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Skyrmions are topological spin textures of interest for fundamental science and applications.
Previous theoretical studies have usually focused on chiral magnets with broken bulk inversion
symmetry, with skyrmions stabilized by easy-axis anisotropy. We investigate here systems that
break surface-inversion (mirror symmetry) in addition to bulk inversion. This leads to two distinct
Dzyaloshinskii-Moriya (DM) terms with strengths D⊥, arising from Rashba spin-orbit coupling
(SOC), and D‖ from Dresselhaus SOC. We show that skyrmions become progressively more stable
with increasing D⊥/D‖ and extend into the regime of easy-plane anisotropy. We find that the
spin texture and topological charge density of skyrmions develops nontrivial spatial structure with
quantized topological charge in a unit cell given by a Chern number. Our results give a design
principle for tuning Rashba SOC and anisotropy to stabilize skyrmions in thin films, surfaces,
interfaces and bulk magnetic materials that break mirror symmetry.

Recently there has been a surge of interest in skyrmions
in chiral magnetic materials1–3, ranging from fundamen-
tal science to potential device applications. A skyrmion
is a spin texture characterized by a topological invariant
that gives rise to the topological Hall effect4,5 and may
also have implications for non-Fermi liquid behavior6.
The ability to write and erase individual skyrmions7,
along with their topological stability, small size, and low
depinning current density8, paves the way for potential
information storage and processing applications.

Experiments have focussed primarily on non-
centrosymmetric crystals with broken bulk inversion
symmetry: metals like MnSi, FeGe and insulators like
Cu2OSeO3. In these materials, the skyrmion crystal
(SkX) phase is stable only in a very limited region of the
magnetic field (H), temperature (T ) phase diagram9–13.
On the other hand, the skyrmion phase is found to be
stable over a much wider region of (T,H) in thin films
of the same materials10,14–16, even extending down to
T =0 in some cases14,16.

A key question that we address is this paper is: How
can we enhance the domain of stability of skyrmion spin
textures? We are motivated in part by the thin film ex-
periments, and also by the possibility of chiral magnetism
in new 2D systems like oxide interfaces17–19. We show
how the SkX becomes progressively more stable over ever
larger regions in parameter space of field H and magnetic
anisotropy A, as the effects of broken surface inversion
dominate over those of broken bulk inversion.

We begin by summarizing our main results, which re-
quires us to introduce some terminology. We focus on
magnets in which spin textures arise from the inter-
play between ferromagnetic exchange J and the chiral
Dzyaloshinskii-Moriya (DM) interaction Dij · (Si×Sj).
Spin-orbit coupling (SOC) determines the magnitude of
the D vector, while symmetry dictates its direction. Bro-
ken bulk inversion symmetry (r→−r) leads to the Dres-
selhaus DM term with Dij = D‖ r̂ij , where r̂ij = rij/|rij |
with rij = (ri−rj). On the other hand, broken sur-
face inversion or mirror symmetry (z→−z) leads to the

Rashba DM term with Dij = D⊥(ẑ × r̂ij). In the limit

of weak SOC, D/J � 1, where D = (D2
‖ + D2

⊥)1/2, the

length scale of spin textures is (J/D)a � a (the micro-
scopic lattice spacing) and we can work with a continuum
“Ginzburg-Landau” field theory20.

We show in Fig. 1 the evolution of the T =0 phase di-
agram going from the pure Dresselhaus limit to the pure
Rashba limit. Each phase diagram is plotted as a func-
tion of the (dimensionless) field HJ/D2 and anisotropy
AJ/D2. Here A > 0 (A < 0) corresponds to easy-plane
(easy-axis) anisotropy. Our main results are:

(1) As the Rashba D⊥ is increased relative to the Dres-
selhaus D‖, the spiral and skyrmion phases become in-
creasingly more stable relative to the vertical cone phase,
and penetrate into the easy-plane anisotropy side of the
phase diagram.

(2) With increasing D⊥/D‖, the textures change con-
tinuously from a Bloch-like spiral to a Neel-like spiral.
Correspondingly, the skyrmion helicity evolves with a
vortex-like structure in the Dresselhaus limit to a hedge-
hog in the Rashba limit, which is shown to impact the
ferrotoroidic moment.

(3) In the pure Rashba limit, we find the largest do-
main of stability for the hexagonal skyrmion crystal. In
addition we also find a small sliver of stability for a square
skyrmion lattice, together with an elliptic cone phase,
distinct from the well-known vertical cone phase in the
Dresselhaus limit.

(4) We see in Fig. 2 that in the Rashba limit the spin
texture of the skyrmion and their topological charge den-
sity χ(r) begins to show non-trivial spatial variations as
one changes anisotropy, but the total topological charge
Nsk =

∫
d2r χ(r) in each unit cell remains quantized,

even when χ(r) seems to “fractionalize” with positive
and negative contributions within a unit cell.

