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Density-functional Monte-Carlo simulation of CuZn order-disorder transition
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We perform a Wang-Landau Monte Carlo simulation of a Cu0.5Zn0.5 order-disorder transition
using 250 atoms and pairwise atom swaps inside a 5 × 5 × 5 BCC supercell. Each time step
uses energies calculated from density functional theory (DFT) via the all-electron Korringa-Kohn-
Rostoker method and self-consistent potentials. Here we find CuZn undergoes a transition from a
disordered A2 to an ordered B2 structure, as observed in experiment. Our calculated transition
temperature is near 870 K, comparing favorably to the known experimental peak at 750 K. We also
plot the entropy, temperature, specific-heat, and short-range order as a function of internal energy.

PACS numbers: 71.15.Nc, 71.20.Be, 64.60.De, 64.60.Cn

CuZn is among the class of Hume-Rothery alloys.1

Here the atomic size and crystal structure of the base
metals are similar. As a result, electronic effects dom-
inant phase stability mechanisms.2 A key parameter is
the electron-per-atom ratio (and/or chemical potential).
The e/a ratio determines the Fermi surface and concomi-
tant nesting mechanisms and energy pseudogaps that can
drive phase stability.3 For low e/a on the Cu-rich side of
the phase diagram, an A1 (FCC) solid solution is sta-
ble. On the Zn-rich side there are a series of complex,
partially ordered phases. Of interest to us is Cu0.5Zn0.5,
where the BCC structure is stable as a result of the Fermi
surface crossing the Brillouin Zone boundary.4 Here an
order-disorder transition occurs at Tc=750 K,5,6 taking
the system from a disordered A2 (BCC) phase to an or-
dered B2 phase (CsCl structure). We have sought to
characterize this transition by using first-principles DFT
and direct ensemble averaging through Monte Carlo sim-
ulation.

In order to reduce computational cost, methods for
evaluating phase diagrams for binary alloys have ei-
ther used model Hamiltonians or mean-field techniques.
In the model Hamiltonian approach it is typical to
expand the energy of an alloy configuration using a
sum of nearest neighbor clusters weighted by undeter-
mined coefficients.7 Formally this sets the energy E =∑
κEκ

∏
i∈κ σi where κ stands for a cluster and σi is a

spin-like variable representing the occupancy on a site i.8

The cluster coefficients Eκ are chosen by comparing to
DFT energies at a specified set of intermetallics. The ge-
ometry of the clusters can be identified a priori for a given
structure and the energy of a given configuration rapidly
evaluated once the coefficients are known. This enables
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Monte Carlo simulations to predict the phase diagram.
This method has been applied to the A1 solid solution,
finding a number of long-period superstructures at low
temperatures (∼20 K).9

The other technique that has been employed is to per-
form a Landau-like perturbation theory from a mean-
field disordered state.10 Here the perturbative order pa-
rameters are infinitesimal and independent concentration
waves. A concentration wave imposes a variation on the
uniform disordered medium by imposing a partial or-
dering along some direction. This could be, for exam-
ple, a marginal increase (decrease) in the concentration
of Cu for every even (odd) plane along (100). Within
the KKR-CPA framework, the sign of the resulting free-
energy change may be calculated.11 If negative at some
critical temperature Tc, it predicts the disordered phase
is unstable to this concentration variation. The incipi-
ent, unstable concentration wave can be used to antici-
pate a phase transition to a closely corresponding inter-
metallic. As an electronic theory it is capable of incor-
porating Fermi surface mechanisms. Using this method,
Turchi et al.2 found A1 to be the stable high-T phase
of Cu0.5Zn0.5. On including phonon contributions they
find the A2 phase is more stable at high-T and that it
transitions to B2 below Tc=700 K. We repeated this cal-
culation using codes made available to us by J. Staunton
at the Univ. of Warwick. To do so we used the “band-
only”11 approximation. Here the charge density is con-
sidered frozen as an infinitesimal variation in chemical
composition is applied. We found a transition to an or-
dered B2 phase at 925 K. A correction can be applied
to this mean-field result due to Onsager which compen-
sates for chemical self-interaction effects.11 This correc-
tion results in the total spectral weight in k-space of the
short-range order parameter being conserved. This con-
servation rule is a known physical result and follows from
the definition of the short-range order (in real-space) as
αij = 〈ξiξj〉 − 〈ξi〉〈ξj〉. Here ξi ∈ {0, 1} indicates the
occupancy of a Cu atom at the ith site and 〈·〉 refers to
an ensemble average. Including an Onsager correction
reduces the transition temperature to 615 K. We did not
include phonon contributions since we only consider the
transition from A2 to B2 phase. This does not impact
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our conclusions since the Debye temperature of B2 CuZn
(300 K) is well below the transition temperature.12

