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The random energy model (REM) provides a solvable mean-field description of the equilibrium
spin glass transition. Its quantum sibling (the QREM), obtained by adding a transverse field to the
REM, has similar properties and shows a spin glass phase for sufficiently small transverse field and
temperature. In a recent work, some of us have shown that the QREM further exhibits a many-body
localization - delocalization (MBLD) transition when viewed as a closed quantum system, evolving
according to the quantum dynamics. This phase encloses the familiar equilibrium spin-glass phase.
In this paper we study in detail the MBLD transition within the forward-scattering approximation
and replica techniques. The predictions for the transition line are in good agreement with the
exact diagonalization numerics. We also observe that the structure of the eigenstates at the MBLD
critical point changes continuously with the energy density, raising the possibility of a family of
critical theories for the MBLD transition.
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I. INTRODUCTION

Experiments on few-atom systems show striking con-
tradictions with the extension of classical laws to arbi-
trarily small distances and energies. Quantum mechanics
has proven to be a successful theory for the dynamics of

these microscopic systems. Further developments make
clear that quantum effects are also important for macro-
scopic systems, although typically at low temperature or
high density.

On the other hand, at sufficiently high temperature or
low density, the semiclassical principle appears to state
that quantum and classical dynamics yield the same re-
sults for most measurable quantities. It is then interest-
ing to examine the cases in which this reconciliation does
not occur. Disordered systems make a particularly in-
teresting playground. Non-interacting particles in a dis-
ordered potential can exhibit Anderson localization [1]:
the gas’ diffusion coefficient(s) are completely suppressed,
even in a regime where the classical dynamics remains
diffusive. This difference is so spectacular that in low
dimensions the dynamics at all energy scales supported
by the system is localized. Here the classical description
is never, not even qualitatively, accurate.

Whether Anderson localization survives the introduc-
tion of interactions between particles or not has been a
subject of debate since the beginning of the field [2, 3].
Yet in the last decade, the work generated by the seminal
paper of Basko, Aleiner and Altshuler [4] on interacting,
disordered systems has shed considerable light on the is-
sue [5–7].

It is now clear that a sufficiently small interaction is for
many purposes irrelevant (one exception being entangle-
ment [8, 9]). The system behaves as if the single-particle
occupation numbers are “perturbatively dressed” into
the interacting phase [10–14]. Excitations in the “many-
body localized” (MBL) regime are localized, transport is
suppressed, and the dynamics is not thermalizing. For
some spin chains, researchers have even been able to pin-
point a transition between an MBL region and an ergodic
region [7, 15–19]. The properties of this transition are
not well understood. A few elementary constraints have
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been imposed [20, 21] and similarities with infinite ran-
domness fixed points have been found in one-dimensional
studies [7, 22, 23]. Like the Anderson transition, this is
not a usual thermodynamic phase transition but rather
a dynamical phase transition. There is no local order pa-
rameter in terms of which to write a Landau-Ginzburg
free energy density. The transition itself is the breakdown
of the hypothesis under which one derives the statistical
description from the underlying microscopic equations of
motion. Consequently, this transition can be observed
even at infinite temperature.

An even more recent line of research studies how er-
godicity breaking in the quantum dynamics compares to
that of more canonical (classical and quantum) glassy
phases. Since MBL is easily observed in spin chains with
quenched disorder (and also a phase more akin to con-
figurational glasses has been conjectured [24–27]), it is
natural to look for MBL in spin glasses.

With this in mind, some of us have recently looked
[28] at a quantum version of Derrida’s random energy
model (REM) [29], which is a simplified model of mean-
field spin glass. The quantum model’s equilibrium phase
diagram has been studied before [30] and a glassy phase
was identified at low temperature and small transverse
magnetic field [31].

In [28] it was found that the quantum dynamics is er-
godic for high temperatures and large transverse field,
but ergodicity breaks down upon lowering the temper-
ature and the transverse field. The ergodicity-broken
phase, which we identify as the MBL phase, encompasses
the glassy region. Therefore the quantum dynamics be-
comes non-ergodic before the glassy phase sets in, disen-
tangling the concept of ergodicity breaking from that of
replica symmetry breaking in these quantum models. A
qualitatively similar observation was recently made by
studying Rokhsar-Kivelson-type wavefunctions derived
from the REM [32]. However, on further thought, what
is really surprising is that there is an ergodic phase for
the simple transverse-field quantum dynamics: an expo-
nentially small fraction of states are at finite tempera-
ture and thus, since spin configurations are uncorrelated
with their energies, the transverse field couples finite-
temperature states to ones with an O(N) energy differ-
ence. One might expect every finite-temperature state to
be dynamically frozen, yet that is incorrect. This obser-
vation is relevant for the science of quantum annealers,
for which the MBL phase could be a significant stumbling
stone [33, 34].

In this paper we analyze in much more detail the
MBL phase of the QREM and the transition between
the ergodic and MBL phases. We also study in detail
the application of the forward-scattering approximation
(FSA) in the MBL phase. We find that the localized
phase is consistently distinct from the ergodic phase in its
level-spacing statistics, observables, and eigenstate struc-
ture. Naive perturbation theory cannot accurately char-
acterize the MBL phase, but by carefully handling near-
degeneracies in the FSA, we quantitatively describe both

the localized eigenstates and the phase boundary within
perturbation theory. We accomplish this using a combi-
nation of simple approximations, numerics and a replica
treatment of the forward-scattering wavefunctions.

The QREM is the first model in which a many-
body mobility edge was clearly observed in the numer-
ics accompanied by an analytical prediction within the
forward-scattering approximation. It is an ideal test bed
to discuss the properties of the mobility edge. One of the
things that we observe numerically is that the critical
statistics of the eigenvalues changes continuously along
the mobility edge. This could very well be a finite-size
effect, but note the analogy with the critical properties
of mean-field spin glasses [35, 36], which also change con-
tinuously with lowering the temperature.

As a final remark, we notice that on lowering the trans-
verse field the mobility edge shifts to higher tempera-
tures. Furthermore, a mobility edge opens up even for
an infinitesimal transverse field, in contrast to the situ-
ation in one-dimensional systems, where the MBL phase
at infinite temperature is stable upto a finite value of the
interaction. This is most probably a special feature of
the infinite dimensionality of the QREM.

We have organized this paper as follows: Section II
summarizes our physical picture of the QREM’s isolated
dynamics, as compared to the existing equilibrium de-
scription. Section III gives the necessary details on our
exact-diagonalization procedure and results. Section IV
briefly describes the shortcomings of blindly applying
perturbation theory to the QREM and motivates Sec-
tion V, in which we examine the perturbation theory
more systematically and successfully. Section VI briefly
shows the extent to which similar analytic techniques give
information on the complementary limit of large trans-
verse field. Finally, Section VII summarizes and con-
cludes the paper.

II. PHENOMENA

The quantum random-energy model (QREM) for N
spin-1/2s is defined by

H = H0({σ̂zi })− Γ

N∑
i=1

σ̂xi . (1)

Here, Γ is the transverse field, and H0({σ̂zi }) is a random
operator diagonal in the {σ̂zi } basis, with the diagonal en-
tries identically and independently distributed according
to

P (E0) =
1√
πN

e−
E2

0
N . (2)

With this normalization the spectrum of H0 is with high
probability contained in [−N

√
ln 2,+N

√
ln 2]. We note

that throughout the paper, capitalized E represents ex-
tensive energy and ε = E/N the corresponding energy
density.
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A. Equilibrium Phase Diagram

Goldschmidt [30] determined the canonical phase dia-
gram of the QREM by using the Suzuki-Trotter expan-
sion and replica trick [37]. This same technique has been
applied to many other mean-field quantum spin glass
models [38, 39]. The results we give here are taken from
Goldschmidt’s paper, in which detailed derivations are
found as well. See also Jörg et al. [40] for a simple per-
turbative derivation of some parts of the phase diagram.

