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We present a versatile scheme for creating topological Bogoliubov excitations in weakly interacting
bosonic systems. Our proposal relies on a background stationary field that consists of a Kagome
vortex lattice, which breaks time-reversal symmetry and induces a periodic potential for Bogoliubov
excitations. In analogy to the Haldane model, no external magnetic field or net flux is required.
We construct a generic model based on the two-dimensional (2D) nonlinear Schrödinger equation
and demonstrate the emergence of topological gaps crossed by chiral Bogoliubov edge modes. Our
scheme can be realized in a wide variety of physical systems ranging from nonlinear optical systems
to exciton-polariton condensates.
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Introduction.—The quantum Hall effect is one of the
most celebrated results of modern condensed matter
physics [1]. The robustness of the Hall conductance can
be traced back to the non-trivial topology of the underly-
ing electronic band structure [2], which ensures the exis-
tence of chiral edge states and thus eliminates backscat-
tering. Recently there was a surge of interest in the pos-
sibility to exploit such topology to create chiral bosonic
modes in driven-dissipative systems — with possible ap-
plications to one-way transport of photons [3–13], po-
laritons [14–16], excitons [16, 17], magnons [18, 19], and
phonons [20, 21]. A common thread through these seem-
ingly diverse ideas has been to induce topology by ex-
ternal manipulations of a single-particle band structure,
with interactions playing a negligible role. Exceptions
from this non-interacting paradigm are proposals that
combine strong interactions with externally induced ar-
tificial gauge fields to create non-equilibrium analogs of
bosonic fractional quantum Hall states [22–25].

Here we take a new perspective and consider (bosonic)
Bogoliubov excitations (“Bogoliubons”) where weak in-
teractions induce a non-trivial topology [26]. We demon-
strate that topological Bogoliubons naturally occur on
top of a condensate that exhibits a lattice of vortex-
antivortex pairs, with no net flux required. Interac-
tions are key to harness the time-reversal (TR) symmetry
breaking induced by the condensate vortices. From the
viewpoint of Bogoliubov excitations, they generate non-
trivial “hopping” phases which lead to an analog of the
Haldane lattice model [27]. The corresponding lattice
can be defined by a periodic potential introduced either
externally or via interactions with the condensate.

Although our scheme can be applied to any system de-
scribed by a 2D nonlinear Schrödinger equation (Gross-
Pitaevskii equation or analog thereof), our analysis fo-
cuses on systems of weakly interacting bosons that have
a light component, where the required vortex lattice can
readily be obtained from the interference of several coher-
ent optical fields (see Fig. 1). In this setting, the phase-
imprinting mechanism allowing for non-trivial topology is

FIG. 1. Top: Optical pumping scheme allowing to create a
suitable condensate for topological Bogoliubons, with incident
field composed of six equal-frequency plane-wave components
with wave vectors kn (depicted by arrows) and phases chosen
as ϕn = 0 except for ϕ4 = 2π/3 and ϕ6 = −2π/3. Bottom:
Intensity (left) and phase (right) pattern of the resulting field.
Intensity maxima form a Kagome structure (white lines) with
vortex-antivortex pairs located such that each hexagonal pla-
quette is threaded by a flux 2Φ0 = 4π, with smaller triangular
plaquettes threaded by −Φ0. Although fluxes cancel out over
the whole system, a well-defined chirality emerges, defined by
the sign of Φ0. Bogoliubov excitations of the condensate ex-
perience non-trivial fluxes due to interactions, leading to TR
symmetry breaking and ultimately to topological states.

analogous to that proposed a few years ago in the context
of optomechanical systems [28]. The same mechanism
was recently applied to create topological phonons using
photons that remain trivial [20]. Here we demonstrate
that vortex lattices can be exploited in a broader variety
of systems where, in contrast to previous works, topology
does not emerge from the coupling to a different bosonic
species, but is intrinsically granted by interactions.