What has not been done until now is to attempt a di-
rect ensemble average using first-principles DFT for each
configurational energy. This has been considered com-
putationally infeasible, especially for cell sizes that begin
to approach the thermodynamic limit. We show in this
study that such a simulation is within reach and produces
sensible results. We have performed a direct, Wang-
Landau Monte Carlo simulation of a 250 atom CuZn
supercell using first-principles DFT. No use of model
Hamiltonians or fitting or expansions about a mean-field
medium are performed.2,9,10 This also enables us to cal-
culate not only the transition temperature but also the
density of states, short-range order, and specific heat
curves from direct ensemble averaging. The total sample
space is very large, consisting of (250 choose 125) = 1074

configurations. Here we sampled over 600,000 configura-
tional energies, a calculation of unprecedented scale and
close to our computational limit. Nevertheless we obtain
a smooth density of states. Our calculation showcases
the accuracy and limitations of first-principles DFT us-
ing ensemble averaging. It also serves as a benchmark for
simulations that use cluster expansions and model Hamil-
tonians fit to DFT data. We find CuZn on a BCC lattice
undergoes the predicted second-order transition, but at
Tc=870 K. These calculations also demonstrate the pos-
sibility of direct calculation for other alloys, including
multicomponent high-entropy alloys of recent interest13.

Our Monte Carlo sampling is based on the Wang-
Landau technique,14 a so-called flat histogram method.
Such a method seeks to sample an energy window so
that a Monte Carlo walker makes nearly equal visits to
each energy bin. If configurations are selected randomly
then this requires the probability to visit be weighted
by 1/g(E) for density of states g(E). In practice, a
Wang-Landau run begins with guess density of states
gapp.(E) = 1. A random walker then makes moves in con-
figurational space. Moves from an energy E1 to E2 are ac-
cepted with probability p = min{1, gapp.(E1)/gapp.(E2)}.
At the end of each move, the guess density of states
at walker position E is improved by increasing g(E) →
f g(E) for some modification factor f > 1. This contin-
ues to bias the walker to energies with lower density-of-
states. As a result, the histogram H(E) of walker visits
flattens as the simulation proceeds. Once a certain flat-
ness criterion is achieved, the modification factor is re-
duced and the histogram reset. The accuracy of the final
density of states depends on the flatness criterion used
and the final modification factor f. In our simulation
we used modification factor log f = 3.125 × 10−4. The
flatness criterion was [min g(E)]/[average g(E)] > 0.60.
An advantage of the Wang-Landau sampling technique
is that the simulation may be run once and the temper-
ature set a posteriori. This is true as long as the desired
temperature is within the sampled energy window.

Our simulation cell is a 5 × 5 × 5 lattice of con-
ventional BCC cells (or 250 atomic sites). The lattice

FIG. 1. (Color online) The energy trace of 125 Wang-Landau
walkers for Monte Carlo runs in energy windows [0.5, 1.0],
[0.3, 0.6], and [0.2, 0.3] respectively. Each window was per-
formed as a separate run. Grey dots represents the energy
of a walker at some time step. Colored lines are the explicit
trace of five walkers. After a warm-up period of up to 300
steps, the walkers cover the whole energy range. All walkers
were initialized in the B2 ground-state for each run.

spacing is taken from the experimental high-T phase as
a0 = 5.58414 Bohr15 and is fixed for all temperatures.
One of the benefits of studying Cu0.5Zn0.5 is that the
lattice spacing undergoes minimal change through the
transition. In the low-T phase the spacing increases to
5.5902 Bohr, or a change of 0.1%.16 Half the sites are
set to Cu and the other half Zn. In high entropy (A2)
configurations the Cu and Zn atoms are randomly dis-
tributed. In the ground state (B2) the Cu atoms are at
conventional cube corners and Zn at the body center (or
vice-versa).