The QREM has three equilibrium phases:

• The REM paramagnet. The free energy density is

fREM = −T ln 2− 1

4T
. (3)

This is equal to the free energy density of the clas-
sical REM at temperature above

Tc ≡
1

2
√

ln 2
. (4)

All thermodynamic quantities are identical to the
zero-field REM, in particular the energy density ε =
− 1

2T and the entropy density s = ln 2− ε2.

• The quantum paramagnet. The free energy density
is

fQ = −T ln 2− T ln

(
cosh

Γ

T

)
. (5)

Note that this is the free energy density for non-
interacting spins in a field Γ. The REM term in
the Hamiltonian does not influence the equilibrium
physics of this phase. Thermodynamic properties
such as the energy, entropy, and magnetization den-
sity are given by the standard formulae.

• The spin-glass. The free energy density is simply

fSG = −
√

ln 2, (6)

identical to the classical REM. The system is frozen
in its ground state at ε0 = −

√
ln 2, where there are

O(1) states and thus s = 0.

The transition lines between these phases are located
where the free energies are equal. The boundary between
the REM paramagnet and the spin-glass is as in the clas-
sical model: the system is paramagnetic for T > Tc and
frozen in the spin-glass phase for T < Tc (Tc given by
Eq. (4)). The system undergoes a first-order transition
to the quantum paramagnet when Γ increases past Γc,
where Γc is defined for T > Tc by fREM = fQ and for
T < Tc by fSG = fQ. The blue dashed lines of Fig. 1b
mark these boundaries. In particular, note that Γc at
T = 0 is the field strength at which the ground state
energy of the quantum paramagnet matches the ground
state of the classical REM.
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FIG. 1. The phase diagram of the QREM, in the Γ− ε plane
(top) and the Γ − T plane (bottom). The red shaded region
contains localized eigenstates and the blue shaded region con-
tains ergodic eigenstates. The green shaded regions indicate
the numerically observed boundary region: dark green cir-
cles from exact diagonalization (Sec. III), and light green dia-
monds from the numerical FSA (Sec. V C). The black dashed
lines are the conjectured limiting boundaries of εc = ±Γ,
the green dashed lines are the analytic estimate of εc within
the single-resonance approximation (Sec. V B), and (bottom
only) the blue dashed lines indicate the thermodynamic phase
boundaries as predicted by canonical calculations [30].

The essence of the canonical phase diagram is that the
system makes a first-order transition between “REM”
physics and “quantum paramagnet” physics. REM
physics results from an otherwise structureless system
freezing into an intensive number of configurations at
non-zero temperature. Quantum paramagnet physics is
that of non-interacting spins in a magnetic field. The
QREM does not compromise between these two regimes.
It exhibits only one or the other, at least thermodynam-
ically.

B. Dynamical Phase Diagram

When treated as an isolated system, the QREM has
two dynamical phases:
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• The ergodic phase. Eigenstates satisfy the Eigen-
state Thermalization Hypothesis (ETH) [41, 42]:
expectation values of local observables agree with
the microcanonical ensemble, which, here, is para-
magnetic. Thus 〈σ̂zi 〉 = 0 for all spins i. Fluctu-
ations in σzi are large but decay exponentially in
time. In addition, these eigenstates are delocalized
in the following sense: one can map a configuration
of N spin-1/2’s to a corner of an N -dimensional
hypercube by considering σzi = 1(−1) as the top
(bottom) face of the cube’s i’th dimension. The
QREM Hamiltonian is then an Anderson model on
the corners of this hypercube, with the spin config-
urations being “lattice sites”. Ergodic eigenstates
are delocalized over these sites. The probability
overlap between two ergodic states decays expo-
nentially with their energy difference, as observed
in the Anderson model [43].

• The many-body-localized phase. Eigenstates are
weakly-dressed single configurations of spins. Thus
〈σ̂zi 〉 = ±1. Fluctuations within an eigenstate are
small (and decrease with system size), but fluctua-
tions between eigenstates over energy and realiza-
tion of disorder are order-1. These eigenstates are
Anderson-localized on the hypercube. The proba-
bility overlap between a pair of eigenstates decays
as ω−2, where ω is the energy difference of the two
states. This is well-described by first-order pertur-
bation theory.

A major focus of the present work is to quantita-
tively locate and characterize the boundary between
these phases in the Γ-ε plane (ε is eigenstate energy den-
sity). We define order parameters with well-defined local-
ized and ergodic limits for each characteristic described
above. See Figs. 2 and 3 for examples and Sec. III for
details. Since the states at +ε are statistically equivalent
to those at −ε, the phase boundary must be symmetric
about ε = 0. We focus on the negative-ε portion, denoted
εc(Γ). Numerical evidence and perturbation theory each
give constraints on εc(Γ). We show these, overlaid on our
conjectured phase diagram, in Fig. 1.

Our numerical results indicate a transition between
two phases and provide a lower bound for εc(Γ). The dark
green markers and shading in Fig. 1 indicate where order
parameters computed via exact diagonalization (Sec. III)
transition between the two limits. Similarly, the light
green markers and shading are the corresponding regions
from a numerical perturbation series in Γ (Sec. V C). The
transitions sharpen as N increases, and a finite-size scal-
ing analysis indicates that they become sharp in the ther-
modynamic limit. The energy density around which the
transitions sharpen is consistent within numerical error
amongst all order parameters. Thus we identify this en-
ergy density, once properly extrapolated to infinite N ,
as εc(Γ). It is difficult to make the extrapolation from
accessible system sizes, and we observe a slight finite-size
drift in the transition towards smaller |ε| as N increases.
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FIG. 2. Probability density function for the eigenstate single-
spin magnetization (y-axis), for small bins over a range of
energy densities (x-axis). Each vertical slice is a separate
probability distribution. These distributions are at Γ = 0.20
and N = 14, with energy density windows δε = 0.02.
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FIG. 3. Eigenstate autocorrelation function < σz
1(t)σz

1(0) >C

(see Eq. (13)) as a function of time (vertical axis) and eigen-
state energy density (horizontal axis). The vertical dashed
lines indicate the location of the MBLD transition as deter-
mined by the QREM’s spectral statistics. These results are
taken at Γ = 0.20 and N = 13 with energy bins δε = 0.02.

For this reason, the marked points in Fig. 1 are actually
lower bounds for εc(Γ).

Expanding the eigenstates perturbatively in Γ sets up-
per bounds. A rough analytical treatment of the pertur-
bation series sets a clear upper bound for εc(Γ) at −Γ/e
(Sec. V A). Proceeding more carefully but still analyt-
ically (Sec. V B), we obtain the green dashed curve in
Fig. 1. This curve is still only an upper bound on εc, but
it behaves as −Γ at small Γ.

εc(Γ) lies between the green markers and the green
dashed curve in Fig. 1. In addition, we conjecture that
the bound εc ≤ −Γ as Γ→ 0 is tight, and conjecture that

εc(Γ) = −Γ (7)
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for finite Γ as well. This is the black dashed line in Fig. 1.
Jörg et al. observed [40] that the QREM ground state
undergoes a quantum phase transition between the REM
ground state and | → · · · →〉 at Γ = −ε0 (ε0 given by
Eq. (4)). Our conjecture for εc(Γ) implies that the dy-
namical phase boundary is consistent with this result.
It is consistent with all of our numerical and analytical
bounds as well.

