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Topological superconductors possess a nodeless superconducting gap in the bulk and gapless zero
energy modes, known as “Majorana zero modes”, at the boundary of a finite system. In this work,
we introduce a new class of topological superconductors, which are protected by nonsymmorphic
crystalline symmetry and thus dubbed “topological nonsymmorphic crystalline superconductors”.
We construct an explicit Bogoliubov-de Gennes type of model for this superconducting phase in the
D class and show how Majorana zero modes in this model are protected by glide plane symmetry.
Furthermore, we generalize the classification of topological nonsymmorphic crystalline supercon-
ductors to the classes with time reversal symmetry, including the DIII and BDI classes, in two
dimensions. Our theory provides a guidance to search for new topological superconducting materi-
als with nonsymmorphic crystal structures.

PACS numbers: 74.78.-w, 73.43.-f, 73.20.At, 74.20.Rp

I. INTRODUCTION

The research on topological superconductors (TSCs)
has attracted intensive interests due to its gapless
boundary excitations, known as the “Majorana zero
modes”1–15, with intrinsically non-local nature and ex-
otic exchange statistics, and aims in the potential ap-
plications in low-decoherence quantum information pro-
cessing and topological quantum computations16–19. The
search for new topological superconducting phases and
materials is a substantial step for this goal.

The first classification of TSCs (and also other topo-
logical insulating phases) was achieved by Schnyder et

al.20 based on Altland-Zirnbauer symmetry class21,22

for the systems with or without particle-hole symmetry
(PHS), time reversal symmetry(TRS) and their combi-
nation, the so-called chiral symmetry. Later, it was real-
ized that when additional symmetry exists in a system,
new topological phases can be obtained, and the gap-
less edge/surface modes require the protection from ad-
ditional symmetry. In particular, it has been shown that
new topological insulating and superconducting phases
emerge when the system has mirror symmetry and are
dubbed “topological mirror insulators”23–27 and “topo-
logical mirror superconductors”25,28–30, respectively. Re-
cent work has also revealed that nonsymmorphic sym-
metry, including glide plane symmetry and screw axis
symmetry, can lead to new topological insulating phases,
as well as topological semi-metal phases31–35. In this
work, we are interested in the role of the nonsymmor-
phic crystalline symmetry, mainly glide plane symme-
try, in the classification of TSCs. We focus on the fol-
lowing three questions: (1) are there any topologically
non-trivial phases that are protected by glide plane sym-
metry? (2) What’s the difference between glide plane
symmetry and mirror symmetry in the classification of
TSCs? (3) What’s the relationship between this super-
conducting phase and other TSCs? Below, we will first
discuss the role of glide plane symmetry in the classifi-

cation of superconducting gap functions, which indicates
the possibility of topological superconductors protected
by glide plane symmetry, thus dubbed “topological non-
symmorphic crystalline superconductors (TNCSc)”. We
also construct an explicit tight-binding model in the D
class with boundary Majorana zero modes and demon-
strate that the existence of Majorana zero modes comes
from nonsymmorphic symmetry of this model. Finally,
we discuss the relationship between TNSCs and weak
TSCs and generalize TNCSc to the classes DIII and BDI
with time reversal symmetry for both spinless and spin- 1

2

fermions.

II. NONSYMMORPHIC SYMMETRY AND

SUPERCONDUCTING GAP FUNCTION

In this section, we will first consider the role of glide
plane symmetry in the classification of superconducting
gap functions. We start from a generic Bogoliubov-de
Gennes (BdG) type of Hamiltonian of superconductors
with nonsymmorphic symmetry in the normal states,
which can be written in the momentum space as

H =
1

2

∑

k

(c†
k
, cT−k

)HBdG

(

ck
c†T−k

)

with

HBdG =

(

h(k)− µ ∆(k)
∆†(k) −h∗(−k) + µ

)

, (1)

where h(k) is for single-particle Hamiltonian of nor-
mal states, µ is the chemical potential and ∆ denotes
the superconducting gap function. ck is an annihila-
tion operator with n components and we also use ck,α
(α = 1, ..., n) to denote each component with α = {s, l}
for spins s and orbitals(lattice sites) l. The supercon-
ducting gap function is related to annihilation operators
by ∆α,β(k) = V0〈ck,βc−k,α〉, where V0 is the strength of
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attractive interactions. The BdG Hamiltonian satisfies
the PHS CHBdG(k)C