(5) For H > 2A, one can have isolated skyrmions in
a ferromagnetic (FM) background, and their topological
charge Nsk is quantized, as usual, by the homotopy group
π2(S2) = Z. For H < 2A, we find that skyrmions cannot
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FIG. 1. Phase diagrams as a function of AJ/D2 and HJ/D2 for four values of D⊥/D‖. Easy-axis anisotropy corresponds to
A < 0 while easy-plane to A > 0. The cone, elliptic cone, and tilted FM phases are shown schematically, with the Q-vector
shown in red and the texture traced out by spins shown in black. The color bar on the right indicates mz for the elliptic cone
and tilted FM phases in the D‖ = 0 panel. Insets: Unit cell in the hexagonal (Hex) skyrmion crystal (SkX) phase with white
arrows indicating the projection of magnetization on the x-y plane. The colors indicates the magnitude and direction of the
spin projection following the convention of ref. 3 indicated in the color wheel. Thick lines denote continuous transitions, while
thin lines indicate first-order phase transitions.

exist as isolated objects, and Nsk must now be defined by
the Z Chern number classifying maps from the SkX unit
cell, a two-torus T 2 to S2, the unit sphere in spin-space,
a definition that works for all values of H/2A.

Free energy: We consider a continuum (free) energy
functional F [m] =

∫
d3rF(m) with

F = FJ + FDM + FA −Hmz (1)

whose form is dictated by symmetry. The isotropic ex-
change term FJ = (J/2)

∑
α(∇mα)2 (α = x, y, z) con-

trols the gradient energy through stiffness J . The DM
contribution in the continuum

FDM = D cosβ m·(∇×m)+D sinβ m·[(ẑ×∇)×m] (2)

is the sum of the two terms discussed above. The
D‖ = D cosβ term arises from Dresselhaus SOC in the
absence of bulk inversion and D⊥ = D sinβ from Rashba
SOC with broken surface inversion. The anisotropy term
FA = Am2

z can be either easy-axis (A < 0) or easy-plane
(A > 0). Several different mechanisms contribute to A,
including single-ion and dipolar shape anisotropies. In
addition, Rashba SOC naturally leads to an easy-plane,
compass anisotropy A⊥ ' D2

⊥/2J , which is energetically
comparable to the DM term17,18,21,22. We treat A as a
free, phenomenological parameter.

We focus on T = 0 where the local magnetization is
constrained to have a fixed length m2(r) = 1, and it
should be hardest to stabilize skyrmions; once |m(r)| can
become smaller due to thermal fluctuations, skyrmions
should be easier to stabilize. It is convenient to scale all
distances by the natural length scale J/D (setting the mi-
croscopic a = 1) and scale the energy F by D2/J . All our

results will be presented in terms the three dimension-
less parameters that describe F , namely field HJ/D2,
anisotropy AJ/D2, and tanβ = D⊥/D‖.

Our results are applicable for several distinct geome-
tries. We implicitly apply periodic boundary conditions
valid for (i) bulk materials and (ii) thin-films23 with
thickness� (J/D)a. The results of the right-most panel
of Fig. 1 are also applicable to (iii) monolayer magnets.
In films, we expect the Rashba D⊥ and anisotropy A to
depend on thickness and choice of substrate. While we
expect Rashba SOC to be larger in thinner films, it can
be substantial even in thick films due to strain gradi-
ents24. Quantitative estimates of the thickness and sub-
strate dependence of these parameters require microsopic
calculations beyond the scope of this paper.
Phase Diagram: In Fig. 1, we show the evolution

of the (A,H) phase diagram as a function of tanβ =
D⊥/D‖, increasing from left to right. These results were
obtained by minimizing the energy functional F subject
to m2(r) = 1. The energies of the fully polarized ferro-
magnet (FM), tilted FM, and vertical cone states can
be determined analytically, while the energies for the
spiral, the skyrmion crystals and the elliptic cone state
were found by a numerical, conjugate gradient minimiza-
tion approach. In all cases, the results were checked by
semi-analytical variational calculations. Details of the
methodology are described in the Supplementary Mate-
rials; here we focus on the results.

We begin with well known13 results in the Dressel-
haus limit (left panel of Fig. 1), where the hexagonal
SkX and spiral phases are stable only in a small region
with easy-axis anisotropy (A≤ 0). The A > 0 region is
dominated by the vertical cone phase, where mcone(z) =
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FIG. 2. Evolution of the spin texture m (top row) and the topological charge density χ (bottom row) for four values of AJ/D2

at fixed HJ/D2 = 0.7 in the Rashba limit (D‖ = 0). White arrows indicate the projection of m into the x-y plane. The colors
also indicates the magnitude and direction of the spin projection following the convention of ref. 3 indicated in the color wheel.
The development of nontrivial spatial variation in χ(r) is discussed in the text. Note, however, that in each case integral over
a single unit cell

∫
d2rχ(r) = −1.