The critical eigenstates, i.e., those with ε = εc(Γ), have
order parameter values intermediate between the local-
ized and ergodic limits. We are able to fit the dimen-
sionless order parameters to a finite-size scaling ansatz
y = yc + f(N

1
ν̃ (ε− εc)) (y is the order parameter). The

critical exponent ν̃ = 0.4(1), independent of Γ. The crit-
ical amplitudes yc, though, do depend on Γ. This could
be due to finite-size effects, but if not, the critical eigen-
states are described by a line of fixed points.

Finally, it is interesting to compare the QREM’s many-
body mobility edge to that of a transition between en-
sembles of random matrix theory (RMT). In particular,

the random symmetric matrix Ĥ = Â + vĜ, where Â is
a diagonal random matrix whose elements are i.i.d. ran-
dom variables of order 1 and Ĝ is a Gaussian random
matrix, has been studied extensively as a model for the
crossover from Poisson to GOE statistics. The extent to
which Ĥ exhibits Poisson versus GOE statistics is deter-
mined by the ratio of Â’s mean level spacing, denoted
s, to the typical off-diagonal matrix elements. If Â has
eigenvalues distributed uniformly over a fixed interval,
s ∼ 1/D for matrix dimension D and thus the scale on

which Ĥ’s level statistics transition from Poisson to GOE
is v ∼ 1/D.

We, however, are interested in when Â’s eigenvalues
are distributed according to Eq. (2). The mean level
spacing s is well-defined locally, but it depends on the
local energy density ε. In particular,

s(ε) ∼
√
Ne−N(ln 2−ε2). (8)

By setting v ∼ s(ε), we see a smooth interpolation from
Poisson to GOE statistics at the energy density ε. Yet for
this choice of scaling for v, all other energy densities flow
exponentially fast towards one of the limiting statistics
as N increases. The phase boundary is horizontal in the
v − ε plane. This is in marked contrast to the QREM,
where we find a non-trivial εc(Γ). The locality of the
transverse field in Eq. (1) thus plays an important role
in the physics of this transition.

III. EXACT DIAGONALIZATION

The most direct way to study the QREM is through
exact diagonalization. We generate between 200 and
20, 000 realizations of the Hamiltonian in Eq. (1) for sys-
tem sizes ranging from N = 8 to 14 and Γ ranging from
0.10 to 0.40. We obtain the entire spectrum and complete
set of eigenstates through full exact diagonalization. The

eigenstates are then binned according to energy density
so as to study how average properties depend on energy.

We use three types of averages, often simultaneously.
Quantum-mechanical averages within single eigenstates
are denoted by angular brackets 〈· · ·〉, averages among
eigenstates of a single sample within an energy density
window are denoted by a bar · · ·, and averages between
realizations of disorder are denoted by square brackets
[· · · ]. Unless noted otherwise, every quantity that we
describe in this section is averaged both within an energy
density window and over disorder.

A. Spectral Statistics

The most straightforward numerical approach to the
localization-delocalization transition is to study the sta-
tistical properties of the spectra. Each spectrum can be
split into two regions: Wigner-Dyson statistics dominate
the distribution of energy levels for E close to 0, whereas
Poisson statistics dominate for E far from 0. From a
random-matrix-theory perspective, Wigner-Dyson statis-
tics govern the spectra of matrices in which every ele-
ment is an independent random variable (strictly speak-
ing, the Wigner-Dyson distribution gives the probability
of level spacings in GOE-distributed matrices). Poisson
statistics, on the other hand, describe the energy gaps
when the eigenvalues themselves are independent and
uniformly distributed. As is commonly done, we identify
Wigner-Dyson statistics with delocalized eigenstates and
Poisson statistics with localized eigenstates. We find that
the transition between these two is sharp in the thermo-
dynamic limit. Thus we identify the large-|E| region as a
localized phase and the small-|E| region as a delocalized
phase.

To be more quantitative, we use three measures of the
energy gap distribution. First, we calculate the level
spacing ratio [5]. We define

rn ≡ min{En+1 − En
En − En−1

,
En − En−1

En+1 − En
} (9)

and consider the average, [r]. [r] represents the degree
of level repulsion in the system: there is less variation in
the separation between energy levels, and thus a larger
[r], when those levels repel each other. The Poisson dis-
tribution, which corresponds to independent energy lev-
els, has [r] ≈ 0.39. Compare this to the Wigner-Dyson
distribution, for which level repulsion is significant and
[r] ≈ 0.53. The values of [r] that we obtain from (1) lie
between these two limits and tell us the strength of level
repulsion at the target energies. We in turn interpret this
as the degree of delocalization.

In addition to [r], we determine the cumulative distri-
bution function of level spacings s. We characterize the
CDF by two quantities used in the literature [44]: I1 ≡
P (s < 0.473[s]), i.e, the fraction of spacings that are less
than (roughly) half the mean, and I2 ≡ P (s > 2.002[s]),
i.e, the fraction that are greater than twice the mean.
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Both these values are much smaller in the Wigner-Dyson
distribution than in the Poisson distribution, since level
repulsion suppresses the appearance both of packed and
isolated eigenvalues. Thus I1 and I2, like [r], quantify the
degree of level repulsion, I1 by examining the frequency
of small gaps and I2 by examining the frequency of large
gaps. We present each as a deviation from Wigner-Dyson
statistics relative to that of the Poisson distribution, i.e.,
we report

J1 ≡
I1 − I(WD)

1

I
(P)
1 − I(WD)

1

(10)

and

J2 ≡
I2 − I(WD)

2

I
(P)
2 − I(WD)

2

, (11)

where the superscript (WD) refers to Wigner-Dyson
statistics and the superscript (P) refers to Poisson statis-
tics.

Fig. 4 shows [r], J1, and J2 at various N as a function
of energy density ε (at Γ = 0.20, a representative field
strength), successfully collapsed using the scaling form

y = yc + f(N
1
ν̃ (ε− εc)). From these we obtain εc and ν̃,

which are shown as functions of Γ in Fig. 5a,b. Except for
at Γ = 0.10, all three statistics predict a common εc and
Γ-independent ν̃. Fig. 5c shows the corresponding level
statistic values at εc, which we obtain from the collapsed
curves. The statistics become more Wigner-Dyson-like
as Γ increases. It is in this sense that the character of
the transition depends on Γ.

B. Local Eigenstate Observables

The magnetization of single spins in each phase clearly
distinguishes the two. Since a delocalized eigenstate has
〈σ̂z1〉 = 0 and a localized eigenstate has 〈σ̂z1〉 = ±1, we
consider | 〈σ̂z1〉 |. Fig .6 shows the values as a function of ε.
We see clear finite-size flow towards 0 in the delocalized
phase and towards 1 in the localized phase. The crossover
region’s location is consistent with the spectral statistics.

