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Recent experiments in optimally hole-doped iron arsenides have revealed a novel magnetically
ordered ground state that preserves tetragonal symmetry, consistent with either a charge-spin density
wave (CSDW), which displays a non-uniform magnetization, or a spin-vortex crystal (SVC), which
displays a non-collinear magnetization. Here we show that, similarly to the partial melting of the
usual stripe antiferromagnet into a nematic phase, either of these phases can also melt in two
stages. As a result, intermediate paramagnetic phases with vestigial order appears: a checkerboard
charge density-wave for the CSDW ground state, characterized by an Ising-like order parameter,
and a remarkable spin-vorticity density-wave for the SVC ground state – a triplet d-density wave
characterized by a vector chiral order parameter. We propose experimentally detectable signatures of
these phases, show that their fluctuations can enhance the superconducting transition temperature,
and discuss their relevance to other correlated materials.

I. INTRODUCTION

One of the hallmarks of the superconducting state of
the iron-based materials [1] is its typical proximity to
a stripe magnetically ordered state, with spins aligned
parallel to each other along one in-plane direction and
anti-parallel along the other (see Fig. 1a) [2]. As a re-
sult, this stripe state breaks two distinct symmetries of
the high-temperature paramagnetic-tetragonal state: a
continuous spin-rotational O(3) symmetry and an Ising-
like Z2 symmetry related to the equivalence of the x and
y directions [3–9]. Magnetic fluctuations present in the
paramagnetic state can cause these two symmetries to be
broken at different temperatures, giving rise to an inter-
mediate nematic phase that preserves the spin-rotational
O(3) symmetry but, as a “vestige” of the stripe order
[10], breaks the tetragonal Z2 symmetry [11]. Indeed, in
the phase diagrams of most iron-based superconductors,
the magnetic transition line is closely followed by the
structural/nematic one at slightly higher temperatures.
The corresponding nematic degrees of freedom impact
not only the normal state electronic properties [12–21]
but also the onset and gap structure of the supercon-
ducting state [22–24].

Recently, experiments in the hole-doped pnictides
Ba(Fe1−xMnx)2As2 [25], (Ba1−xNax)Fe2As2 [26], and
(Ba1−xKx)Fe2As2 [27] have revealed another type of
magnetically ordered state that does not break the
tetragonal Z2 symmetry of the lattice. Neutron scatter-
ing experiments [25, 26] showed that its magnetic Bragg
peaks are at the same momenta as in the stripe magnetic
phase – namely, Q1 = (π, 0) and Q2 = (0, π) in the Fe-
only Brillouin zone. Consequently, it has been proposed
[26, 28–31] that the tetragonal magnetic state is the re-
alization of one of two possible biaxial (i.e. double-Q)
magnetic orders [6, 32–34]. One possibility is a “charge-
spin density wave” (CSDW), displaying a non-uniform
magnetization which vanishes at the even lattice sites
and is staggered along the odd lattice sites (Fig. 1b).
The other option is a “spin-vortex crystal” (SVC), in

which the magnetization is non-collinear (but coplanar)
and forms spin vortices staggered across the plaquettes
(Fig. 1c). Both CSDW and SVC phases are tetragonal,
but have a unit cell four times larger than the param-
agnetic phase. Interestingly, in (Ba1−xNax)Fe2As2 and
(Ba1−xKx)Fe2As2, the tetragonal magnetic state is ob-
served very close to optimal doping [26, 27], where super-
conductivity displays its highest transition temperature.
Therefore, understanding the properties of these biaxial
tetragonal magnetic phases is important to assess their
relevance for the superconductivity.

In this paper, we show that both the CSDW and the
SVC magnetic phases support composite order parame-
ters that can condense at temperatures above the onset
of magnetic order, and whose fluctuations can help en-
hancing Tc. As with the nematic phase, these partially
ordered phases are paramagnetic, i.e. fluctuations re-
store the time-reversal symmetry that is broken in the
ground state. In contrast to the nematic phase, how-
ever, they preserve the point group symmetry of the lat-
tice, but break other symmetries, including translational
symmetry [35]. In particular, upon melting the CSDW
phase, we find a vestigial Ising-like charge-density wave
(CDW) phase with ordering vector Q1 + Q2 = (π, π),
in which the previously magnetized sites acquire a dif-
ferent charge than the previously non-magnetized sites.
On the other hand, upon melting the SVC ground state,
we find a vestigial phase that retains memory of the pre-
ferred plane of magnetization (in spin space), and of the
staggering of the spin vortices across the plaquettes. This
spin-vorticity density-wave (SVDW) is a triplet d-density
wave characterized by a vector chiral order parameter,
which is manifested as a spin-current density-wave with
modulation Q1 +Q2 = (π, π). Besides shedding light on
the magnetism of hole-doped iron pnictides, our results
provide a novel microscopic mechanism for the forma-
tion of d -density waves, which have also been proposed
in cuprates [36] and heavy fermions [51].

