlet even-parity (ESE), (2) even-frequency spin-
triplet odd-parity (ETO), (3) odd-frequency spin-triplet
even-parity (OTE),64 and (4) odd-frequency spin-singlet
odd-parity (OSO).65 Although odd-frequency bulk su-
perconductor has not been discovered up to now, odd-
frequency pair amplitude can exist ubiquitously as a sub-
dominant state. It is known that odd-frequency pairing is
induced by the breaking of the translational66–68 or spin-
rotational symmetry3,14,15 from bulk even-frequency pair
potential. Also, it has been clarified that zero-energy lo-
cal density of states are enhanced by the odd-frequency
pairing.66,67,69–72 Odd-frequency pairing influences seri-
ously the proximity effect and various electronic proper-
ties of the junctions.
In the present nanowire S/F/S junctions, the symme-

try of pair amplitude far from the S/F (F/S) interface
is ESE s-wave one, since the induced pair potential is
conventional spin-singlet s-wave. Due to the symmetry
breaking, near the S/F (F/S) interface or inside ferro-
magnet region, odd-frequency pairings can be induced.
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FIG. 10: (a)-(d) ABS (the intensity plot of LDOS at the fer-
romagnet segment within the superconducting energy gap) in
the case of µFM/t = 0 and ξL = 0 (i.e. there is no ferromag-
netic order in the left superconductor segment.) with different
decay length ξR.

Here, we focus on s-wave component of ESE and OTE
pair amplitudes in ferromagnet region. First we focus
on the real frequency representation of pair amplitudes.
ESE and OTE amplitudes are given by

feven(E) =
1

2

{

F ↑,↓
n,n(E + i0+) + F ↑,↓

n,n(−E − i0+)
}

(26)

fσ,σ′

odd (E) =
1

2

{

F σ,σ′

n,n (E + i0+)−F σ,σ′

n,n (−E − i0+)
}

(27)

with n ∈ S2. F
σ,σ′

n,n comes from Eq. (7):

Gn,n =

(

G F

F̃ G̃

)

, F =

(

F ↑,↑
n,n F ↑,↓

n,n

F ↓,↑
n,n F ↓,↓

n,n

)

(28)

Above representation is useful to compare with the ABS.
To clarify the relation between the ABS and the pair am-
plitude is an interesting issue, since it has been revealed
that there is a close relation between ABS and odd-
frequency pairing. In the presence of zero energy ABS as
a surface state of unconventional superconductors, odd-
frequency pair amplitude is hugely enhanced.66,67,73,74

Thus the presence of zero energy state (ZES) can be inter-
preted as an emergence of odd-frequency pairing. Also,
it has been clarified that MF always accompanies odd-
frequency pairing.47,75–77

First, we calculate pair amplitude for ξL = 25, ξR = 25
and µFM/t = 0. The corresponding ABS with the hy-
bridization of Majorana like ZESs in left and right side

FIG. 11: (top) A schematic picture of two ABSs denoted by as
εA (red) and εB (green). These two states have two crossing
points (solid circle) at E = 0. (bottom) Josephson current

which is given by J(ϕ) ∼ −
∂εA
∂ϕ

sgn(εA)

FIG. 12: (a)(b):The intensity plot of real part (a) and imagi-
nary part (b) of odd-frequency spin-triplet even-parity (OTE)

pair amplitude with ↓↓ spin component f↓,↓
odd(E) in the case

of ξL = 25, ξR = 25, µFM/t = 0.

has been shown in Fig. 7(a). In this case, OTE pairing
becomes dominant for any phase difference. As compared

to other components, f↑,↑
odd(E), f↑,↓

odd(E) and feven(E), the

magnitude of f↓,↓
odd(E) is dominant. This is because that

the direction of the majority spin in ferromagnet is down.