The limit [| 〈σ̂z1〉 |] → 1 in the localized phase vio-
lates the ETH. We further demonstrate that the local-
ized eigenstates fail to thermalize by studying how 〈σ̂z1〉
fluctuates from state to state within a sample. More pre-
cisely, we define

δ 〈σ̂z1〉(n) ≡ 〈n+ 1|σ̂z1 |n+ 1〉 − 〈n|σ̂z1 |n〉. (12)

Fig. 7 shows the distribution of δ 〈σ̂z1〉(n)
, for all n within

an energy density window, as a function of ε. In the
localized phase, the distributions have weight at ±2. The
total weight at ±2 is as much as at 0, signifying that 〈σ̂z1〉
is as likely to switch sign from one eigenstate to the next
as it is to not. In the delocalized phase, the entire weight
is centered around 0. This is further evidence that each
individual delocalized eigenstate is thermal.
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FIG. 4. Properties of the QREM (probabilistic) spectrum.
All data is at Γ = 0.20, and N = 8 (blue) to 14 (red).
Eigenstates are binned within energy density windows of size
0.02. These curves have been collapsed using the scaling form

y = yc +f(N
1
ν̃ (ε− εc)). (a) The disorder-averaged level spac-

ing ratio. εc = −0.34(2), ν̃ = 0.39(9), and rc = 0.44(1). (b)
The deviation of the frequency of smaller-than-average energy
gaps from GOE statistics. εc = −0.33(2), ν̃ = 0.41(9), and
J1c = 0.73(1). (c) The deviation of the frequency of larger-
than-average energy gaps from GOE statistics. εc = −0.34(2),
ν̃ = 0.46(9), and J2c = 0.80(1).

C. Connected Autocorrelations

The operators {σ̂zi } evolve over time as a result of the
transverse field, so correlations in time are important
characteristics of the two phases. We quantify this by



7

0.10 0.15 0.20 0.25 0.30 0.35 0.40

Γ

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

ε c

0.10 0.15 0.20 0.25 0.30 0.35 0.40

Γ

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ν̃

0.10 0.15 0.20 0.25 0.30 0.35 0.40

Γ

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

C
rit

ic
al

S
ta

tis
tic

J[r]

J1

J2

FIG. 5. Finite-size scaling parameters for the level spacing
statistics as a function of Γ. The shaded bands indicate the
range of parameter values over which the data collapses well.
Red corresponds to [r], green corresponds to J1, and blue
corresponds to J2. (a) The critical energy density, overlaid
on a portion of the phase diagram of Fig. 1. (b) The critical
exponent ν̃. (c) The value of the level spacing statistic at

criticality. We plot ([r]− r(WD))/(r(P)− r(WD)) and denote it
by J[r], in analogy with J1 and J2.

studying the connected autocorrelation function

〈σ̂z1(t)σ̂z1(0)〉(n)
C ≡〈n|σ̂z1(t)σ̂z1(0)|n〉

− 〈n|σ̂z1(t)|n〉〈n|σ̂z1(0)|n〉.
(13)

This quantity is computed exactly from the full exact
diagonalization, up to tmax = 90 in steps of 0.5. See Fig. 3
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FIG. 6. The disorder-averaged magnitude of the eigenstate
single-spin magnetization, as determined via exact diagonal-
ization, as a function of the eigenstate energy density. These
results are taken at Γ = 0.20, from N = 8 (blue) to N = 14
(red). Eigenstates are binned in energy density windows of
size 0.02. The background shading corresponds to the pre-
dicted phase at that energy density: red is localized, blue is
delocalized, and green is the transition region as determined
by the QREM’s spectral statistics.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

ε

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

δ
<
σ
z 1
>

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

P
(δ
<
σ
z 1
>

)

FIG. 7. Probability density function for the difference be-
tween single-spin magnetizations of spectrally-adjacent eigen-
states (y-axis), over a range of energy densities (x-axis). Each
vertical slice is a separate probability distribution. These dis-
tributions are at Γ = 0.20 and N = 14. We used energy
density windows of 0.02 for each distribution.

for the results. [〈σ̂z1(t)σ̂z1(0)〉C ] is sufficiently close to 0 at
all times in the localized phase that it is hard to extract
a meaningful decay. This is consistent with the localized
eigenstates being weakly dressed single configurations of
spins with magnetization ∝ 1− 1

N2 .

In the delocalized phase, [〈σ̂z1(t)σ̂z1(0)〉C ] is initially
close to 1 and decays exponentially to 0. The decay be-
comes slower as ε nears the transition. We fit the long-
time behavior of ln [〈σz1(t)σz1(0)〉C ] to a straight line and
extract the slope. From this we study how the decay
time τ depends on ε. See Fig. 8. At ε ≈ 0, the decay
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time saturates exponentially with N to a finite value (not
shown). As ε→ εc, τ increases monotonically. Very close
to εc, τ is diverging with system size. We obtain good
scaling collapse with the form τ = (a+bN)f(N

1
ν̃ (ε−εc)).

This form captures τ ’s linear dependence on N near the
transition. We again find that εc and ν̃ agree with the
spectral statistics.
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FIG. 8. The decay time of the eigenstate connected auto-
correlation function [〈σz

1(t)σz
1(0)〉C ], as a function of energy

density. These results are taken at Γ = 0.20, N = 8 (blue) to
N = 13 (red). The binning in energy density is ∆ε = 0.025.
(a) The unscaled decay times. The vertical dashed line marks
the critical energy density as determined by the QREM’s
spectral statistics. (b) Collapsed curves (omitting N = 8),

using the form τ = (a + bN)f(N
1
ν̃ (ε − εc)). εc = −0.32(2),

ν̃ = 0.40(7), a = −2.9(1) · 102, and b = 38(2).

D. Eigenstate Structure

As mentioned in Section II B, configurations of N spin-
1/2s map to the corners of an N -dimensional hyper-
cube. The {σ̂zi } basis is then the “coordinate” basis,
and we consider diagnostics from Anderson localization
[43]. These have already been used in the MBL con-
text [15, 45], particularly the inverse participation ratio
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FIG. 9. The disorder-averaged order of magnitude of the
eigenstate IPR from exact diagonalization, divided by sys-
tem size. These results are taken at Γ = 0.20 for sizes N = 8
(blue) to N = 14 (red). Eigenstates are binned in energy
density windows of size δε = 0.02. The background shading
corresponds to the predicted phase at that energy density:
red is localized, blue is delocalized, and green is the transi-
tion region as determined by the spectral statistics [r].

(IPR), defined as

Y2 ≡
∑
{σzi }

|〈{σzi }|ψ〉|4. (14)

The IPR quantifies how many sites of the hypercube |ψ〉
is distributed over. Y2 = 1 corresponds to |ψ〉 concen-
trated on a single site and Y2 = 2−N corresponds to |ψ〉
with equal weight on all sites. Fig. 9 shows [lnY2], a
measure of Y2’s typical order of magnitude. [lnY2] flows
towards 0 with system size in the localized phase, sig-
nifying that the eigenstates are concentrated onto single
sites. [lnY2] decreases linearly with N in the delocalized
phase, signifying that the eigenstates extend over Ham-
ming distances of order N . As with [| 〈σ̂z1〉 |], there is a
well-defined crossover region consistent with the spectral
statistics.

We also compute the eigenstate correlation function
I(E,ω), defined as

I(E,ω) =
∑
m,n

δE,EmδE+ω,En

∑
{σzi }

|ψm({σzi })|2|ψn({σzi })|2

(15)
where the sum over m and n is over eigenstates. This
quantity measures the overlap between eigenstates’ prob-
abilities as a function of their location in the spec-
trum and energy separation. I(E,ω) is known as the
two-particle spectral function in the context of finite-
dimensional lattices [46]. There, I(E,ω) decays expo-
nentially with ω for E and E+ω both in the delocalized
phase. The scale on which I(E,ω) decays is the Thouless
energy ω0 = D/L2 (D is the diffusion coefficient and L
is the linear system size). Fig. 10 shows the same behav-
ior in the QREM’s delocalized phase. The characteristic
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FIG. 10. Semi-log plot of probability overlaps between eigen-
states separated by energy ω, in the delocalized phase (ε =
−0.10, Γ = 0.40) for N = 8 (blue) to N = 14 (red). This
data has been averaged over states within an energy window
δε = 0.05 centered on ε = −0.10, and averaged over sam-
ples. The lines have been shifted vertically to illustrate their
dependence on N . Although the slopes of the lines depend
slightly on N , the rough value is −0.50.
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FIG. 11. Log-log plot of probability overlaps between eigen-
states separated by energy ω, in the localized phase (ε =
−0.20, Γ = 0.10) for N = 8 (blue) to N = 14 (red). This
data has been averaged over states within an energy window
δε = 0.05 centered on ε = −0.20, and averaged over sam-
ples. The lines have been shifted vertically to illustrate their
dependence on N . The lines all have slopes of −2, and are
well-described by perturbation theory (see Eq. (23)).

scale is independent of N , which is reasonable since our
fully-connected model has an effective “linear size” of 1.
[I(E,ω)] also decays exponentially with N , for the same
reason that Y2 does. In the localized phase, I(E,ω) de-
cays as 2−Nω−2. We justify this in Section IV, where we
apply first-order perturbation theory to this model. The
results in Fig. 11 agree remarkably well with Eq. (23)
below.

