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We show that the pressure-induced metal-insulator transition (MIT) in LaMnO3 is fundamentally
different from the Mott-Hubbard transition and is percolative in nature, with the measured resistiv-
ity obeying the percolation scaling laws. Using the Gutzwiller method to treat correlation effects in
a model Hamiltonian that includes both Coulomb and Jahn-Teller interactions, we show, One, that
the MIT is driven by a competition between electronic correlation and the electron-lattice interac-
tion, an issue that has been long debated, and Two, that with compressed volume, the system has a
tendency towards phase separation into insulating and metallic regions, consisting, respectively, of
Jahn-Teller distorted and undistorted octahedra. This tendency manifests itself in a mixed phase
of intermixed insulating and metallic regions in the experiment. Conduction in the mixed phase oc-
curs by percolation and the MIT occurs when the metallic volume fraction, steadily increasing with
pressure, exceeds the percolation threshold vc ≈ 0.29. Measured high-pressure resistivity follows
the percolation scaling laws quite well, and the temperature dependence follows the Efros-Shklovskii
variable-range hopping behavior for granular materials.

PACS numbers: 71.10.Fd, 75.47.Lx, 62.50.-p, 71.30.+h

I. INTRODUCTION

The doped manganites such as La1−xCaxMnO3 are
unique systems for studying competing interactions be-
tween spin, electronic, orbital, and lattice degrees of
freedom.1–3 The end member LaMnO3 (LMO) is of spe-
cial interest, since, while being governed by the same
interactions, it is at the same time free from clutter due
to the Ca dopants. The pressure induced metal-insulator
transition (MIT) in LMO has been long debated. There
are two issues. First, while resistance measurements in-
dicate a sharp transition to the metallic state at the criti-
cal pressure Pc ≈ 32 GPa4, Raman measurements, on the
other hand, show a gradual change with both Jahn-Teller
(JT) distorted and undistorted regions persisting over a
wide range of pressure4–6. An understanding of the MIT
must explain this dual behavior, which we explain below
in terms of percolation.

The second issue is the relative role of the compet-
ing interactions in mediating the MIT. Loa et al.4 first
suggested that the MIT is driven by band-width (W ) en-
hancement with pressure, based on the fact that the JT
distortion disappears much below Pc and therefore has
no role to play, so that the change in U/W results in an
MIT of the standard Mott-Hubbard type7. This conclu-
sion was refuted by Baldini and Ramos and coworkers5,6,
who observed, to the contrary, that the distortions in fact
persist beyond the MIT and remain relatively unchanged
across the transition. Several theoretical studies8–12 also
suggested that both the Coulomb as well as the JT in-
teraction are important questioning the pure Mottness
of the observed MIT. Trimarchi and Binggeli8 studied

the Mn-O distances under pressure with the Coulomb-
corrected LDA+U density-functional method and found
the Coulomb interaction to be essential in establishing
the insulating ground state. Based on the dynamical-
mean-field results (LDA+DMFT), Yamasaki et al.9 ar-
gued that both the JT and the Coulomb interactions
are important for the MIT. Similar conclusion was found
from the slave-boson solution of a model Hamiltonian11.
Yin et al.10 suggested that the JT distortion is facili-
tated by the Coulomb U term via enhanced localization.
Considering another aspect of the problem, Koch et al.12

showed that in order to describe the orbital ordering
seen in neutron scattering, the JT interactions are im-
portant, and the Kugel-Khomskii superexchange derived
from the Coulomb U term is not sufficient for it. Much of
this theory work was aimed at the understanding of the
role of the competing interactions, rather than the phase
coexistence across the MIT, although a recent hybrid-
functional calculation13 found different magnetic phases
to be close in energy at T = 0, suggesting the propensity
towards phase coexistence.

In this paper, from a Gutzwiller solution of a model
Hamiltonian and high-pressure transport measurements,
we show that the pressure-induced MIT in undoped LMO
is percolative in nature. In other words, conducting
transport does not occur as a result of the formation of
a homogeneous metallic phase, as happens in the Mott-
Hubbard MIT, but rather, it occurs when the volume
fraction of the metallic region, gradually increasing with
pressure, exceeds the percolation threshold. The overar-
ching goal of our work is to demonstrate how percolation
theory forms the foundation of the underlying physics
of the MIT in LMO. We focus on the high-temperature
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paramagnetic phase, so that the transport is uncluttered
by the magnetic transitions that exist at low tempera-
tures.