To calculate energetics and perform Wang-Landau
sampling, we modified the all-electron KKR code LSMS3
at Oak Ridge National Lab.17 The LSMS3 code solves
the Kohn Sham equations of density functional theory
using a real space implementation of the multiple scat-
tering formalism18–20. The code achieves linear scaling
of the computation effort for the number of atomic sites
by limiting the environment of each atom that will con-
tribute to the calculations of the Green’s function at
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this atomic site.21. The computational efficiency of the
LSMS approach for large supercells allows the direct use
of constrained density functional energy calculations in-
side classical Monte-Carlo simulations to calculate ther-
modynamic properties of materials from first principles
on modern supercomputers.22 The Wang-Landau imple-
mentation of the LSMS3 was originally designed for the
thermodynamics of Fe or Ni spins. Here we modified the
code to convert spin degrees of freedom to site occupancy
variables {ξi}. ξi = 0 (1) to indicate the presence of a
Cu (Zn) atom at site i.

Our move type is point-to-point atom swaps of unlike
atoms. Small steps improve the acceptance ratio. This is
especially helpful as the ground-state is approached. A
steep density of states curve leads to significant slow-
down in the Monte Carlo sampling due to large re-
jection rate. Atomic potentials are taken as spherical
and total energies are calculated within the muffin-tin
approximation.23 The energy includes the nuclear at-
traction, Coloumb repulsion, and exchange-correlation
effects using the local-density functional parameterized
by von Barth-Hedin24. Approximately 30 iterations are
required at each Monte Carlo step to achieve electronic
self-consistency. This reduces the number of total Monte
Carlo steps possible by the same factor. Other KKR
details include basis cutoff LMAX=3 and LSMS local in-
teraction zone of 8.5a0. These are typical parameters
for metals within KKR. Note that the only connection
between first-principles DFT and the Wang-Landau sim-
ulation is the total energy provided at each time step.
The code was validated prior to simulation by ensur-
ing energetics are invariant to serial vs. supercomputing
runs and also invariant across symmetric configurations.
We further confirmed that the B2 configurational energy
(-3445.826295 Ryd/atom including core electron) was in-
deed lower than any other configuration simulated. Each
energy is calculated to a precision of 10−6 Ryd.

An initial attempt to Wang-Landau sample through-
out the entire range of configurations had convergence
issues. This was due to steep density of states near the
ground-state. To mitigate this difficulty, we performed
three separate Wang-Landau runs. One each in the en-
ergy windows from [0.2, 0.3]; [0.3, 0.6]; and [0.5, 1.0] Ryd.
A restricted energy window limits the range of possible
density-of-states and therefore improves acceptance ra-
tios and reduces runtimes. All walkers were initialized
to the ground-state configuration for each run. This re-
duced the warm-up time because moves generating moves
toward higher density-of-states occur more often than the
reverse. Using first-principles DFT on a 250 atom cell re-
stricted our runs to just under 2000 Monte Carlo steps
per walker. Nevertheless the resulting density of states
curve is smooth as we used 125 walkers. Each walker
consisted of 32 nodes and each node compromised 8 CPU
cores and an Nvidia GPU. The complete configuration of
each walker at each step was saved for post-processing
purposes.

In Fig. 1 the energy trace from each energy window

FIG. 2. (Color online) The sampled microcanonical entropy
(red points) for 250 atom CuZn supercell and the correspond-
ing cubic spline fit to data (solid gray). Each point represents
a histogram bin from the Wang-Landau simulation. The mi-
crocanonical entropy is also the logarithm of the density of
states. The entropy is shifted to zero at 0.2 Ryd, the lowest
energy sampled.