−1 = −HBdG(−k) with the PHS
operator C = τ1 × IK, where τ1 is the first Pauli matrix
acting on the Nambu space, I is an n×n unit matrix and
K is complex conjugation. The PHS (or Fermi statistics)
requires the constraint ∆(k) = −∆T (−k) for the gap
function.
Next, we consider how the nonsymmorphic symmetry

yields constraint on the forms of single-particle Hamil-
tonian and superconducting gap functions in a nonsym-
morphic crystal. Here we consider the glide plane sym-
metry, represented by g = {m|τ} where m is a mirror
operator and τ is a non-primitive translation operator
along a direction within the mirror plane. For single-
particle Hamiltonian, the glide plane symmetry requires

D†
k
(g)h(k)Dk(g) = h(gk), whereDk(g) is the representa-

tion matrix for glide plane symmetry at the momentum k

and defined as gc†
k,αg

−1 =
∑

βD
∗
k,αβ(g)c

†
gk,β

36. Here we
emphasize that the representation matrix for glide plane
symmetry takes the formDk(g) = eik·τD(m), where eik·τ

is a phase factor due to a non-primitive translation and
D(m) is the projective representation of mirror operator
m. For the case with only glide plane symmetry, all the
projective representations are one dimensional (1D) and
equivalent to the conventional representations.
The symmetry of the gap function ∆(k) is deter-

mined by the Cooper pair wave functions, which trans-

form as the direct product of the representation D†
k
(g)⊗

D∗
−k

(g)36. For the case with only glide plane symmetry,
all the 1D representations can be labeled by Dk(g) =
eik·τD(m) = δeik·τ where δ = ±i for spin- 1

2
systems

and δ = ±1 for spinless systems. Thus, the gap func-

tion should transform as D†
k
(g)∆(k)D∗

−k
(g) = η∆(gk),

where η = ± applies for both the spin- 1
2
and spinless sys-

tems and depends on the nature of superconducting gap
functions36. We will show how to classify different super-
conducting gap functions based on glide plane symmetry
explicitly for a model Hamiltonian in the next section.
We emphasize that the superconducting gap func-

tion may preserve (η = +) or spontaneously break
(η = −) glide plane symmetry. Nevertheless, sim-
ilar to the case of inversion symmetry37,38 or mirror
symmetry29, one can always re-define a glide plane sym-
metry operation as Gη(k) = Diag[Dk(g), ηD

∗
−k

(g)] for
the BdG type of Hamiltonian, which satisfies the condi-
tion G−1

η (k)HBdG(k)Gη(k) = HBdG(gk). In this way,
we can regard the BdG Hamiltonian as a semiconductor
Hamiltonian with additional PHS.
Due to the existence of the glide plane symmetry

Gη(k), the eigenstates ψ(k) of the BdG Hamiltonian,
HBdGψ(k) = Eψ(k), can also be chosen to be the
eigenstate of Gη(k), Gη(k)ψ(k) = δηe

ik·τψ(k), on the
glide invariant plane (GIP) in the momentum space,
gk = k (mod P), where P is a reciprocal lattice
vector. Here δη is given by ± (±i) for the spin-
less (spin- 1

2
) systems and we call the eigenvalue δηe

ik·τ

as glide parity. Next, we look at the relationship
of glide parities between one eigenstate ψ(k) and its

FIG. 1. (Color online). Two different configurations for
G±(k). For G+(G−), the Hamiltonian symmetry class is
D(A) along k · τ = 0 lines; while along k · τ = π

2
lines, the

Hamiltonian symmetry class is A(D). The red dots denote
possible Majarona zero modes at ends of the lines.

partner ψ̃(−k) = Cψ(k) under PHS. Direct calcula-

tion gives Gη(−k)ψ̃(−k) = ηδ∗ηe
−ik·τ ψ̃(−k) by using

that CGη(k)C
−1 = ηGη(−k)36. Therefore, ψk and its

particle-hole partner ψ̃−k possess glide parity δηe
ik·τ and

ηδ∗ηe
−ik·τ , respectively. This leads to the conclusion as

depicted in Fig. 1. When the gap function satisfies
G+(k) symmetry, for the spinless (spin- 1

2
) systems, ψk

and its particle-hole partner ψ̃−k share the same glide
parity along the momentum line k · τ = 0 (k · τ = π

2
) on

the GIP, while they have opposite glide parities along the
momentum line k · τ = π

2
(k · τ = 0) on the GIP. When

the gap function satisfies G−(k) symmetry, we find an
opposite behavior for the momentum lines k · τ = 0 and
k · τ = π

2
, compared to the case of G+(k) symmetry. We

notice that the momentum line k · τ = π
2
corresponds to

the BZ boundary since 2τ is a primitive lattice vector of
the system.