Therefore, we plot s-wave OTE pairing f↓,↓
odd(E) in the

middle of the ferromagnet in Fig. 12. The energy and

ϕ dependence of f↓,↓
odd(E) is almost similar to those of

ABS in Fig. 7. For ϕ = 0, π and 2π, Re[f↓,↓
odd(E)] =

−Re[f↓,↓
odd(−E)] and Im[f↓,↓

odd(E)] = Im[f↓,↓
odd(−E)]. These

relations of odd-frequency pairing are known in the previ-
ous study in normal metal / superconductor junctions.78

Next, we look at the case with ξL = ξR = 1 and µFM =
0. The corresponding ABS with double crossing points
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in the energy spectrum of ABS has been shown in Fig.
9(c). Such characteristic also appears in the intensity

plot of f↓,↓
odd(E), f↑,↓

odd(E) and feven(E). The E and ϕ de-

pendences of f↑,↑
odd(E) are similar to those of f↓,↓

odd(E). The
remarkable point here is that not only odd-frequency pair
amplitude but also even-frequency pair amplitude exists
with the same order in contrast to the case in Fig. 13.

For ϕ = 0, π and 2π, Re[fσ,σ′

odd (E)] = −Re[fσ,σ′

odd (−E)] and

Im[fσ,σ′

odd (E)] = Im[fσ,σ′

odd (−E)] with σ =↑ (↓) and σ′ =↑
(↓). On the other hand, Re[feven(E)] = Re[feven(−E)]
and Im[fodd(E)] = −Im[fodd(−E)] are satisfied.

FIG. 13: (a)-(d): The intensity plot of real part (a)((c)) and
imaginary part (b)((d)) of odd-frequency spin-triplet even-

parity (OTE) pair amplitude with ↓↓ spin component f↓,↓
odd(E)

and ↓↓ spin component f↑,↓
odd(E). In (e) and (f), real part and

imaginary part of even-frequency spin-singlet pair amplitude
feven(E) is plotted.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have studied LDOS, current phase
relation of Josephson current, energy levels of Andreev

bound state and induced odd-frequency pairings in su-
perconductor / ferromagnet / superconductor nanowire
junction, where the magnetization penetrates into super-
conducting segment with a decay length ξ. We have cho-
sen the chemical potential and SOC so that the topologi-
cal superconducting regime hosting MF is realized for suf-
ficiently large magnitude of ξ. We have found that when
ξ becomes larger, LDOS has a ZEP. On the other hand,
if ξ is shorter, zero energy state at the interface between
superconductor and ferromagnet splits into two states.
Accordingly, the behavior of Josephson current drasti-
cally changes. By tuning the parameters of the model,
we have found an almost second-harmonic current-phase
relation, sin 2ϕ, with phase difference ϕ. Based on the
analysis of ABS, we clarify that current-phase relation is
determined by coupling of the states within the energy
gap. We find that the emergence of crossing points of
ABS is a key ingredient to generate sin 2ϕ dependence in
current-phase relation. We further studied both the en-
ergy and ϕ dependence of pair amplitudes in ferromagnet
region. For long ξ, odd-frequency s-wave triplet compo-
nent is dominant. The magnitude of the odd-frequency
pair amplitude is enhanced at the energy level of ABS. On
the other hand, when ξ becomes shorter, not only odd-
frequency pairing but also even-frequency pairing mixes.
Recently, sin 2ϕ behavior has been observed in S/F/S

junctions,79 when ferromagnet is an insulator which has
a spin filter effect. Thus to clarify the relevance of our
obtained sin 2ϕ dependence to this experimental report
is a challenging issue. In our paper, ballistic transport
is assumed. If ferromagnet becomes diffusive, we can
expect anomalous proximity effect52,80,81,83–85 by odd-
frequency spin-triplet s-wave pairing. Extension to this
direction is also an interesting future study.
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Appendix A: Spatial profile of LDOS

In this appendix, we show spatial profile of LDOS
of superconductor with decaying ferromagnetic order to
understand “zero mode-non-zero mode crossover” more
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clearly. The ferromagnetic order decays from right to left
similarly to Fig. 3(a). Since we will consider hybridiza-
tion of two ZESs on the both edges of superconductor,
we set the number of sites rather short, 200.