II. MODEL HAMILTONIAN AND
GUTZWILLER SOLUTION

We consider a two-band, spinless model Hamiltonian,
containing the key Coulomb and JT interactions:

H =
∑
〈ij〉,αβ

tαβij (ĉ†iαĉjβ + H.c.)− g
∑
i

(Qi3σ̂z +Qi2σ̂x)

+
1

2
K
∑
i

(Q2
i3 +Q2

i2) + U
∑
i

n̂i1n̂i2, (1)

where ĉ†iα creates an eg electron in orbital α (= 1, 2) at
site i on the simple cubic Mn lattice, ~σ is the pseudospin
describing the two eg orbitals, | ↑〉 = |x2 − y2〉 and | ↓
〉 = |z2〉, Q2 and Q3 are the two JT distortion modes
of the MnO6 octahedron, and K and U are the elastic
constant for the JT modes and the intra-orbital on-site
Hubbard U Coulomb interaction, respectively. Only one
spin is included in the Hamiltonian due to the following
reason. Because of the large Hund’s coupling JH → ∞,
the eg spins are always parallel to the core t2g spins, with
the result that the antiparallel spin states are altogether
omitted due to their high energy. The two eg states in
the Hamiltonian, Eq. 1, therefore have their spins aligned
with the local core spin, which can however vary from site
to site.

Although the t2g core spins are not explicitly included
in the Hamiltonian, their effect on the hopping of the
eg electrons is a crucial part of the physics of the man-
ganites and must be taken into account. The core spins
modify the hopping integrals between the eg electrons,
since they are always aligned parallel with the core spins
on each lattice site, via the Anderson-Hasegawa double
exchange by the factor cos(θ/2), where θ is the angle be-
tween two neighboring core spins, treated as classical14.
As we are interested in the paramagnetic phase at room
temperature, the random thermal fluctuations lead to the
random fluctuations of the orientation of the core spins
at each site, so that the thermal average of the Anderson-
Hasegawa factor yields the result, 〈cos(θ/2)〉 = 2/3,
which modifies the hopping integral between the eg elec-
trons.

To describe the effect of pressure, we take the hop-
ping integral to be volume dependent with tαβ(r) ∝ r−7
following Harrison scaling15, add a Madelung term EM
and a repulsive interaction term ER between the ions to
keep the crystal from collapsing. The total energy then
becomes E = Eel+EM +ER, and we have used the sim-
plified forms EM = −A/r, ER = B/r12, and as usual,
tαβ may be expressed in terms of the ddσ hopping inte-
gral, denoted here by −t. Guided by the literature3,16–18,
we set the parameters A = 6 eV, B = 0.5 eV, g = 2.5
eV/ Å, K = 10 eV/Å2, U = 3 eV, and t = 0.6 eV.

We have solved the model using the Gutzwiller approx-
imation for the Coulomb interaction term in Eq. 1, treat-
ing the two eg orbitals as pseudo-spins. The Gutzwiller
wave function is given by

|ΨG〉 = ηD̂|Ψ0〉, (2)

where |Ψ0〉 is the uncorrelated many-body wave function,

D̂ counts the site double occupancy, and the Gutzwiller
variational parameter η is obtained by minimizing the
expectation value of energy 〈ΨG|H|ΨG〉. In the thermo-

dynamic limit, the average double occupancy d ≡ 〈D̂〉 is
related to η by the expression η2 = 4d2[(1−2d)2−m2]−1.
The electrons hop in a correlated manner, leading to a
reduced kinetic energy, described by the Gutzwiller re-
duction factor19,20

γ(m, d) =
2d
(√

1−m− 2d+
√

1 +m− 2d
)2

1−m2
, (3)

valid for the half-filled case, viz., n1 + n2 = 1 (one eg
electron per site), with m = 〈n̂2 − n̂1〉 being the orbital
polarization. A small d as compared to the uncorrelated
value duncorr. = n1n2 indicates a strongly correlated state
and according to the Brinkman-Rice criterion21, a Mott-
Hubbard insulating ground state is indicated if d→ 0.