Here we emphasize different roles of glide plane sym-
metry and mirror symmetry for the BdG Hamiltonian
of superconductivity. For the glide plane symmetry
g = {m|τ} and the corresponding mirror symmetry m,
the GIP and the mirror invariant plane are the same. As
shown in Ref. 29, the PHS either preserves the subspace
with a fixed mirror parity or transforms the subspace
with one mirror parity to the other. In contrast, due to
the additional phase factor from the non-primitive trans-
lation of glide plane symmetry, the behaviors of PHS act-
ing on the glide parity subspaces are always opposite for
the momentum lines k·τ = 0 and k·τ = π

2
. This prevents

us to define a topological invariant on the whole 2D GIP
since two glide parity subspaces are always “connected”
to each other. However, if we limit the glide parity sub-
space only on the momentum line k · τ = 0 or k · τ = π

2
,

the PHS will either preserve the glide parity subspace
or transform the subspace with one glide parity to the
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other, similar to the case of mirror symmetry. This im-
mediately suggests the possibility of defining topological
invariants on the 1D momentum lines k·τ = 0 or k·τ = π

2

for superconductors with glide plane symmetry. Below,
we will present explicitly a BdG type of model Hamilto-
nian with glide plane symmetry and show the existence
of Majorana zero modes at the boundary. Then we will
discuss bulk topological invariants and the corresponding
topological classification.

III. MODEL HAMILTONIAN IN THE D CLASS

Our spinless fermion model with glide plane symmetry
is based on a two dimensional (2D) rectangle lattice with
two sets of equivalent sites, as shown by A and B sites
in Fig. 2(a) and (b). The glide plane symmetry operator
is given by gz = {mz|τ = (a

2
, 0, 0)} with a reflection mz

along the z direction followed by a translation of a/2
along the x direction (a is a lattice constant), and relates
the A sites to the B sites. The normal state Hamiltonian
reads

h(k) =ǫ(k)σ0 + t3cos(
(kx − φ)a

2
)cos(

kxa

2
)σ1

+t3cos(
(kx − φ)a

2
)sin(

kxa

2
)σ2 (2)

on the basis |A,k〉 and |B,k〉, where ǫ(k) = m0 +
t1cos(kxa) + t2cos(kya), σ0 is a 2×2 unit matrix, σi
with i = 1, 2, 3 are Pauli matrices that describe
the A and B sites and φ depends on the choice of
orbitals36. Furthermore, the glide plane symmetry op-

erator on such a basis is Dk(g) = ei
kxa

2 (cos(kxa
2
)σ1 +

sin(kxa
2
)σ2). One can easily check that D2

k
(g) = eikxa

and D−1
k

(g)H(kx, ky)Dk(g) = H(kx, ky).
As discussed above, the gap functions can be classified

according to glide plane symmetry and when the glide
plane symmetry for the BdG Hamiltonian is Gη, the gap
function satisfies three conditions: ∆T (k) = −∆(−k)

(PHS); D†
k
(g)∆(k)D∗

−k
(g) = η∆(gk) (glide plane sym-

metry) and ∆(k) = ∆(k + G)36. The complete classi-
ficaiton of gap functions for this model Hamiltonian is
discussed in the Supplemental Material36. Here we only
consider two typical gap functions ∆+ = ∆0sin(kya)σ0
and ∆− = ∆0sin(kya)σ3 with the symmetries G+ and
G−, respectively. We take the BdG Hamiltonian (Eq.
1) with the single-particle Hamiltonian (Eq. 2) and the
gap function ∆± and calculate energy dispersion of this
Hamiltonian on a slab configuration. The slab is chosen
to be infinite along the x direction and finite along the
y direction, so that the glide plane symmetry gz is still
preserved. The energy dispersion is shown in Fig. 2 (c)
for ∆+ and (d) for ∆−. In both cases, one can find two
edge bands appearing in the bulk superconducting gap at
one edge. However, these two edge bands cross at zero
energy and give rise to Majorana zero modes at Γ for ∆+

(Fig. 2(c)), but at X for ∆− (Fig. 2(d)).

FIG. 2. (Color online). (a) and (b), Schematic plots of the
lattice structure from top view and side view. They are 1D
chains along y direction. There are two inequivalent atom
sites, denoted as A(Red ball) and B(Black ball), respectively.
A plane passing through the dashed green line is the glide
plane. (c) Edge modes for G+ configuration with ∆+. (d)
Edge modes for G− configuration with ∆−. (e) Brillouin
zone(Black square) and extended Brillouin zone(Red dashed
rectangle) defined by glide plane symmetry. (f) A general
dispersion for a 1D chain with glide plane symmetry.