(cosϕ(z) sin θ0, sinϕ(z) sin θ0, cos θ0) with ϕ(z) = D‖z/J

and cos θ0 = H/[2A+D2
‖/J ]. The vertical cone-polarized

FM phase boundary is given by H = 2A+D2
‖/J .

We note a change of variables that greatly simplifies
the analysis of skyrmion crystal and spiral phases. This
transformation is useful when m = m(x, y) has no z-
dependence (along the field). Using a rotation Rz(−β)
by an angle −β about the z-axis, we define n(x, y) =
Rz(−β)m(x, y). It is then easy to show that (2) simplifies
to a pure Dresselhaus form FDM = Dn · (∇ × n), while
the other terms in (1) are invariant under m→n.

We choose, without loss of generality, x̂ as the propaga-
tion direction for the spiral of period L, so that nsp(x) =
(0, sin θ(x), cos θ(x)) with nsp(x + L) = nsp(x). (Note
that this is not in general a single-q spiral). We mini-
mize F to find the optimal L and optimal function θ(x),
which is a 1D minimization problem. For the SkX we pick
a unit cell (hexagonal or square) and find its optimal size
and optimal texture n = (cosϕ sin θ, sinϕ sin θ, cos θ),
by solving a 2D minimization problem. We determine
ϕ(x, y) and θ(x, y) within a unit cell subject to periodic
boundary conditions.

With increasing D⊥/D‖, we see that the SkX and spi-
ral phases become more stable relative to the vertical
cone, and their region of stability extends into the easy-
plane regime. To understand this, consider increasing the
Rashba D⊥ keeping D‖ fixed. The energy of cone m(z)
depends only on D‖, and is unchanged as D⊥ increases.
In contrast, the SkX and spiral, with m = m(x, y), uti-
lize the full D = (D2

‖ +D2
⊥)1/2 to lower their energy.

Helicity and Ferrotoroidic Moment: We find
that the spin textures smoothly evolve as a function of

D⊥/D‖. The spiral continuously changes from a Bloch-
like helix in the Dresselhaus limit to a Neel-like cycloid in
the Rashba limit. In between, the spins tumble around
an axis at an angle β = tan−1(D⊥/D‖) to the q-vector of
the spiral. Similarly the skyrmions smoothly evolve from
vortex-like textures in the Dresselhaus limit to hedgehogs
in the Rashba limit; see Fig. 1. In fact, γ = π/2 − β is
the “helicity”3 of the skyrmions.

Our results imply that D⊥/D‖ controls the helicity γ,
where Rashba D⊥ could be tunable by electric field at an
interface or by strain in a thin film. The ability to tune γ
could be important in several ways. There is a recent pro-
posal to use helicity to manipulate the Josephson effect
in a superconductor/magnetic-skyrmion/superconductor
junctions25. Another interesting phenomenon that de-
pends on the helicity of skyrmions26 is the “ferrotoroidic
moment” t = (1/2)

∫
d3r[r ×m(r)]27,28. We will show

elsewhere that t = t0 sin γ ẑ for the SkX.

Rashba limit: Next we turn to the D‖ = 0 results
in the right panel of Fig. 1, where one has the maximum
regime of the stability for the spiral and the hexagonal
SkX, in addition to a small region with a square lattice
SkX (first predicted in ref. 29), an elliptic cone phase
and a tilted FM. This phase diagram improves upon all
previous works18,19,29; see Supplementary Material.

The tilted FM, which spontaneously breaks the U(1)
symmetry of F (in a field), has mz = H/2A and exists in
the regime 2A > H and AJ/D2

⊥ > 2 for D‖ = 0. We also
see a new phase where the spins trace out a cone with
an elliptic cross-section. The elliptic cone axis makes an
angle θ0 = cos−1(H/2A) with ẑ, and the spatial variation
of m is along a q-vector in the x-y plane.
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In Fig. 1, thick lines denote continuous while thin lines
denote first-order transitions; for details see Supplemen-
tary Materials. (A = 2, H = 4)J/D2 is a Lifshitz point30

at which a state without broken symmetry (polarized
FM) meets a broken symmetry (tilted FM) and a mod-
ulated (elliptic cone) phase.