Our analysis starts with the 2D nonlinear Schrödinger
equation commonly used to describe weakly nonlinear
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dispersive physical systems:

i∂tψ(x, t) =
(
ωd(−i∇) + α|ψ(x, t)|2 + V (x)

)
ψ(x, t),

(1)
where ψ(x, t) is a complex field (or “wavefunction”) de-
scribing the amplitude and phase of a coherent field, and
ωd(−i∇) is a function of momentum (−i∇ ≡ k) which
describes the energy dispersion of the system. Nonlinear-
ities are characterized by a parameter α which may be
positive (repulsive/self-defocusing interactions) or nega-
tive (attractive/self-focusing interactions). We also allow
for a spatially dependent potential V (x) although, as we
will show, this is only essential when α > 0. Equation (1)
is applicable to a wide variety of physical systems ranging
from light propagation through Kerr nonlinear media [29]
to exciton-polariton systems [30] and Bose-Einstein con-
densates [31]. Below we present a generic mechanism for
creating topological Bogoliubov excitations when the un-
derlying bosonic fields have a light component. We then
discuss specific implementations.

Theoretical scheme.—The first and principal ingredi-
ent of our scheme consists of a stationary field ψ0(x, t)
which exhibits vortex-antivortex pairs and intensity max-
ima that form a Kagome lattice pattern, as illustrated
in Fig. 1. In bosonic systems with a photonic compo-
nent, such a Kagome “vortex lattice” can be directly
imprinted onto the field ψ(x, t) using an optical coher-
ent field (or “pump”) composed of six plane-wave com-
ponents, as depicted in Fig. 1 (see also Supplementary
Material [32]). Denoting by Ψ̂L(x) the field operator as-
sociated with the light component, such coherent pump-
ing can be described by a Hamiltonian term of the form∫

dxf(x)e−iω0tΨ̂†L(x) + h.c., where f(x) and ω0 respec-
tively denote the pump spatial profile and frequency. In
the mean-field limit where Eq. (1) applies, this results in
an additional pumping term proportional to f(x)e−iω0t

(see, e.g., Ref. [33]). The required pumping field is read-
ily obtainable with a spatial light modulator [34] or by
passing light through a mask [35].

Remarkably, the vortex-antivortex pairs found in the
above Kagome vortex lattice are located in such a way
that each elementary hexagonal plaquette is threaded by
a flux 2Φ0 = 4π (i.e., contains 2 vortices), while smaller
triangular plaquettes are threaded by −Φ0 (i.e., contain
a single antivortex) [see Fig. 1]. Since the incident pump-
ing field has no net orbital angular momentum to transfer
to the internal field, vortices and antivortices necessarily
come in pairs and fluxes cancel out over the whole sys-
tem. Nevertheless, the field ψ0(x, t) breaks time-reversal
symmetry, as revealed by the “chirality” defined by the
sign of Φ0 (set by the phases of the pumping field [32] and
invariant under rotations or translations in the plane that
leave the Kagome lattice of intensities unchanged [36]).

The fact that ψ0(x, t) exhibits a staggered flux pattern
with no net flux but a well-defined chirality is very rem-
iniscent of Haldane’s seminal proposal for quantum Hall

physics with no external magnetic field [27]. Here, how-
ever, the phase accumulated by an excitation around any
plaquette of the Kagome lattice (or around any loop in
the plane) seems to be an integer multiple of 2π (equiva-
lent to no phase at all), which would naively indicate that
TR symmetry is preserved and topological states are out
of reach. Remarkably, below we demonstrate that Bogoli-
ubov excitations, through interactions, do experience the
TR symmetry breaking of the pumping field. This will
allow us to access a non-equilibrium interaction-induced
analog of Haldane’s model.

To derive the spectrum of (Bogoliubov) excitations on
top of ψ0(x, t), we perform a linearization of Eq. (1).
We define the slowly-varying field φ(x, t) ≡ ψ(x, t)eiω0t,
where ω0 is the pump frequency, and consider weak per-
turbations (or “fluctuations”) of the form [37]

φ(x, t) = φ0(x) + u(x)e−iωt + v∗(x)eiω
∗t, (2)

where φ0(x) denotes the rotating-frame counterpart of
the stationary field ψ0(x, t) ≡ φ0(x)e−iω0t, u(x) and v(x)
are (in general complex) functions determining the spa-
tial form of the fluctuations, and ω is the frequency of the
perturbations, which is kept complex in order to capture
potential instabilities [37]. Plugging the above expres-
sion into Eq. (1) and neglecting second-order terms in
u(x) and v(x) yields the Bogoliubov equation(

ω′(x) αφ0(x)2

−αφ∗0(x)2 −ω′(x)

)(
u(x)
v(x)

)
= ω

(
u(x)
v(x)

)
, (3)

where ω′(x) ≡ ωd(−i∇)− ω0 + 2α|φ0(x)|2 + V (x). This
shows that Bogoliubov excitations experience both the
intensity and phase pattern of the underlying field φ0(x).