The underlying physical reason of different positions
of Majorana zero modes for these two cases comes from
the relation between glide plane symmetry and PHS dis-
cussed in the last section. Let’s take the case of the
gap function ∆+ with G+ symmetry as an example. The

state ψk and its particle-hole partner ψ̃−k share the same
glide parity at Γ (kx = 0), and thus it is possible for them
to be the same state. Since PHS changes the energy E
of ψk to −E of ψ̃−k, the eigen energy must be zero once
they are the same state. This analysis also suggests that
two Majorana zero modes at Γ must belong to different
glide parity subspace, and thus no coupling is allowed
between them to open a gap. In contrast, the glide par-
ities for ψk and ψ̃−k are opposite at X (kx = π

a
). Thus,

these two states must be different at X and PHS can not
require their energies to be zero. This analysis can also
be applied to ∆− with G− symmetry and leads to the
opposite conclusion. Another intuitive picture to prove
non-trivial properties of 1D edge modes in Fig. 2 (c) and
(d) is to consider a general one dimensional superconduc-
tor with glide plane symmetry. As shown in Ref. 32–34,
due to the glide plane symmetry, all the bands must ap-
pear in pairs, as shown schematically by two black lines
(two bands with opposite glide parities) in Fig. 2 (f).
Furthermore, the PHS of superconductivity requires two
additional hole bands at the negative energy, as shown
by two red lines in Fig. 2 (f). Therefore, there must be
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even number of pairs of bands for a 1D nonsymmorphic
superconductor. A single pair of bands shown in Fig. 2
(c) and (d) can only exist at the 1D boundary of a 2D sys-
tem. This gives the “no-go” theorem for nonsymmorphic
superconductors39.

IV. BULK TOPOLOGICAL INVARIANTS AND

THE EXTENDED BRILLOUIN ZONE

The above analysis has shown that two momentum
lines k · τ = 0 and k · τ = π

2
play the essential role in the

classification of TSCs in nonsymmorphic crystals. We
can view the bulk Hamiltonian on k · τ = 0 or k · τ = π

2

as a 1D Hamiltonian. For the case of ∆+ with the G+

symmetry, the Hamiltonian HBdG (Eq. 1) has PHS along
the line k · τ = 0 for each glide parity subspace, thus be-
longing to the D class, while it has no PHS along the line
k · τ = π

2
for each glide parity subspace, as shown in Fig.

1 (a). Since two glide parity subspaces are decoupled, one
Z2 topological invariant of the D class can be defined on
the line k · τ = 0 in the glide parity subspace for a 1D
Hamiltonian. In contrast, for the case of ∆− with the G−

symmetry, one Z2 topological invariant can be defined on
the line k · τ = π

2
. In our example, we can re-write the

BdG Hamiltonian with the eigenstates of G± as a basis
and one can see immediately for the case with the G+

(G−) symmetry, the Hamiltonian is exactly equivalent
to the 1D Kitaev model of p-wave superconductors40 in
each glide parity subspace when kx = 0 (kx = π

a
)36.

More insights about this system can be obtained from
the view of the extended Brillouin zone (BZ)41, which has
been widely used in the field of iron pnictide supercon-
ductors. For nonsymmorphic crystals, all the eigenstates
of the Hamiltonian can be labeled by the eigenvalues of

glide operators, defined as Gηψ(k̃) = eik̃·τψ(k̃), in which

k̃ is called “pseudocrystal momentum”41 and defines the
extended BZ. For our model, the glide plane symmetry
operation only involves translation by a

2
along the x di-

rection, and thus the extended BZ for k̃x is doubled along
the x direction (k̃x ∈ [− 2π

a
, 2π

a
]), compared to the con-

ventional BZ for kx, as shown in Fig. 2 (e). Since we
have Gηψ(k) = δηe

ik·τψ(k), this suggests that the pseu-

docrystal momentum k̃ is related to momentum k by
k̃ = k when δη = + and k̃ = k+Q with Q · τ = ±π when
δη = −. Here the sign of Q · τ is determined by keeping

k̃x in the region [− 2π
a
, 2π

a
] and ky in the region [−π

a
, π
a
].