FIG. 3. (Color online) Temperature computed in the micro-
canonical (grey) and canonical ensembles (red). In the micro-
canonical ensemble we calculate T = dU/dS from the cubic
spline fit. In the canonical ensemble we calculate the Boltz-
mann average 〈E〉 =

∑
iEie

−Ei/kBT /Z for partition function
Z. The agreement between the two ensembles suggests ap-
proach to the thermodynamic limit. The Boltzmann average
is incorrect below 700 K because the dominant term in the
summation is below 0.2 Ryd.

is presented. The walkers are less mobile in the lowest
energy window. This is a result of a slowing down that
occurs in this regime due to a steep density of states.
However in all three windows by step 300 the walkers are
sampling the entire range. Our main result is the loga-
rithm of the density of states as presented in Fig. 2. Each
point corresponds to an energy bin in the Wang-Landau
simulation. The Wang-Landau method collects the den-
sity of states to within an arbitrary scale factor. We fixed
this factor by setting log g(0.2) = 0 at E = 0.2 . We also
scale the density of states in the other two windows to
ensure continuity at E = 0.3 and E = 0.6. Our results
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FIG. 4. (Color online) The specific heat calculated using
CV = −β2dU/dβ from smooth spline fit of entropy (grey) and
using CV = (〈E2〉 − 〈E〉2)/(k2BT

2) from Boltzmann weighted
sums. Note that the calculation using a derivative is numer-
ically less stable but capture the presence of a spike in spe-
cific heat near the phase transition. Using Boltzmann sums
is numerically stable but approaches the correct limit with
appreciable smoothing.

may be interpreted in either the microcanonical or canon-
ical ensemble. The extent to which the two approaches
agree or disagree suggests how far we are from the ther-
modynamic limit.25 In the microcanonical ensemble the
internal energy is fixed and Fig. 2 may be interpreted as
the entropy up to an additive constant. Observables are
calculated by taking the appropriate derivatives of the
entropy curve. For this purpose we have fit the curve
to a cubic spline. At E = 0 the slope of the density of
states will approach infinity (not visible). While in the
totally disordered state at high energies (1 Ryd) the slope
approaches zero. In between the slope is approximately
constant over a large range of energies. This slope is in
correspondance to the transition temperature Tc. At en-
ergies above 1 Ryd the slope becomes negative and this
is only occurs at negative temperatures. In the canonical
ensemble the temperature is fixed and instead the inter-
nal energy is calculated as a Boltzmann weighted average.
The main disagreement we find between the two ensem-
bles arises in shape and precise location of the peak in
our specific heat curve.

Fig. 3 shows the relationship between the temperature
and internal energy. In the microcanonical ensemble T =
β−1 = (dS/dU)−1 for S = S(U) the entropy as given in
Fig. 2. In the canonical ensemble the internal energy

U = 〈E〉 =

∫
dEg(E)e−βE/Z

for partition function Z =
∫
dE g(E)e−βE . For the sys-

tem we consider, the density of states varies by many
orders of magnitude. To prevent numeric overflow, the
largest term in the sum is factored out. Numeric under-
flow remains but we ignore this since the dominant terms
in the Boltzmann sum are usually included. However the
Boltzmann weighted sum becomes invalid when the dom-

FIG. 5. (Color online) The short-range order parameters
c(1 − c)αij = 〈ξiξj〉 − 〈ξi〉〈ξj〉 for first four nearest neighbor
shells containing 8, 6, 12, and 24 atoms respectively versus (a)
energy and (b) temperature. As the ground-state (E=0) is ap-
proached, long-range order is established and all parameters
go to either +1 or -1. Significant short-range order persists
above the phase transition at E = 0.60.

inant term is outside the range [0.2, 1.0]. This is visible
in the figure for T < 700 K. Note that the curves calcu-
lated assuming two different ensembles otherwise overlay
relatively well. This suggests the supercell shows signs of
being in the thermodynamic limit.