These profiles are shown in Fig. 14. For long enough
decay length (Fig. 14(a)), ZEPs are localized on the both
side of the nanowire, which is analogous to the situation
where MFs are localized on the both edges of topolog-
ical superconductor.86 If the decay length is decreased,
however, the zero energy mode on the left comes close to
the that on the right edge (Fig. 14(b)), then finally these
two zero modes hybridize (Fig. 14(c)) to split into two
(Fig. 14(d)).

FIG. 14: (a)-(d) The intensity plot of LDOS of the nanowire
with decaying ferromagnetic order on top of the supercon-
ductor. The ferromagnetic order decays from right to left
similarly to Fig. 3(a). Horizontal axis represents site index
and vertical one does energy. Decay length of the ferromag-
netic order is set as (a)ξL = 625, (b)ξL = 125, (c)ξL = 25,
and (d)ξL = 0.2.

Below, we analyze the spatial profile of LDOS of the
system we consider here in more detail especially focus-
ing on at the zero energy. In Figs. 15(a)-(c), we plot this
spatial dependence of LDOS for several cases of decay
length. For large enough ξL (Fig. 15(a) and (b)), we see
the two ZEP: one is on the edge, i.e. at 200 sites and an-
other which is identified as broad peak is left from it (for
Fig. 15(a), this ZEP is located at site 140 ∼ 150 and for
Fig. 15(b), it is at around site 180). We notice that the
position of the left peak is shifted if the decay length is
changed and accordingly the behavior of the oscillations
of LDOS left from the broad peak changes. However, we
also find that the oscillations between the two peaks show
the similar behavior. When the decay length is shorter
than around ξL = 20, the two peaks hybridize and are

FIG. 15: (a)-(c) The spatial dependence of LDOS at zero en-
ergy of the semiconducting nanowire with pair potential and
decaying ferromagnetic order whose length is 200 sites. The
several cases of LDOS are plotted for different decay length
which is indicated by different colors as shown in each fig-
ure. (d) The spatial dependence of LDOS of the normal
metal/nanowire junction system. The total length of this
junction is set as 200 sites and the interface between normal
metal and nanowire is located at site 140. In the nanowire
segment, the pair potential and decaying ferromagnetic or-
der with ξL = 125 are also included similarly to (a)-(c). A
schematic picture of this junction is shown below the plot.

away from the zero energy (Fig. 15(c)). Further, we
also calculate the spatial dependence of LDOS of normal
metal/nanowire junction system with ξL = 125. We set
the interface at the site 140. The result is shown in Fig.
15(d). The board peak which is indicated in Fig. 15(a)
spreads into the normal metal.

Actually, we can regard the two ZEPs explained above
as the MFs. To make this statement more convincing, we
calculate the spatial profile of the LDOS of the normal
metal/nanowire with pair potential and uniform ferro-
magnetic order junction system as well as that of s-wave
superconductor/nanowire junction system. These plots
are shown in Figs. 16(a) and (b), respectively. The in-
terface is located at site 50. In Fig. 15(a), the ZEP on the
left which should be expected to appear at the interface
penetrates into the normal metal segment. This is anal-
ogous to Fig. 15(d). Moreover, in Fig. 16(b), we can see
the ZEP on the left (at site 50), however, as opposed to
Figs. 16(a), this ZEP cannot spread into the left from the
interface due to the superconducting energy gap. There-
fore, ZEP cannot be stabilized and decays away from the
interface. This behavior is similar to Figs. 15(a)(b), how-
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FIG. 16: (a) The spatial dependence of LDOS of the normal
metal/nanowire with pair potential and uniform ferromag-
netic order junction system whose length is 200 sites. The
interface is positioned at 50 sites. (b) The similar plot to (a)
but the normal metal is replaced by s-wave superconductor.
Schematic pictures of the junction are shown below each plot.

ever, there is one difference: in Figs. 15(a)(b) due to the
presence of non-uniform ferromagnetic order, there isn’t
the explicit boundary which distinguishes the topologi-
cally trivial area and non-trivial one. Thus, the broad
ZEP appears in Figs. 15(a)(b).

The comparison between the results of Fig. 15 and
Fig. 16 implies that two ZEPs appeared in non-uniform

case can be identified as two MFs.