In the case of repulsive interactions (α > 0), the ef-
fective potential term 2α|φ0(x)|2 tends to localize the
excitations at the vortex/antivortex points of the lattice
(see Fig. 1). To allow for topological states, however, it is
crucial for excitations to remain localized away from vor-
tices/antivortices so as to pick up a phase when hopping
around them. This is achieved, e.g., by introducing an
external potential V (x) with minima that coincide with
the maxima of |φ0(x)|2. In the case of attractive inter-
actions (α < 0), the effective potential 2α|φ0(x)|2 auto-
matically localizes the excitations at the desired points,
thus obviating the need for an external potential.

According to Eqs. (2) and (3), fluctuations described
by u(x) and v(x) can be viewed as “particle-hole” analogs
of each other: u(x) as a “particle” excitation with disper-
sion ω′(x), and v(x) as a “hole” excitation with opposite
dispersion −ω′(x). The pump frequency ω0 sets the rel-
ative energy between the two. Interestingly, the minus
sign present on the off-diagonal of Eq. (3) (a hallmark
of bosonic Bogoliubov excitations [31]) makes the cor-
responding matrix non-Hermitian. The stability of the
system is then assessed by the imaginary part of ω: if
Im(ω) > 0, fluctuations grow exponentially and φ0(x) is
an unstable solution of Eq. (1).
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The emergence of topological Bogoliubov excitations
in our scheme relies on four essential ingredients: (i) a
well-defined lattice structure (controlled by the effective
potential 2α|φ0(x)|2 + V (x)); (ii) a non-trivial flux pat-
tern in the corresponding unit cell, such that elementary
excitations pick up a non-zero phase when hopping some
closed loops on the lattice; and (iii) a well-defined chi-
rality, which arises from time-reversal symmetry break-
ing. Finally, (iv) interactions are crucially required: as
we demonstrate below, the non-zero phase picked up by
excitations around loops on the lattice only becomes non-
trivial in the presence of the off-diagonal coupling in
Eq. (3). Therefore, interactions are necessary to harness
the TR symmetry breaking encoded in the condensate.

Tight-binding analysis.—To unveil the generic mech-
anism leading to topological states, we now strip our
model from topologically irrelevant details and consider
the tight-binding limit of Eq. (3), which captures the low-
energy behavior obtained in a deep potential 2α|φ0(x)|2+
V (x)−ω0 whose minima form a Kagome lattice. We de-
note the corresponding on-site energy by Ω(−Ω) in the
sector u(v), and assume that excitations “hop” with am-
plitude t(−t) between nearest-neighboring sites. We then
model the off-diagonal terms in Eq. (3) (connecting u and
v) by couplings of the form ±ge±iϕj on each site j, choos-
ing phases ϕj so as to reproduce the main features of the
phase pattern of φ0(x)2 (so that each triangular unit cell
of the Kagome lattice carries a single vortex; see Fig. 2b).

The mechanism giving rise to TR symmetry breaking
(and, in turn, to topological states) appears most clearly
in the limit 2Ω� g where the sectors u and v of Eq. (3)
are coupled off-resonantly and weakly. In that case, vir-
tual transitions between the latter lead to a renormaliza-
tion of the hopping amplitude and phase. In a pertur-
bative picture [38], a u-like Bogoliubov excitation can be
turned into a v-like excitation, hop to a neighboring site,
and transform back into a u-like excitation (see Fig. 2c).
Since the u-v coupling involves a site-dependent phase,
excitations pick up an overall phase e±i(ϕj−ϕi) (“+(−)”
if u(v)-like) [39], which lead to an effective hopping

teff = ±t
(

1 +
( g

2Ω

)2

e±2πi/3

)
(4)

in counter-clockwise direction around the triangular unit
cell. The corresponding flux per triangular plaquette is
given by Φ = ±3 arctan(

√
3g2/(8Ω2 − g2)) 6= 0.