The electronic specific heat at constant volume is pre-
sented in Fig. 4. Again, this is computed for both en-
sembles. Because the transition is second-order we do
not expect a latent heat of transformation. In the micro-
canonical we use

CV = −β2 dU

dβ
= −β2(

d2S

dU2
)−1

as calculated from the spline fit to the entropy. Here a
sharp peak is evident at 895 K and results from dβ/dU
approaching zero, as seen in Fig. 2. In the canonical
ensemble we use

CV =
〈E2〉 − 〈E〉2

k2BT
2
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and calculate 〈E〉 and 〈E2〉 using Boltzmann weighted
sums. The resulting curve peaks at 870 K and shows a
smoother profile. This profile results from finite-size ef-
fects and would be a sharper peak for a large box. At
finite-size there are fluctuations in energy in the canonical
ensemble that are not included in the microcanonical. In
addition, performing numeric summations is more stable
than taking numeric derivatives. Both computations are
within reasonable agreement on Tc however. The phonon
contribution to the specific heat has not been included in
the specific heat of Fig. 4. The Debye temperature of
B2 CuZn is 300 K while the temperatures displayed in
Fig. 4 are at 750 K and above.12 In this limit the rule of
Dulong and Petit is applicable and therefore the phonon
contribution to the specific heat is constant. This consid-
eration is in agreement with Turchi et al.,2 whose work
shows the inclusion of phonon contributions primarily ef-
fects the relative stability of A1 (FCC) and A2 (BCC)
phases. Here we have restricted our simulation to A2
and B2 phases, both BCC.

There are two sources of error in the traditional Wang-
Landau method: (1) An error from statistical sampling.
It is clear from Fig. 2 that our resulting density of states is
quite smooth and much of this error has been eliminated.
And, (2) An inherent bias because the method demands
a minimum curvature in the resulting density of states.
This has been examined by Brown et al.26, who calculate
this minimum second-derivative as

d2

dE2
log g(E) =

γ

∆E2

where γ = log f is the modification factor and ∆E is
the bin width. In our case γ = 0.004 and ∆E = 0.01
Ryd. We find the spline fit of our density of states has
a second-derivative below this minimum only within the
narrow range of energies [0.57, 0.606]. This is close to the
critical temperature, which is to be expected as this is
precisely where the curvature of the log density of states
should be least.

In Fig. 5, the Warren-Cowley short-range order pa-

rameters are presented. In the ground-state they ap-
proach -1 or 1. We see that short-range order is present
and appreciable for temperatures above the phase tran-
sition. At 75◦ C above the calculated phase transition
the short-range order magnitude is 0.19, 0.14, 0.13, and
0.09 for the first four shells respectively. In an neu-
tron diffraction experiment on the A2 phase the short-
range order at 75◦ C above the experimental transi-
tion using Zernike’s theory is 0.18, 0.10, 0.07, and 0.05
respectively.27,28 Note that an approximately linear rela-
tionship exists between the short-range order and config-
urational energy for E < 0.7 Ryd. Focusing on the first
shell, this suggests E =

∑
iA〈ξiξi+1〉 for some A. These

first-principles DFT calculations lend support to the va-
lidity of model Hamiltonians based on nearest neighbor
pair potentials. In Fig. 5(b) a sudden increase in the
short-range order is evident at the phase transition. In
the thermodynamic limit this jump would be sharp and
well-defined.

In this paper we calculated the density-of-states for
the CuZn binary alloy using a 250 atom unit cell and
first-principles DFT to calculate energetics at each time
step. We obtained a smooth density of states plot using
over 600,000 samples. The lowest energy computed was
a B2 ordering and the highest energies sampled showed
total disorder. In Fig. 4 a visible peak in the specific
heat and sudden increase in atomic short-range order ev-
ident Fig. 5b marks this transition. Using the canonical
ensemble we find a critical temperature of 870 K. These
results demonstrate the feasibility of performing direct
first-principles Monte Carlo simulation without need for
use of model Hamiltonians or mean-field expansions.
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