1 A. A. Golubov, M. Y. Kupriyanov, and E. Ilichev, Rev.
Mod. Phys. 76, 411 (2004).

2 A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
3 F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod.
Phys. 77, 1321 (2005).

4 L. N. Bulaevskii, V. V. Kuzii, and A. A. Sobyanin, JETP.
Lett. 25, 291 (1977).

5 A. I. Buzdin, L. N. Bulaevskii, and S. V. Panyukov, JETP
Lett. 35, 179 (1982).

6 P. Fulde and R. A. Ferrell, JETP. Lett. 25, 291 (1977).
7 A. I. Larkin and Y. N. Ovchinnikov, JETP 20, 762 (1965).
8 V. V. Ryazanov, V. A. Oboznov, A. Y. Rusanov, A. V.
Veretennikov, A. A. Golubov, and J. Aarts, Phys. Rev.
Lett. 86, 2427 (2001).

9 T. Kontos, M. Aprili, J. Lesueur, F. Genet, B. Stephanidis,
and R. Boursie, Phys. Rev. Lett. 89, 137007 (2002).

10 J. W. A. Robinson, S. Piano, G. Burnell, C. Bell, and
M. G. Blamire, Phys. Rev. Lett. 97, 177003 (2006).

11 Physica C 274, 357 (1997).
12 H. Sellier, C. Baraduc, F. m. c. Lefloch, and R. Calemczuk,

Phys. Rev. Lett. 92, 257005 (2004).
13 J. W. A. Robinson, S. Piano, G. Burnell, C. Bell, and

M. G. Blamire, Phys. Rev. B 76, 094522 (2007).
14 F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev.

Lett. 86, 4096 (2001).
15 A. F. Volkov, F. S. Bergeret, and K. B. Efetov, Phys. Rev.

Lett. 90, 117006 (2003).
16 M. Eschrig, Phys. Today 64, 43 (2011).
17 M. Eschrig, J. Kopu, J. C. Cuevas, and G. Schön, Phys.

Rev. Lett. 90, 137003 (2003).
18 R. S. Keizer, S. T. B. Goennenwein, T. M. Klapwijk,

G. Miao, G.Xiao, and A. Gupta, Nature 439, 825 (2006).
19 I. Sosnin, H. Cho, V. T. Petrashov, and A. F. Volkov, Phys.

Rev. Lett. 96, 157002 (2006).
20 T. S. Khaire, M. A. Khasawneh, J. W. P. Pratt, and N. O.

Birge, Phys. Rev. Lett. 104, 137002 (2010).

21 W. A. Robinson, J. D. S. Witt, and M. G. Blamire, Science
329, 59 (2010).

22 D. Sprungmann, K. Westerholt, H. Zabel, M. Weides, and
H. Kohlstedt, Phys. Rev. B 82, 060505 (2010).

23 M. S. Anwar, F. Czeschka, M. Hesselberth, M. Porcu, and
J. Aarts, Phys. Rev. B 82, 100501(R) (2010).

24 F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev.
B 69, 174504 (2004).

25 F. S. Bergeret, A. L. Yeyati, and A. Mart́ın-Rodero, Phys.
Rev. B 72, 064524 (2005).

26 J. Linder, T. Yokoyama, and A. Sudbø, Phys. Rev. B 79,
054523 (2009).

27 J. Xia, V. Shelukhin, M. Karpovski, A. Kapitulnik, and
A. Palevski, Phys. Rev. Lett. 102, 087004 (2009).

28 R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev.
Lett. 105, 077001 (2010).

29 Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett.
105, 177002 (2010).

30 M. Sato and S. Fujimoto, Phys. Rev. B 79, 094504 (2009).
31 A. Y. Kitaev, Usp. Fiz. Nauk (Suppl.) 171, 131 (2001).
32 J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
33 J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. Fisher,

Nature Communications 7, 412 (2011).
34 C. Nayak, S. H. Simon, A. Stern, M. Freedman, and

S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).
35 S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yaz-

dani, Phys. Rev. B 88, 020407 (2013).
36 S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon,

J. Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani,
346, 602 (2014).
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