As a result, the BdG Hamiltonian can also be rewrit-
ten as Hex

BdG(k̃) = HBdG,+(k) = HBdG,+(k̃) for k̃x ∈

[−π
a
, π
a
] and Hex

BdG(k̃) = HBdG,−(k) = HBdG,−(k̃ − Q)

for k̃x ∈ [π
a
, 2π

a
] and k̃x ∈ [− 2π

a
,−π

a
] in the extended

BZ. Here HBdG,± is the BdG Hamiltonian in the sub-
space with glide parity ±eik·τ . For our model Hamil-
tonian, HBdG,± corresponds to the two by two Hamil-
tonian defined in the Supplemental Material36. For the
case of ∆+, the form of Hex

BdG is given by Hex
BdG(k̃) =

−(ǫ(k̃)−µ+t3cos(
k̃xa
2
)cos(φa

2
))τ3+t3sin(

k̃xa
2
)sin(φa

2
)τ0+

∆0sin(kya)τ1, where ǫ(k̃) = m0+t1cos(k̃xa)+t2cos(kya).
We notice that if we take the hopping parameters t1 and
t3 along the x direction to be zero, this Hamiltonian ex-
actly corresponds to the 1D Kitaev chain with one Majo-
rana zero mode at the open boundary40. With the hop-
ping along the x direction, all the 1D Kitaev chains are
coupled along the x direction, so Majorana zero modes at
the end of the chains couple to each other and expand into
a band. This corresponds to the weak TSCs42,43, which
is in analogy to weak topological insulators44. The PHS
requires E(k̃) = −E(−k̃) for the band of Majorana zero
modes. Therefore, zero energy states can only appear for
k̃x = 0 and k̃x = 2π

a
(k̃x is periodic in 4π

a
), which both

correspond to kx = 0 in the conventional BZ. In contrast,
for the case of ∆−, the gap function comes from the so-

called η pairing for two electrons with the momenta k̃ and
Q− k̃ to form a Cooper pair36,45–49 (Q = (2π

a
, 0) for our

model). In this case, the PHS requiresE(k̃) = −E(Q−k̃)
for the Majorana band, leading to the zero energy states
at k̃x = ±π

a
. This analysis based on the extended BZ is

consistent with our previous results and show explicitly
the relationship between TNSCs and weak TSCs.

V. DISCUSSION AND CONCLUSION

The above results for TNCSc can be directly gener-
alized to the systems with spin- 1

2
and with additional

time reversal (TR) symmetry. For spin- 1
2
systems, since

δη in the glide parity is given by ±i, there is an addi-
tional minus sign when considering how the glide parity
of an eigenstate of the BdG Hamiltonian transforms un-
der PHS. This leads to the consequence that the Z2 topo-
logical invariant can be defined at k · τ = π

2
(k · τ = 0)

for the systems with the G+ (G−) symmetry. According
to the standard topological classification, TR symmetry
can change the symmetry class from the D class to BDI
for spinless systems and DIII for spin- 1

2
systems. To see

how it affects the classification of TNCSc, we consider an
example of a spin- 1

2
system in the DIII class with the

G+ symmetry. If we take a state ψ(k) with glide parity
δeik·τ where δ = i, the glide parity of its PHS partner has
been shown to be δ∗e−ik·τ and the glide parity of its TR
partner is also δ∗e−ik·τ , where ΘG+(k)Θ

−1 = G+(−k)

is used and TR operator is Θ =

(

Θe 0
0 Θ†T

e

)

with

Θe = iσ0s2K and s2 the second Pauli matrix acting on
spin space. One can see that chiral symmetry Π = C×Θ
exists in each glide parity subspace for any momentum.
In addition, at the momentum line k · τ = π

2
, PHS and

TRS also exist in each glide parity subspace. There-
fore, the symmetry class is DIII for the momentum line
k · τ = π

2
and AIII for other momentum lines (k · τ 6= π

2
)

in each glide parity subspace. This leads to Z2⊕Z2 clas-
sification at k · τ = π

2
, Z classification at k · τ = 0 and

Z⊕Z classification at other momentum lines for the whole
BdG Hamiltonian20,36, in sharp contrast to the Z × Z

classification of topological mirror superconductors in the
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DIII class28. This classification leads to the existence of
edge flat bands in the DIII class for TNCSc (See Supple-
mental materials36). The spinless and spin- 1

2
TNCSc in

classes D, DIII and BDI are also studied in the Supple-
mental Material36. Nonsymmorphic symmetry is known
to exist in several classes of superconducting materi-
als, including iron pnictide superconductors50–56, BiS2-
based layered superconductors57–65, and heavy fermion
superconductors51,66, e.g. UPt3

67, UBe13
68. Our topo-

logical classification of TNCSc can be directly applied to
these systems to search for realistic topological supercon-
ducting materials.
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Note added. - After finishing this paper, we notice
a paper on arxiv69, which concerns possible topological
superconducting phases in monolayer FeSe and poten-
tial relation to nonsymmorphic symmetry. We also no-
tice another recent paper on arxiv70 about topological
classification of TNCSc based on the twisted equivariant
K-theory.
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