IV. NAIVE PERTURBATION THEORY

The QREM eigenstates differ drastically across a well-
defined boundary. The spectral statistics and eigenstate
properties characterize and distinguish the two phases.
However, the numerical results by themselves are some-
what opaque and limited to finite sizes. We get a more
transparent picture of the MBLD transition by consider-
ing the perturbative structure. Section V systematically
investigates the perturbative-in-Γ expansion of the eigen-
states. Here we study the first-order corrections heuris-
tically and compare to the exact diagonalization results
for the localized phase.

To first order in Γ, each QREM eigenstate has prob-
ability amplitude 1 on its initial site of the hypercube
(with unperturbed energy E0) and probability amplitude
− Γ
E0−Ej on the j’th adjacent corner. All other sites have

probability amplitude 0. For the IPR and 〈σz1〉 of such
an eigenstate, we obtain:

IPR =
1 +

∑N
j=1

Γ4

(E0−Ej)4(
1 +

∑N
j=1

Γ2

(E0−Ej)2

)2 , (16)

〈σz1〉 = 1− 2Γ2

(E0 − E1)2
. (17)

We now study the distributions of Eq. (16) and
Eq. (17) over samples, treating E0 as a fixed parameter
of order N . With probability 1 (in the thermodynamic

limit), the N random variables Ej are all O(
√
N) and

we expand 1
E0−Ej in powers of

Ej
E0

. This is not strictly

allowed because, although its typical values are small,
the moments of − Γ

E0−Ej diverge. For now, we assume

that the typical values of Eq. (16) and Eq. (17) will be
satisfactory estimates and so assume that all Ej � E0.

To determine the disorder averages, we need only keep
the first term that is even in all Ej . To determine the
disorder variances, we in addition require the first term
odd in Ej . Carrying this out,

IPR ≈ 1− 2Γ2

Nε20
− 4Γ2

N2ε30

N∑
j=1

εj , (18)

〈σz1〉 ≈ 1− 2Γ2

N2ε20
− 4Γ2

N2ε30
ε1, (19)

where ε0 ≡ E0/N , εj ≡ Ej/N . All Ej have variance N/2,

so all εj have variance 1/(2N) and
∑N
j=1 εj has variance

1/2. Thus

[IPR] = 1− 2Γ2

Nε20
,

Var(IPR) =
8Γ4

N4ε60
,

(20)
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[〈σz1〉] = 1− 2Γ2

N2ε20
,

Var(〈σz1〉) =
8Γ4

N5ε60
.

(21)

In addition, note that [ln (IPR)] = [IPR]−1 at this order.
We also estimate I(E0, ω) in this manner. Suppose

that two eigenstates have energies E0 and E0 +ω. In or-
der for their wavefunctions to overlap at first order in Γ,
their zeroth-order eigenstates must be on adjacent cor-
ners of the hypercube. This occurs in a fraction N/2N

of the samples. When the eigenstates do overlap at first
order,

I(E0, ω) = 2
Γ2

ω2
. (22)

Thus

[I(E,ω)] =
2NΓ2

2Nω2
. (23)

These are simple estimates, and we can generalize them
to higher orders. However, most turn out to be incom-
patible with our exact diagonalization results, even in
how they scale with N and ε0. The one exception is
[I(E0, ω)], for which Eq. (23) is very accurate in the well-
localized region. We expect that the overall discrepancy
is due to our limited range of system sizes. In particu-

lar, we have expanded in
Ej
E0

, which is O(N−1/2) in typ-

ical samples. Yet even for our largest system (N = 14),
N−1/2 > 1/4. Similarly, the exponentially small number
of “atypical” samples is not that small. Eq. (23) suc-
cessfully describes [I(E0, ω)] because there is no need to
control the random variables Ej at first order, since by
definition E0 − Ej must be equal to ω. When we re-
move complications arising from the randomness in Ej ,
the leading-order estimates become highly accurate, but
sadly we cannot do this for any but [I(E0, ω)].

With our limited systems sizes we must turn to more
sophisticated approximation schemes to understand the
localization-delocalization transition. We have two goals
in doing so: to quantitatively predict the critical energy
density εc in a procedure more efficient than exact di-
agonalization, and to understand how the structure of
localized eigenstates changes as ε approaches εc. The
Forward-Scattering Approximation accomplishes both.

V. FORWARD SCATTERING ANALYSIS

The Forward-Scattering Approximation (FSA) treats
the transverse field perturbatively and keeps only the
leading-order contribution to the wavefunction ampli-
tude at each site (see [47, 48] for recent applications of
the method to the Anderson problem). We approach
this approximation from the hypercube perspective. The
E({σ̂zi }) term in the Hamiltonian is a random on-site po-
tential and the Γ term allows hopping between adjacent

sites. Without loss of generality, our unperturbed state
has all σzi = −1. Denote it by | − . . .−〉, with unper-
turbed energy E0. The perturbed state is denoted |ψ〉
with energy E0 + ∆. From time-independent perturba-
tion theory,

|ψ〉 = | − . . .−〉+
P

E0 − E({σ̂zi })

(
−Γ

N∑
i=1

σ̂xi −∆

)
|ψ〉

(24)
where P ≡ I − | − . . .−〉〈− . . . − |. The leading-order
contributions to 〈{σ̂zi }|ψ〉 are the “directed” paths from
| − . . .−〉 to |{σ̂zi }〉, i.e.,

〈{σ̂zi }|ψ〉 ≡ ψ({σ̂zi }) =
∑
p

l({σ̂zi })∏
i=1

Γ

E0 − E(pi)
, (25)

where the sum is over the l({σ̂zi })! directed paths from the
initial site to the site {σ̂zi } and E(pi) is the unperturbed
energy of the ith site along a given path p. We treat E0

as a tunable parameter. All E(pi) are random variables
distributed according to Eq. (2).

Eq. (25) is the forward-scattering approximation to the
eigenstates of the REM in a transverse field. We use it
to investigate signatures of delocalization. As long as
the perturbation theory is valid, i.e., all ψ({σ̂zi }) � 1,
localization persists. Strictly speaking, the appearance
of order-1 ψ({σ̂zi }), which we refer to as “resonances”,
does not mean that the exact eigenstates are delocalized,
only that Eq. (25) cannot describe them. Regardless, we
take the energy density at which resonances proliferate
in the perturbed wavefunction as a strong lower bound
for εc.

Although the FSA is an approximation, as it stands,
Eq. (25) must still be evaluated numerically. We do so
below, but first consider further approximations. In Sub-
section V A we make quick estimates as to where the
perturbation series breaks down. We refine these esti-
mates in Subsection V B. In Subsection V C we evaluate
Eq. (25) numerically. Finally, in Sec. V D we briefly con-
sider the replica treatment of the FSA, which reproduces
many of the results obtained more directly in the previ-
ous sections.