The band structure energy is computed by taking into
account this reduction factor and diagonalizing the 2× 2
Bloch Hamiltonian in the orbital space

Hk =

(
ε11(k)− gQ3 ε12(k)− gQ2

ε12(k)− gQ2 ε22(k) + gQ3

)
, (4)

where ε11(k) = V̄ (cos kxa + cos kya + 4 cos kza)/2,

ε12(k) = −
√

3V̄ (cos kxa − cos kya)/2, ε22(k) =
3V̄ (cos kxa + cos kya)/2, and V̄ = −(2/3)γ(m, d)t(r),
with t(r) ∝ r−7 and the factor 2/3 coming from
the Anderson-Hasegawa renormalization as already dis-
cussed. We minimized the total energy per lattice site

E =

occ∑
kν

εkν(d,Q2, Q3) +
1

2
KQ2 + Ud+ EM + ER, (5)

as a function of d and Qi for each volume, which yields
the ground-state solution. Here Q ≡ (Q2

2 + Q2
3)1/2 and

εkν are the band structure energies obtained by diago-
nalizing the Hamiltonian Hk, Eq. (4).

III. THEORY RESULTS

The total energy, calculated from Eq. (5), is plotted in
Fig. 1 for parameters corresponding to LMO as discussed
earlier. It shows a double minimum as a function of vol-
ume corresponding to a JT distorted and an undistorted
phase, indicating a phase separation in a range of volume,
shaded yellow in the figure. For volume constrained in
the shaded region, the double minimum would imply the
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FIG. 1: (Color online) Total energy as a function of volume
obtained from Eq. (5) for parameters corresponding to LMO,
indicating regions of JT distorted and undistorted phases. As
volume is compressed below V2, a metallic component begins
to form, and the system conducts below Vc (black dashed
line), when the metallic volume fraction v, calculated from the
Maxwell-construction result, Eq. (6), exceeds the percolation
threshold vc ≈ 0.29. The corresponding threshold pressure for
MIT is Pc ≈ 31 GPa as computed from the measured equation
of state4. Energy is in units of t and volume is in units of V0,
the zero-pressure volume. The black dashed line (schematic)
indicates the mixed phase region, if the phase separation is
suppressed either due to interaction between the phases or for
kinetic reasons (see text).

coexistence of two different phases, a high-volume insu-
lating phase with volume V2, and a low-volume metallic
phase with volume V1, with a sharp boundary between
them. If pressure is fixed, then a first-order transition
from the insulating to a metallic phase at a pressure cor-
responding to the common tangent would be implied. In
the experiments, such a sharp transition is, however, not
observed. For example, the equation of state shows a
continuous change of volume with pressure.4

The reason for the mixed phase, ubiquitous in the man-
ganites, rather than a phase separation is a topic of con-
siderable interest. A phase separated system could be
energetically unfavorable due to multiple reasons, not in-
cluded in our model. For example, presence of a small
amount of charged impurities because of unintentional
doping could cause a deviation from charge neutrality
of the two components and would impede the forma-
tion of the phase separation due to the large cost in
Coulomb energy. It would instead lead to a nanoscale
inhomogeneous phase (or mixed phase) with intermixed
metallic and insulating components (Coulomb frustrated
phase separation)22. It has also been suggested that
the mixed phase could even originate due to kinetic rea-
sons, i.e., self-organized inhomogeneities resulting from a
strong coupling between electronic and elastic degrees of
freedom23.

In fact, a number of experiments point to the existence
of the mixed phase in LMO under pressure. These ex-
periments include the Raman measurements5,6, the con-

tinuous equation of state4, as well as the present trans-
port measurements. Of these, the Raman and the high-
pressure resistivity measurements show that the metallic
component slowly grows with pressure, while the equa-
tion of state indicates that no abrupt volume change oc-
curs with pressure, which is consistent with the existence
of the mixed phase. Even though the metallic fraction
slowly grows with pressure, the transition to metallic con-
duction is, nevertheless, still sharp and occurs when the
metallic fraction exceeds the percolation threshold.

The metallic fraction may be obtained from the
Maxwell construction (red dashed line in Fig. 1). If
f1(f2) is the fraction of the substance in metallic (insu-
lating) phase in the mixed phase region (V1 < V < V2),
V being the total volume, then we have the two equa-
tions: f1 + f2 = 1 and f1V1 + f2V2 = V , solving which
we find the volume fraction of the metallic phase

v ≡ f1V1
V

=
V2/V − 1

V2/V1 − 1
. (6)

The MIT occurs, when v > vc ≈ 0.29, the percola-
tion threshold, when the metallic regions begin to touch
and percolative conduction begins. We readily find from
Eq. (6), the threshold volume for metallic conduction
Vc = (vc/V1 + (1 − vc)/V2)−1 and the corresponding Pc
is found from the measured equation of state4, and both
are shown in Fig. 1.