Equation (4) illustrates one of the key aspects of our
proposal: the fact that interactions generically lead to a
non-trivial flux Φ (not a multiple of π), which extends
the TR symmetry breaking of the condensate to Bogoli-
ubov excitations. In the above off-resonant tight-binding
regime, u- and v-like excitations are both individually de-
scribed by an effective Kagome lattice model with stag-
gered flux pattern as depicted in Fig. 1. If the flux Φ was
trivial (for g = 0), the positive or negative part of the

FIG. 2. (a) Bogoliubov spectrum in the off-resonant tight-
binding limit (in strip geometry): the positive part of the
spectrum exhibits three bands with topological gaps crossed
by pairs of counter-propagating chiral edge states, reminis-
cent of a Kagome lattice model with staggered fluxes [40].
The red (blue) coloring indicates the degree of localization of
states at the lower (upper) edge (as measured by their total in-
tensity on the lower (upper) half of the system). Parameters
were chosen as Ω/t = 6 and g/Ω = 2/3, in a strip geome-
try with periodic boundary conditions in the x-direction (see
Supplemental Material [32] for details). (b) Unit cell used in
the tight-binding model, with phases for the on-site coupling
chosen as (0, 2π/3,−2π/3) in the basis (A,B,C). (c) TR
symmetry-breaking mechanism: the off-resonant coupling be-
tween u- and v-like excitations [see Eq. (3)] leads to virtual
transitions which renormalize the hopping term t.

Bogoliubov spectrum would exhibit three bands touch-
ing at high-symmetry points of the Brillouin zone (Dirac
cones at K and K’, and a quadratic band touching at Γ).
The non-trivial flux Φ induced by interactions gaps out
these degeneracies and leads to topological bands with
non-zero Chern number [40] (see Fig. 2). To second or-
der in g, the size of the topological gaps is given by [32]

∆K =
3tg2

4(Ω− t)(Ω + t/2)
, ∆Γ =

3tg2

2(Ω− t)(Ω + 2t)
. (5)

The Bogoliubov spectrum is stable in this off-resonant
regime, since it only exhibits real eigenvalues.
Exciton-polariton systems.—To realize our scheme, one

can consider exciton-polaritons in semiconductor micro-
cavities, which are renowned for their strong nonlinear-
ities [30]. The Bogoliubov spectrum of polariton con-
densates has been observed in photoluminescence [41, 42]
and four-wave mixing [43] experiments. A suitable ampli-
tude and phase pattern can be imposed by optical means,
as illustrated in Fig. 1 [44].

Since polariton-polariton interactions are repulsive, an
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external (Kagome) periodic potential V (x) is required
(see discussion below Eq. (1)). Such potential can be real-
ized, e.g., by depositing thin metal films on the structure
surface [45, 46] (as illustrated in Fig. 3b), by applying
surface acoustic waves [47], or by etching micropillar ar-
rays [48]. Alternatively, one can engineer the desired po-
tential optically [49] by taking advantage of the fact that
polaritons have two possible circular polarizations (spin
projections along the structure growth axis), and that
polaritons with opposite spins typically interact attrac-
tively [50, 51]. Specifically, one can consider Bogoliubov
excitations with spin σ = ±1 and use a component with
spin −σ to induce the desired potential. In practice, this
can be achieved by pumping both components simulta-
neously with an elliptically polarized incident field.

Here we follow this all-optical approach and consider
Bogoliubov excitations with spin σ on top of a polariton
condensate with spin components φ0,σ(x) and φ0,−σ(x)
[defined as in Eq. (2)]. The relevant Bogoliubov equa-
tion is then given by Eq. (3) with α ≡ α1 and V (x) =
α2|φ0,−σ(x)|2, where α1 and α2 denote the strength of in-
teractions between polaritons with parallel and opposite
spins, respectively [32]. To provide a reliable estimate of
the size of the topological gaps achievable in practice, we
compute the stationary fields φ0,±σ(x) and the spectrum
of Bogoliubov excitations with spin σ in an exact and
self-consistent way, without relying on any tight-binding
approximation (see Supplemental Material [32]). Our re-
sults are illustrated in Fig. 3a.