A. Rough Estimates

From Eq. (2), most configurations have energies of or-

der
√
N . Thus most terms in Eq. (25) are Γ

E0
to leading

order in N , and a rough estimate comes from replacing
all terms with Γ

E0
. Then

ψ({σ̂zi }) = l({σ̂zi })!
(

Γ

E0

)l({σ̂zi })
≈
(
l({σ̂zi })Γ
eE0

)l({σ̂zi })
.

(26)
As a function of l, ψ({σ̂zi }) first exceeds 1 at l = N , if at
all. We estimate εc by setting NΓ

eE0
= 1:

εc ≤ −
Γ

e
. (27)
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We have written the estimate above as a bound on the
position of the transition curve because it clearly underes-
timates the possibility of small-denominator resonances.
Even though most REM energies are of order

√
N , an

exponentially-large number of states are still within any
finite window near E0. Such states contribute much more
than Γ

E0
to Eq. (25). Nevertheless, this estimate agrees

with ED in predicting that the transition lies at finite en-
ergy density/temperature. It also suggests that εc → 0 as
Γ → 0. Localization persists up to higher temperatures
as the transverse field weakens.

This analysis is clearly invalid at ε0 = 0, where the
weights Γ

−E(pi)
are large for most sites. In this regime,

the probability distributions for path contributions (the

terms
∏l({σ̂zi })
i=1

Γ
E0−E(pi)

in (25)) are long-tailed. Thus,

we expect the largest-weighted path to dominate the
sum over them. The “greedy algorithm” estimates this
largest-weighted path as follows: most sites have REM
energies of order

√
N , and the smallest energy among m

sites will be O(
√
N
m ). The smallest energy of sites neigh-

boring the initial site is O(
√
N
N ), as the initial site has

N neighbors. The corresponding site has a neighbor at

distance 2 with energy O(
√
N

N−1 ), for whom the smallest

energy of neighboring sites at distance 3 is O(
√
N

N−2 ), etc.,
such that the largest path is typically

ψ({σ̂zi }) ∼
NΓ√
N

(N − 1)Γ√
N

· · · (N − l + 1)Γ√
N

. (28)

At large N ,

ψ({σ̂zi }) ∼ (Γ
√
N)l. (29)

The wavefunction amplitude decays exponentially with
distance for Γ < Γc, where

Γc =
1√
N
. (30)

Any non-zero N -independent field causes the perturba-
tion series to break down. The crossover region goes as
N−1/2, and once Γ exceeds Γc, the breakdown occurs
immediately, i.e., at l = O(1).

B. Single Resonance Approximation

Consider the probability that a site at distance l pro-
duces ψ({σ̂zi }) > 1, given that the closer sites all have

energies of order
√
N . This checks the consistency of

the treatment above, and we expect single sites to pro-
duce resonances in this way because the distribution of

Γ
E0−E(pi)

is long-tailed. From Eq. (26), all sites at a dis-

tance l − 1 have amplitude

ψl−1 = (l − 1)!

(
Γ

E0

)l−1

. (31)

Then the site {σ̂zi } at distance l has amplitude

ψ({σ̂zi }) = lψl−1

(
Γ

E0 − E({σ̂zi })

)
= l!

(
Γ

E0

)l−1(
Γ

E0 − E({σ̂zi })

)
.

(32)

The probability of |ψ({σ̂zi })| > 1 is

pl =

∫ E0

(
1+l! Γl

El0

)
E0

(
1−l! Γl

El0

) dE
1√
πN

e−
E2

N

≈ 2ε

(
lΓ

eE0

)l√
N

π
e−Nε

2

.

(33)

Since the E({σ̂zi }) are independent, the ψ({σ̂zi }) for all
sites at distance l are (under the current assumptions)
independent, and thus the probability of no resonances
at distance l is

(1− pl)(
N
l ) ≈ e−(Nl )pl

≈ exp

(
−2ε

(
xΓ

eε

)Nx√
N

π
e−Nε

2

(
1

xx(1− x)1−x

)N)
,

(34)

where x ≡ l/N . In the large-N limit, this is
exp (−keNf(x,ε)) with

f(x, ε) ≡ x ln
xΓ

eε
− ε2 − x lnx− (1− x) ln (1− x) (35)

and k = O(
√
N). There will not be resonances in

the thermodynamic limit and localization will persist if
f(x, ε) < 0 for all x ∈ [0, 1]. f(x, ε) is maximized at
xmax ≡ 1− ε/Γ with a value of

f(xmax, ε) = ln
Γ

eε
+
ε

Γ
− ε2. (36)

The zero of Eq. (36) is at εc. We find that

εc = −
(

Γ−
√

2Γ2 +O(Γ3)
)
. (37)

The phase diagram in Fig. 1 displays this estimate as a
function of Γ. We get a much larger estimate than that
in Eq. (27), yet εc is still proportional to Γ as Γ→ 0.

In addition to an estimate for the critical energy den-
sity, this shows how suddenly and drastically the pertur-
bation theory breaks down. Suppose we had defined a
resonant site to be one whose amplitude exceeds c. Then
the probability of no resonances at distance l would be
exp (−kc eNf(x,ε)). The large-N asymptotics only change

if c grows/decays faster than eαN . Thus the resonances
that appear at ε > εc are exponentially large in system
size, and all sites have exponentially small amplitudes at
ε < εc.

We similarly study the infinite-temperature case,
where the greedy algorithm estimated Γc = N−1/2. As
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described above, we cannot consider single sites being res-
onant but we can consider single paths being resonant.
A path p to a site at distance l has amplitude

|A| =
l∏
i=1

Γ

|E(pi)|
. (38)

To simplify notation, we write this as

ln |A| = l ln
Γ

σ
+ Y (39)

where

σ ≡
√
πN

2
, (40)

Y ≡
l∑
i=1

ln
σ

|E(pi)|
. (41)

For Y � 1, Y is distributed as

P (Y ) =
Y l−1

(l − 1)!
e−Y . (42)

Thus |A| > 1, i.e., Y > Yc ≡ l ln σ
Γ , occurs with probabil-

ity

pl =

∫ ∞
Yc

dY
Y l−1

(l − 1)!
e−Y =

Y l−1
c

(l − 1)!
e−Yc

(
1 +O(Y −1

c )
)
.

(43)
We use this estimate to determine the probability that
none of the

(
N
l

)
paths to sites at distance l give res-

onances. The paths are not independent, but we as-
sume that we can treat them independently in estimating
whether |A| � 1 or |A| � 1. Then the probability of no
resonances at distance l is

(1− pl)(
N
l ) ≈ e−(Nl )pl . (44)

Consider the exponent
(
N
l

)
pl ≡ cl, and in particular the

ratio

cl+1

cl
=
N − l
l + 1

(
1 +

1

l

)l
Γ

σ
ln
σ

Γ
. (45)

The right-hand side of Eq. (45) is decreasing as a func-
tion of l. When it drops below 1, the exponents in
Eq. (44)) decrease as l increases, i.e., resonances become
less likely as we move farther into the hypercube. In or-
der to declare that resonances are unlikely throughout
the entire hypercube, we require that c2

c1
< 1. This is

only possible when Γ is such that

(N − 1)
Γ

σ
ln
σ

Γ
< 1. (46)

The critical Γ is, to leading order,

Γc =
σ

N lnN
=

√
π

2
√
N lnN

. (47)

Γc decays to 0 faster than the greedy estimate in Eq. (30)
by a factor of lnN , but otherwise Eq. (47) confirms the
qualitative description. Perturbation theory inevitably
breaks down in the thermodynamic, high-temperature
limit at any non-zero Γ. We see the resonances imme-
diately, i.e., at an O(1) order in the expansion. This
contrasts with the finite-temperature case, where the per-
turbative description persists until finite Γ and the reso-
nances appear after O(N) terms in the series.