Fig. 2 summarizes the phase diagram, illustrating the
competition between the Coulomb and the JT interac-
tions. The phase diagram was calculated by starting with
a fixed parameter set U , g, and t, e.g., the red dot in Fig.
2 corresponds to LMO at ambient pressure, and then by
changing volume which scales these parameters. With
decreasing volume (increasing pressure), the hopping in-

Mott Insulator

Metal

JT
Insulator

P

JT+Mott 
Insulator

Percolation 
Threshold

Inhomogenous 
Phase

vc

0 0.5 1 1.5 2 2.5
0

2

4

6

8

g2êKt

Uêt

FIG. 2: (Color online) Phase diagram showing the metallic
and insulating regions, bridged by the inhomogeneous phase
(shown in yellow). The system LMO, starting with the red
dot at ambient pressure, moves along the dashed line as pres-
sure is applied, first entering the inhomogeneous phase while
still maintaining its insulating character, until the metallic
fraction exceeds the percolation threshold vc (curved dashed
line). Finally, it crosses over to the fully metallic phase, where
the metallic domains fill the entire volume.
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FIG. 3: (Color online) Contrasting Mott insulator vs. JT
band insulator. For weak JT coupling, g2/Kt = 0.04 (top),
the MIT is correlation-driven with the Gutzwiller double oc-
cupancy taking the Brinkman-Rice value d ≈ 0 at the tran-
sition point, while in the opposite, strong-coupling limit,
g2/Kt = 1.5 (bottom), the MIT is driven by a large JT dis-
tortion Q, with d hardly changed from its uncorrelated value.
In this figure, the system is assumed to be always in the ho-
mogeneous phase, so that the MIT corresponds to the kink
in total energy like in Fig. 1 and not to the percolative MIT.
Here, distortion Q is in Å, gap Eg is in units of t, m is the
orbital polarization, and left of the blue line is a metal, while
the right of it is an insulator.

tegral t increases much more rapidly as compared to the
other parameters (taken to be volume independent in our
model), so that the system moves along the dashed line
towards the origin as shown in the figure (if t doubles,
then both U/t and g2/(Kt) are halved). As the system
traverses along the line, the volume changes and with
it, the total energy, as shown in Fig. 1, from which the
boundary of the inhomogeneous phase and the percola-
tion threshold are determined. Fig. 2 was obtained by
studying the system traversing along a series of such lines
in the parameter space.

The phase diagram, Fig. 2, shows distinct behaviors
in different regions of the parameter space, viz., metallic
behavior, insulating behavior driven by either correla-
tion or Jahn-Teller interaction, or a mixed phase in the
crossover region between the metal and insulator. For
large Coulomb interaction, one gets a Mott-Hubbard in-
sulator, while for a large JT coupling, one obtains a JT

band insulator as a large gap opens up between the two
orbitals due to a strong JT splitting.

The contrast between the Mott and the JT band in-
sulator is illustrated in Fig. 3, where we have shown the
change of the various quantities as the transition point
is crossed. When g is zero or close to zero, we get the
standard Mott-Hubbard MIT, in the sense that there is
an abrupt change from the metallic state to the insu-
lating state as U/t is increased beyond a critical value,
and the system always remains in a single phase, either
metallic or insulating. The Gutzwiller double occupancy
d is zero at the MIT point, following the Brinkman-Rice
criterion21. On the other hand, if g is strong as com-
pared to U , then correlation effects become negligible,
and the MIT occurs because Q becomes large and the
gap opens up because the energy separation between the
two eg orbitals, 2gQ, becomes larger as compared to the
band width, leading to a JT band insulator. In this case,
d does not change very much from its uncorrelated value
as the MIT point is approached. At ambient pressure,
LMO is in an intermediate regime, where the insulating
state is formed by a combined effect of both Coulomb as
well as JT interactions, as indicated by the red dot in
Fig. 2.

IV. TRANSPORT MEASUREMENTS AND
PERCOLATION LAWS

We have studied the mixed phase region experimen-
tally from high-pressure transport measurements, which
clearly shows the transport behavior characteristic of an
inhomogeneous (or mixed) phase with intermixed metal-
lic and insulating regions. We measured the electrical
resistance across the metal-insulator transition region as
a function of temperature and pressure up to 54 GPa.