In accordance with our tight-binding analysis, the pos-
itive (u-like) part of the low-energy Bogoliubov spectrum
exhibits three Kagome-like bands with a clear topological
gap between the lowest two bands [52]. With conserva-
tive parameters from existing experiments [53], the topo-
logical gap reaches about 0.06meV, which exceeds typical
polariton linewidths of the order of µeV [54]. Dissipation,
which is an important feature of exciton-polaritons, can
be treated by introducing a decay term into the u and v
dispersions: ±ωd(−i∇) → ±ωd(−i∇) − i/(2τ), where τ
is the polariton lifetime [37].

In practice, topological Bogoliubov excitations can be
created by illuminating the system at an edge with an ad-
ditional weak coherent field whose frequency lies within
the topological gap. The chiral propagation of excitations
then provides a smoking-gun signature of the topological
nature of the system. We present numerical simulations
of such an experiment in the Supplemental Material [32].

Discussion.—Other bosonic systems would be suitable
to realize our proposal. The nonlinear Schrödinger equa-
tion (1) provides, in particular, a direct representation of
Maxwell’s equations for light propagating through a non-
linear medium with polarization transverse to the propa-
gation direction z (where t→ z in Eq. (1) and x = (x, y)
defines the lateral coordinates) [29]. In that case the po-
tential V (x) can also be induced optically. In particular,
in nonlinear media with a strong electro-optic anisotropy,

FIG. 3. (a) Bogoliubov spectrum of exciton-polaritons (in
strip geometry), exhibiting qualitatively similar low-energy
features as the tight-binding spectrum of Fig. 2a. Differences
stem from longer-range hopping terms and weak repulsive in-
teractions within the condensate which are neglected in tight-
binding approximation (e.g., the upper topological gap van-
ishes because of the modified dispersion). Although u- and v-
like excitations [see Eq. (3)] overlap in energy (around ω = 0),
all eigenvalues are real, indicating that the system is stable.
Parameters were taken from Ref. [53], giving a topological gap
of about 0.06meV [32]. (b) Practical realization in semicon-
ductor microcavities composed of distributed Bragg reflectors
(DBRs) [45], with periodic potential V (x) induced, e.g., via
metal surface patterning (other mechanisms are discussed in
the text). (c) Realization of the effective potential V (x) in a
nonlinear optical system, using coupled waveguides [55].

polarizations can be chosen such that a suitably polarized
incident field experiences negligible self-nonlinearity and
induces a stable potential V (x) for optical fields with
opposite (orthogonal) polarization, which experience a
strong nonlinearity [56–58]. Alternatively, V (x) can be
realized by refractive-index modulation, e.g., in arrays
of coupled waveguides [59, 60] as depicted in Fig. 3c. In
this context, nonlinearities |αφ0|2 > 0.2cm−1 with signifi-
cantly weaker losses < 0.04cm−1 have been demonstrated
for fused silica waveguides [61].

Equation (1) is also relevant for the description of cold
atom condensates. Despite available methods for optical
flux lattices [62, 63] and optical phase imprinting [64–66],
realizing a Kagome vortex lattice could be more challeng-
ing in this context. An alternative would be to consider
Abrikosov-type lattices of identical vortices with winding
number + or −1, which can be realized, e.g., by stirring
an atomic condensate with rotating laser beams [67]. Al-
though this would be suitable for generating topological
Bogoliubov modes, a net transfer of orbital angular mo-
mentum would occur in that case, unlike in our scheme
(see also Ref. [21]).
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Conclusion.—We have proposed a generic scheme to
create topological Bogoliubov excitations in systems de-
scribed by a 2D nonlinear Schrödinger equation — a uni-
versal equation governing systems ranging from exciton-
polariton condensates to nonlinear optical media. The
key to our proposal is a background mean field exhibit-
ing vortex-antivortex pairs and a Kagome intensity pat-
tern, which can typically be generated by optical means.
By virtue of weak interactions, Bogoliubov excitations
propagating on top of this condensate acquire non-trivial
phases which break TR symmetry and grant access to
topological states. The resulting topological Bogoliubons
manifest as robust chiral edge states, as we have demon-
strated using both tight-binding and full wave-expansion
methods. Our scheme does not require any external mag-
netic field or net transfer of orbital angular momentum,
which allows to generate chiral edge modes while keep-
ing spin/polarization degrees of freedoms degenerate and
simultaneously accessible.
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