Let us next consider deviations from pure Rashba limit
to see how the extreme right panel of Fig. 1 evolves into
the D‖ 6= 0 phase diagrams. As soon as one breaks bulk
inversion, an infinitesimalD‖ leads to the tilted FM being
overwhelmed by the vertical cone, which gains Dressel-
haus DM energy. On the other hand, the elliptic and
vertical cone states compete for D‖ 6= 0 and for some
small, but finite, D‖ the vertical cone wins.

Spin textures and topological charge: There are
interesting differences between the skyrmions for H < 2A
and H > 2A (H = 2A is marked as a dashed line in the
phase diagrams of Fig. 1). For SkX with H > 2A, the
focus of all the past work, the spins at the boundary
of the unit cell (u.c.) are all up, parallel to the field.
Hence one can make an isolated skyrmion31 in a fully
polarized FM background; see Fig. 2 left-most panels.
The identification of the point at infinity in real space for
an isolated skyrmion lets us define a map from S2 → S2

and use the homotopy group π2(S2) = Z to characterize
the topological charge or skyrmion number Nsk.

In contrast, when H < 2A, the spins at the bound-
ary are not all pointing up and the only constraint is
periodic boundary conditions on the u.c.; see Fig. 2.
There is no way to isolate this spin texture in a FM
background. We must now consider the map r → m(r)
from the u.c., which is a 2-torus T 2 to S2 in spin space
(such maps are well known when T 2 represents a Bril-
louin zone in k-space, but the mathematics is identical).
This map is characterized by an integer Chern number
Nsk =

∫
u.c.

d2rχ(r), where χ(r) = m · (∂xm × ∂ym)/4π
is the topological charge density. In fact, one can use this
definition of Nsk for all values of H/2A.

From the A = 0 panel on the left side of Fig. 2, we
see that χ(r) is concentrated near the center of the u.c.
and it is always of the same sign, as it is for all H > 2A.
With increasing A, once H < 2A, we see that χ(r) begins
to spread out and even changes sign within the u.c. In
the square SkX phase χ is again concentrated, but this
time in regions near the center and the edges of each u.c.
along with regions of opposite sign at the u.c. corners.
For H <∼ 2A, the spin textures in the SkX phases are es-
sentially composed of vortices and anti-vortices. Never-
theless, the Chern number argument shows that the total
topological charge in each u.c. is an integer; Nsk = −1

in all the panels of Fig. 2.
Discussion: Previous theories on understanding

the increased stability on skyrmions in thin films
of non-centrosymmetric materials10,14–16 focussed pri-
marily on the changes in uniaxial magnetocrystalline
anisotropy13,32,33 with thickness, or on finite-size ef-
fects34,35. In fact, the latter can give rise to spin-textures
more complicated than skyrmion crystals, with variations
in all three directions. However, none of these theories
take into account the role of broken surface inversion and
Rashba SOC. As we have shown here, a non-zero Rashba
D⊥ leads to a greatly enhanced stability of the SkX
phase, particularly for easy-plane anisotropy, while at the
same time giving a handle on the helicity of skyrmions
with interesting internal structure.

We note that the phase diagrams in Fig. 1 apply to
all systems with broken mirror symmetry, with or with-
out bulk inversion. Mirror symmetry can be broken by
certain crystal structures in bulk materials, by strain24

in thin films, or by electric fields at interfaces. For
D‖ = 0 the vertical cone phase, which dominates much
of the phase diagram for D‖ 6= 0, simply does not ex-
ist. After our paper was written, we became aware of
the very recent observation36 of hedgehog-like skyrmions
in GaV4S8, a polar magnetic semiconductor with broken
mirror symmetry, dominated by Rashba SOC. Skyrmions
are, however, stabilized in this material only at finite tem-
perature due to the large easy-axis anisotropy.

In conclusion, we have made a comprehensive study
of the T = 0 phases of chiral magnets with two dis-
tinct DM terms. D⊥, arises from Rashba SOC and bro-
ken surface inversion, while D‖ comes from Dresselhaus
SOC and broken bulk inversion symmetry. We predict
that increasing the Rashba SOC and tuning magnetic
anisotropy towards the easy-plane side will greatly help
stabilize skyrmion phases. Our results are very general,
based on a continuum “Ginzburg-Landau” energy func-
tional whose form is dictated by symmetry. We hope
that it will motivate ab-initio density functional theory
calculations of the relevant phenomenological parameters
entering our theory and experimental investigations of
skyrmions in Rashba systems.
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36 I. Kézsmárki, S. Bordács, P. Milde, E. Neuber, L. M.
Eng, J. S. White, H. M. Rønnow, C. D. Dewhurst,
M. Mochizuki, K. Yanai, H. Nakamura, D. Ehlers,
V. Tsurkan, and A. Loidl, Nat. Mater. (2015),
10.1038/nmat4402.

37 S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Ku-
betzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel,
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