We have a description of when and how QREM eigen-
states become non-perturbative in Γ, but we have made
some uncontrolled approximations. Order-1 wavefunc-
tion amplitudes need not be due solely to single resonant
sites or paths. This then implies that the amplitudes
are not independent of each other. Below, we study the
statistics of the wavefunctions in Eq. (25) numerically,
without any additional approximations. We check not
only the estimate for the critical energy density but also
whether the nature of the eigenstates agrees with the de-
scription above.

C. Numerical Treatment

To quantify resonance proliferation, we generate ∼
103 − 105 sets of REM energies and evaluate Eq. (25).
First, we directly compute what we attempted to esti-
mate in Sec. V B: the probability of a sample at fixed Γ
and ε containing at least one resonance. In addition, we
calculate the sample-averaged IPR and single-spin mag-
netization, for comparison with the exact diagonaliza-
tion. These statistics each provide an independent mea-
sure of when resonances show up and how significant the
resonances are. See Fig. 12 for scaled results, and refer
back to Section III for definitions and notation.

To begin, we count the fraction P of samples that con-
tain a resonance at each value of Γ and ε. There is a
crossover from P ≈ 0 at large |ε| to P ≈ 1 at small |ε|
(Fig. 12a). This crossover sharpens as N increases, con-
sistent with a zero-one law in the thermodynamic limit.
We estimate the critical εc by finite-size scaling with the
form P = f(N

1
ν̃ (ε − εc)). The curves collapse well, and

εc is consistent with the exact diagonalization results. ν̃,
however, is significantly larger than ED predicts. The
curve in Fig. 12a has ν̃ = 0.75(6).

We next compute the disorder-averaged IPR
(Fig. 12b). For ε < εc, [Y2] increases towards 1 as
N increases. This is consistent with localization and
with the exact diagonalization results. It also confirms
that only a negligible fraction of samples in this phase
contain resonances. For ε > εc, however, [Y2] is roughly
independent of both ε and N , and stays at [Y2] ≈ 0.4.
This signifies resonances, and presumably delocalization,
although the signature is very different from that of the
exact eigenstates. The probability distributions for the
wavefunction amplitudes are very long-tailed. Thus in a
given sample, a few amplitudes will be much larger than
the rest. In the localized phase, these largest amplitudes
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FIG. 12. Eigenstate properties as determined within the
forward-scattering approximation, as a function of energy
density. All data is at Γ = 0.20, and N = 10 (blue) to 20
(red). These curves have been collapsed using the scaling

form y = f(N
1
ν̃ (ε− εc)). The hatched regions in the bottom

two plots are a reminder: the FSA’s predictions for observ-
ables in the delocalized phase are not meaningful. (a) The
probability of a sample containing a resonance. The criti-
cal parameters are εc = −0.32(1) and ν̃ = 0.75(6). (b) The
disorder-averaged IPR within the FSA. The critical param-
eters are εc = −0.31(1) and ν̃ = 0.83(7). (c) The disorder-
averaged single-spin magnetization of the FSA wavefunctions.
The critical parameters are εc = −0.30(1) and ν̃ = 0.80(9).

still do not compare to those of the initial site. As ε
approaches εc, those large amplitudes approach 1 and
[Y2] decreases. Once ε passes εc, the initial site no
longer contributes to the IPR and [Y2] is set by the
largest non-initial amplitudes. Increasing ε (and N) even
further will make the wavefunction amplitudes larger,
but it won’t change that only a few sites dominate the
IPR. Hence [Y2] is independent of both ε and N once
the perturbation theory breaks down.

Keep in mind that the FSA’s prediction for [Y2] in
the delocalized phase has no connection to the actual
IPRs in the QREM’s delocalized phase. The FSA is a
perturbative expansion, and all we learn from the initial
site no longer contributing to [Y2] is that we cannot trust
any results from the FSA in this region. Fig. 13 plots
the FSA’s disorder-averaged IPR against the disorder-
averaged IPR from exact diagonalization. The two curves
agree for all system sizes when ε < εc. The deviations
become significant at ε = εc, though, and the curves
bear no relation to each other for ε > εc. The FSA
successfully describes the structure of eigenstates in the
localized phase but not in the delocalized phase. Yet
even though the FSA IPR is not accurate for much of
the spectrum, a scaling collapse gives critical parameters
that agree with those of the resonant-sample fraction P .

The magnetization of a single spin behaves analogously
(Fig. 12c). Recall that we arbitrarily take the unper-
turbed state to have all σzi = −1, and sites closer to the
initial site have more spins pointing down. Thus [〈σz1〉]
is roughly constant at −1 for large |ε|, and it starts to
increase significantly once ε passes εc. As before, the
FSA and ED predictions for [〈σz1〉] agree in the localized
phase but not in the delocalized phase. The curves col-
lapse onto each other quite well, with scaling parameters
that again agree with the others from the FSA.

D. Replica Treatment

The statistical properties of the forward scattering
wavefunctions can also be studied using the replica
method, which provides complementary understanding
to the other numerical and analytical approaches [37, 49].
In this approach, we view the amplitude ψ as the parti-
tion sum of a directed random polymer p living on the
hypercube with the long-tailed random weights wi =
Γ/(Ea−Ei). As these weights do not have any finite mo-
ments, we expect the directed random polymer to con-
dense onto a small number of large weight paths [50].
This also justifies our neglect of the sign of the weights
wi as their destructive interference is unimportant in this
regime. The replica approach is especially useful as it
naturally regulates the divergence of these moments.

Within the forward scattering approximation, the
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FIG. 13. A comparison of the disorder-averaged IPR obtained
from ED (dashed) and from the FSA (solid), at Γ = 0.20 and
with N ranging from 8 (blue) to 14 (red). The background
shading indicates the phase at that energy density as deter-
mined by the spectral statistics in ED: red is localized, blue
is delocalized, and green is the transition region. Note that
the FSA results are a good approximation in the localized re-
gion (ε < εc) but differ qualitatively in the delocalized region
(ε > εc). This is not surprising, since the FSA is not valid in
this region.

wavefunction amplitude ψL at distance L is

ψL =
∑
p

∏
i∈p

wi

wi =
Γ

|E0 − Ei|
(48)

where wi is the random weight of the piece of path going
through site i on path p.

The typical value of ψL is provided by averaging its
logarithm, lnψ, which may be calculated using the formal
replica trick

lnψ = lim
n→0

ψn − 1

n
(49)

Thus, we need to calculate

ψn =
∑

p1,··· ,pn

∏
i

w
ri(p1···pn)
i (50)

where ri gives the number of times that the n paths cross
site i:

ri =

n∑
a=1

1[i ∈ pa] (51)

a. Replica symmetric ansatz— The replica symmet-
ric ansatz consists of assuming that each of the n paths
contributes independently to the n’th moment of ψ. That
is, ri = 1 for each of the nL sites visited by the paths

and 0 otherwise. Thus,

ψn ≈
∑
p1···pn

∏
i∈p1···pn

wi = (L!wL)n (52)

= exp [nL(lnL− 1 + lnw)] (53)

Thus, as n→ 0, we find

lnψ = L(lnL− 1 + lnw) (54)

This is ill-defined if w →∞, which is clearly true for the
weights arising in the QREM. However, for E0 = Nε0,
the weight in the tail of w is parametrically suppressed
by N . If we simply replace w by its typical value Γ/Nε0,
we find the ‘typical weight RS’ result,

lnψ ≈ L(lnL− 1 + ln Γ/Nε0)

≈ Nl(ln l − 1 + ln Γ/ε0) (55)

where L = lN . This indicates that the typical ampli-
tude decays exponentially with N at all points inside the
hypercube for Γ < eε0.