In our experiments, samples of LMO were synthesized
by solid-state reaction starting from 99.999 % pure La2O3

and Mn2O3 and the oxygen stoichiometry was confirmed

Metal Insulator 

Inhomogeneous phase 
(JT distorted/undistorted 

octahedra) 

PC 

0 10 20 30 40 50 60 70150

200

250

300

 TN

 Raman
 TransportT(

K)

P(GPa)P (GPa)

T 
(K

)

FIG. 4: (Color online) Summary of the experimental high-
temperature phase diagram. The observed inhomogeneous
phase region is shaded yellow. The measured resistance cor-
responding to the red dots are shown in Fig. 5 .
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FIG. 5: (Color online) Measured resistance in the param-
agnetic phase (T = 300K) as a function of pressure show-
ing percolative conduction in the mixed phase region. Close
to the MIT, the resistance follows the percolation scaling
laws, Eq. 7, with the critical exponents t = 2.1 ± 0.2 and
s = 0.9 ± 0.2 and the fitted resistance constants R1 = 0.19 Ω
and R2 = 5840 Ω (solid curve is a guide to the eye). The inset
is a schematic of the inhomogeneous phase near the percola-
tion threshold. The metallic volume fraction v was calculated
by first computing the volume V for a given pressure from the
experimental equation of state4 and then using the Maxwell
construction result, Eq. (6). The critical metallic fraction vc,
which corresponds to the critical pressure Pc, was similarly
calculated.

by thermo-gravimetric analysis. For the transport ex-
periments, a miniature non-magnetic diamond anvil cell
was employed together with a Re gasket, previously insu-
lated. The LMO powder was loaded in a 70 micron hole
and four platinum leads (2 micron thick) were placed in
electric contact with the sample to measure resistance
in quasi-four probe configuration using PPMS. At each
pressure, resistance data were collected over cooling and
warming temperature cycles (10-300 K)24. Pressure was
measured using the ruby fluorescence technique. The re-
sistance changed by five orders of magnitude as the pres-
sure was varied across the MIT transition occurring at
Pc ≈ 32− 35 GPa.

Fig. 4 summarizes the high-temperature phase dia-
gram, focusing on the paramagnetic region, which we
have studied in the present work. The figure was con-
structed on the basis of the current experiment and ear-
lier Raman5 and Néel-temperature measurements.25

Percolative conduction – The measured resistance cor-
responding to each transport data point, indicated by the
red dots in Fig. 4, is shown in Fig. 5. The resistance
shows percolative behavior characteristic of an inhomo-
geneous phase consisting of interspersed metallic and in-
sulating puddles. Starting from an insulator at ambient
pressure, the inhomogeneous phase sets in beyond P ∼
3 GPa, when the incipient metallic phase begins to ap-
pear and increases with pressure. Conducting transport
occurs beyond Pc ∼ 32 GPa, when the volume fraction
of the metallic region exceeds the percolation threshold,
roughly vc ≈ 0.2926. At a much larger pressure PM (the-
ory predicts PM ∼ 81 GPa as seen from Fig. 1), the sys-

tem would become a homogeneous single metallic phase;
however, PM is larger than our maximum pressure of 54
GPa and was not experimentally reached. The Raman
data5 show the presence of a mixture of distorted and
undistorted regions across the MIT, specifically, up to the
highest measured pressure of 34 GPa, while a remarkable
decrease of the intensity-noise ratio in the Raman data
at 32 GPa is a spectral signature of the onset of the MIT.

The measured resistance, presented in Fig. 5, is de-
scribed very well by the standard percolation scaling laws
for the metal-insulator composites, viz.,

R =


R1(v − vc)−t v > vc (metallic regime)

Ru1R
1−u
2 v = vc (percolation threshold)

R2(vc − v)s v < vc (insulating regime),

(7)

where v again is the metallic volume fraction, and t =
1.6 − 2.0, s = 0.7 − 1.0, and u = t/(s + t) are universal
critical exponents for three-dimensional percolation27–29.
Our transport data (Fig. 5) was fitted to Eq. (7) by first
computing the volume V for a given pressure using the
equation of state4 and then by finding the corresponding
v from Eq. (6). The fitted critical exponents t and s
(values listed in the Fig. 5 caption) are close to the the-
oretical exponents for 3D percolation, and the sigmoid
shape of the transport curve closely resembles the same
for the composite media29.
The GEM equation for composites – Although a wide

range of experimental results for conductor-insulator per-
colating systems and computer simulations can be fitted
with the classic percolation equations expressed in Eq.
(7), these equations are valid only in the limits, where
the conductivity of the metallic fillers tends to infinity,
while the interspersed insulting matrix is a perfect in-
sulator with the conductivity tending to zero. This is
satisfied quite well in our case, as justified a posteriori
from the fitted resistance ratio R2/R1 ≈ 3 × 104 (see
Fig. 4 caption). In many composites, this condition is
not satisfied quite so well. For these cases, McLachlan
et al.30 have proposed a phenomenological equation that
has been successfully used to fit the conductivity data of
such composites.