This clearly overestimates the critical Γ for delocal-
ization as it neglects the possibility of small denomina-
tors and the concomittant atypical resonances. Nonethe-
less, even at this level it shows that delocalization should
take place for infinitesimal Γ at ε0 = 0. This estimate
agrees precisely with the rough estimate made directly
in Sec. V A.
b. Replica symmetry breaking ansatz— In the 1RSB

ansatz, the dominant configurations contributing to ψm

consist of n/x tightly bound groups of x paths each.
Thus,

ψn ≈

∑
p

∏
i∈p

wxi

n/x

= exp [nf(x)] (56)

where

f(x) =
L

x
(logL− 1 + logwx) (57)

is the 1RSB free energy function. In the n→ 0 limit, the
Parisi parameter x is constrained to the interval [0, 1] and
the typical amplitude is given by the optimization

lnψ = min
x∈[0,1]

f(x) (58)

The advantage of this approach is that it allows a direct
treatment of the long-tailed weight distribution p(w). In-
deed, for x < 1, the fractional moment wx is convergent:

wx =

∫
dE√
πN

e−E
2/N

(
Γ

|E0 − E|

)x
=

(
Γ√
N/2

)x ∫
du√
2π

e−u
2/2

|u0 − u|x

=

(
Γ√
N/2

)x
I(x, u0) (59)
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where u0 = E0/
√
N/2. The small denominator in the

dimensionless integral I(x, u0) is integrable for x < 1 and
the Gaussian cuts off the power-law behavior at large u.
Thus, for any fixed u0 and L, f(x) exhibits a positive
divergence as x → 0+ and another as x → 1−, so that
the minimizer x∗ lies strictly within the interval (0, 1)
and all estimates are well-defined.

The 1RSB formalism is most useful at E0 = 0, where
the typical denominators are already quite small com-
pared to the finite energy density case. For u0 = 0,
I(x, 0) reduces to a Γ function:

I(x, 0) =
2−

x
2 Γ
(

1−x
2

)
√
π

(60)

which exhibits the expected pole at x = 1.
As x → 0, f(x)/L diverges as (logL − 1)/x while for

x → 1, f(x)/L diverges with an L-independent loga-
rithm. Thus, the minimizer x∗ must approach 1 as L
grows, so we may simply replace I(x, 0) by its expansion
near x = 1 to linear order. In this approximation, we
find that the saddle point of the replicated free energy
arises at x∗ = 1 − 1

log
√

2/πn
+ · · · as n → ∞, indicat-

ing condensation of the measure onto a logarithmically
diverging subset of the paths.

Solving for the resonance condition f = 0 at n = N ,
we find the estimate

Γc(ε = 0) =

√
π

2
√
N log

√
2/πN

+ · · · (61)

for the critical value of the transverse field. We note
that this estimate agrees to leading order in 1/ lnN with
Eq. (47).

VI. LARGE-Γ LIMIT

Here we describe the limit opposite to that of FSA,
in which the random operator E({σ̂zi }) of Eq. (1) is the
perturbation. This limit of Γ � 1 and the FSA limit
of Γ � 1 are separated by a first-order thermodynamic
transition, so we cannot extrapolate the FSA to high
fields and must begin at Γ→∞.

To zeroth order in E({σ̂zi }), the eigenstates of the
QREM Hamiltonian are {σxi } eigenstates with energies
−MΓ (M = −N,−N + 2, . . . , N). The degeneracy of

the −MΓ level is
(

N
N+M

2

)
. In this basis, the REM term is

dense, i.e.,

〈{σ̂xi }a|E({σ̂zi })|{σ̂xi }b〉 =
1

2N

2N∑
j=1

(−1)α
(a,b)
j Ej , (62)

where a and b denote different {σxi } eigenstates, j enu-

merates the {σzi } eigenstates, and α
(a,b)
j is 0 or 1 de-

pending on the specific eigenstates in question. In words,

every matrix element of E({σ̂zi }) is the sum and/or dif-
ference of the REM energies, divided by 2N from nor-
malization. Thus every matrix element is a Gaussian
random variable of variance 1

2N
N
2 . We treat E({σ̂zi })

as a GOE-distributed random matrix in the {σxi } basis
(this is only an approximation because the exact matrix
elements aren’t independent).

Under these conditions, the eigenstates within a sub-
space of fixed total magnetization M , which were ini-
tially degenerate, form a band according to Wigner’s
semi-circle law. This band has a half-width of√

N

2N+1

√(
N

N+M
2

)
(63)

which in the large-N limit is(
N

2π(1−m2)

)1/4

eN( 1+m
4 ln (1+m)+ 1−m

4 ln (1−m)) (64)

where m ≡M/N is the average magnetization per spin.
All bands with m 6= 0 have widths much less than Γ for

large enough N . Thus the magnetization of each is pre-
served. Each single spin does lose its magnetization be-
cause the eigenstates are statistically structureless within
a band. Yet the only bands that hybridize are those with
M � N .

Since the unperturbed energy densities are propor-
tional to m, the large-Γ situation is analogous to the
small-Γ situation: states at order-N energies (finite tem-
perature) are only weakly dressed by all others, while
states at ε = 0 (infinite temperature) hybridize imme-
diately, i.e., regardless of how weak the perturbation is.
However, it is difficult to carry out the large-Γ expansion
to higher orders, and so we cannot see the localization-
delocalization transition from this side.

VII. CONCLUSION

The quantum random energy model, although non-
local, is a useful test-bed for localization. Exact diag-
onalization shows a transition that appears to become
sharp in the thermodynamic limit. This transition is visi-
ble through multiple order parameters. Furthermore, the
forward scattering approximation to the perturbative-in-
Γ wavefunction agrees with ED results in the localized
phase. Finite-size estimates of where perturbative reso-
nances proliferate agree with the observed transition in
ED as well.

Previous authors have explored replica-symmetry-
breaking in the QREM’s canonical ensemble. Our results
suggest that this has little to do with the model’s dynam-
ics. This would not be all that surprising for a classical
spin system since the classical Hamiltonian does not en-
code any dynamics. Yet a quantum spin’s dynamics are
fully determined by the Hamiltonian, and one would ex-
pect that its dynamics be compatible with its canonical
ensemble. The QREM demonstrates otherwise.
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Our finite-size numerics are consistent with a dynami-
cal phase transition that is continuous. In particular, the
autocorrelation time of spins diverges as the transition is
approached from the delocalized phase. We can explain
the variation of critical amplitudes with Γ by a line of
critical fixed points. However, our numerical observa-
tions are limited to small system sizes and the success of
our scaling analysis may be finite-size effects.

Regardless, we find finite-size scaling windows con-
trolled by the scaling combination Nδν̃ . Exact diagonal-
ization shows ν̃ ≈ 0.3 − 0.5 and the numerical forward-
scattering approximation shows a somewhat larger ν̃ ≈
0.8. Our ν̃ should compared with dν in d-dimensional
disordered systems, which would be expected to satisfy
the Harris criterion dν ≥ 2 [21, 51, 52]. The infinite-
dimensional QREM need not and does not satisfy the
Harris criterion, but it is consistent with observed ν in

previous one-dimensional diagonalization studies [16–18].
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