This so-called general effective medium (GEM) equa-
tion is in the form of an implicit equation for the resis-
tance R(v) as a function of the metallic volume fraction,
which reads

(1− v)(R1/s −R1/s
2 )

R1/s +AR
1/s
2

+
v(R1/t −R1/t

1 )

R1/t +AR
1/t
1

= 0, (8)

where A = (1 − vc)/vc and R1 and R2 are, again, the
resistances of the conductor and the insulator, respec-
tively. This equation remains valid if the resistances
are replaced by the corresponding resistivities. It can
be easily verified that this single two-exponent percola-
tion equation continuously interpolates between the three
percolation equations in Eq. (7) and it reduces to a nor-
malized form of each of them in the limits, R1 → 0 and
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FIG. 6: (Color online) The measured temperature depen-
dence of resistance on the insulating side of the MIT at three
different pressures.

R2 → ∞. In the crossover regime v ≈ vc (more specifi-
cally, |v−vc| < (R1/R2)1/(t+s)), it reduces to the middle
line of Eq. (7). We were able to fit our resistance data
with this equation as well, which provided a single con-
tinuous curve, with the four fitting parameters R1, R2,
t, and s. This fitting yielded very similar values to the
parameters reported in Fig. 5, which were obtained by
fitting the resistivity data to Eq. (7) in the limiting re-
gions away from the critical region.

Temperature Dependence – The temperature depen-
dence of the resististance in the insulating regime is
shown in Fig. 6, which follows the Efros-Shklovskii vari-
able range hopping (VRH) behavior31,32

R = R0 exp[(T0/T )1/2], (9)

observed in a variety of granular materials33, where non-
percolative metallic puddles (metallic fraction below the
percolation threshold) are surrounded by insulating ma-
terial.

V. CONCLUSION

In conclusion, we studied the metal-insulator transi-
tion in LMO under pressure using the Gutzwiller solution
of a model Hamiltonian containing correlation and Jahn-
Teller effects and high-pressure transport measurements.
Our main result is that the MIT is driven by a combi-
nation of the correlation and Jahn-Teller effects, and it
is percolative in nature, which is fundamentally differ-
ent from the standard Mott-Hubbard transition. In the

present case, the MIT occurs due to percolative conduc-
tion in a mixed phase consisting of interspersed metallic
and insulation regions, while in the Mott-Hubbard tran-
sition, conduction occurs due to the sudden change of the
ground state of the system with some parameter, with the
system maintaining a homogeneous, single phase across
the MIT. The theory work showed that the system has
a propensity for phase separation when volume is com-
pressed, where the system separates into a metallic part
and an insulating part separated by a single phase bound-
ary. However, rather than the two parts forming two sep-
arate regions, they are interspersed among each other on
the nanoscale in the experiment, thereby forming a mixed
or an inhomogeneous phase (nanoscale phase separation).
The exact reasons for this is unknown, but effects such
as Coulomb interaction between the two parts or kinetic
reasons have been proposed in the literature as discussed
in the text.

The measured high-pressure resistance followed the
percolation scaling laws both as a function of tempera-
ture and pressure, establishing the percolative nature of
the metal-insulator transition. As pressure is applied on
LMO, an insulator at P = 0, the metallic region begins
to form around P ∼ 3 GPa, with the metallic fraction
gradually growing with pressure and eventually forming
a conducting network beyond the percolation threshold,
which occurs at Pc ≈ 32 GPa. Thus, while the MIT is
sharp, caused by the onset of the percolative conduction,
there is no such sharp change in the metallic volume frac-
tion, which grows continuously across the MIT. In turn,
since the metallic region contains undistorted JT octa-
hedra, the average lattice distortion also changes contin-
uously across the MIT as seen in the Raman data. The
percolative MIT may be more common place in the ox-
ide materials than is currently thought and needs further
study, both from the viewpoints of fundamental science
as well as of potential applications in oxide electronics.
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