The paper is organized as follows: in Section II we
present the theoretical model that gives rise to the ves-
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Figure 1: Magnetic ground states of the iron pnictides:
(a) stripe antiferromagnet, (b) charge-spin density-wave
(CSDW), (c) spin-vortex crystal (SVC). The first is or-
thorhombic with a doubled unit cell; the latter two remain
tetragonal but with a quadrupled unit cell. M1 and M2 are
the magnetic order parameters corresponding to the ordering
vectors Q1 = (π, 0) and Q2 = (0, π). The left panels are
the actual spin density-wave patterns in real space, whereas
the right panels are schematic representations focusing on the
magnetization at the lattice sites.

tigial CDW and SVDW orders. Section III discusses the
implications of these vestigial orders for both the normal
state and superconducting state properties. Concluding
remarks are presented in Section IV. To make the pa-
per transparent and accessible, all formal details are pre-
sented in appendices. Appendix A contains the deriva-
tion of the saddle-point equations that give the phase
diagram of the SVDW phase discussed in Section II. In
Appendix B we derive microscopically the free energy dis-
cussed in Section III. Finally, Appendix C presents the
derivation of the effective pairing interactions promoted
by CDW and SVDW fluctuations discussed in Section
III.

II. THEORETICAL MODEL FOR THE

VESTIGIAL PHASES

A. Effective action

We define two magnetic order parameters, M1 and
M2, associated with the two ordering vectors Q1 = (π, 0)
and Q2 = (0, π), respectively. Thus, the local spin is
given by S (r) =

∑

iMie
iQi·r. As discussed in Refs.

[6, 8, 28–30, 32–34], the most general lowest order action
that respects the tetragonal and spin-rotational symme-
tries is given by:
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For simplicity, we will consider the finite temperature
problem, but the same conclusions can be extended to

the quantum case. Here,
´

q ≡
´ ddq

(2π)d
and

´

x ≡
´

ddx

where q is the momentum and x is the position. In the
neighborhood of a finite T magnetic transition, and for
a quasi-2D system, we can use the small q expansion
χ−1
q ≈ r0+q

2
‖+Jz sin

2 qz
2 , where r0 is the distance to the

mean-field magnetic critical point.
The quartic coefficients u, g, w determine the nature

of the magnetic ground state. These are, in turn, sensi-
tive to microscopic considerations. The localized J1-J2
model favors positive g and w [37]. On the other hand,
itinerant approaches (at weak and strong coupling) have
found parameter regimes in which g and w can be ei-
ther positive or negative [6, 8, 28–30, 32–34, 38]. For
g > max (0,−w), the energy is minimized by the stripe
state shown in Fig. 1a, in which either 〈M1〉 = 0 or
〈M2〉 = 0. Thus, in addition to breaking the O(3) spin-
rotational symmetry, the magnetic ground state sponta-
neously breaks a Z2 symmetry by selecting one of the two
order parameters to be non-zero. Since M1 and M2 are
related by a 90◦ rotation, once this Z2 symmetry is bro-
ken the tetragonal symmetry of the system is lowered to
orthorhombic (see Fig. 2a). A composite Ising-nematic
order parameter, living on the bonds of the lattice, can be
identified by performing a Hubbard-Stratonovich trans-
formation on the quartic term with coefficient g, yielding
〈ϕnem〉 = g

〈

M2
1 −M2

2

〉

. Because Z2 is a discrete symme-
try, while spin-rotational O(3) is a continuous symmetry,
a strongly anisotropic 3D system will generically display
a vestigial paramagnetic nematic phase where 〈Mi〉 = 0
but 〈ϕnem〉 6= 0 [3, 8, 39].

For g < max (0,−w), the ground state of Eq. (1) is
no longer a uniaxial magnetic stripe state, but a biax-
ial magnetic state with | 〈M1〉 | = | 〈M2〉 | that preserve
tetragonal symmetry. If w < 0, the energy is minimized
by 〈M1〉 ‖ 〈M2〉, which in terms of the local spin config-
uration S (r) corresponds to a non-uniform state as de-
picted in Fig. 1b. We identify this state as a charge-spin
density-wave (CSDW). On the other hand, if w > 0, the
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Figure 2: The vestigial composite states associated with (a)
the stripe antiferromaget, (b) the CSDW state, and (c) the
SVC state. The real-space spins (in gray) and the magnetic
order parameters in spin space (red and blue arrows, repre-
senting M1 and M2, respectively) should be understood as
fluctuating, i.e. 〈Mi〉 = 0 in all cases. In (a), the vestigial
state is nematic (unequal blue and red bonds), associated with
selecting between M1 and M2 fluctuations in spin space. The
original unit cell is shown as a dashed square. In (b), the ves-
tigial state breaks translational symmetry via a checkerboard
charge density-wave (unequal blue and red sites). M1 and M2

are locked to be collinear in spin space. In (c), the vestigial
spin-vorticity density-wave state breaks inversion and trans-
lational symmetries via a staggered pattern of spin vortices
in the center of the plaquettes (unequal blue and red plaque-
ttes). The corresponding spin-current pattern is shown by the
green arrows. Because M1 and M2 are locked to be orthog-
onal in spin space, the residual spin-rotational symmetry is
O(2) instead of O(3). Both (b) and (c) preserve tetragonal
symmetry, as shown by the dashed-line unit cell.

energy minimization gives 〈M1〉 ⊥ 〈M2〉, correspond-
ing to a non-collinear, coplanar spin configuration (see
Fig. 1c). This state is identified as a spin vortex-crystal
(SVC). We now discuss whether these tetragonal mag-
netic phases can melt in a two-stage process, giving rise
to vestigial orders akin to the nematic phase.

B. Charge-spin density-wave

Consider the CSDW state: Once the magnetization
direction is chosen by spontaneous breaking of the O(3)
spin-rotational symmetry, there remains a four-fold de-
generacy corresponding to whether M1 and M2 are par-
allel or anti-parallel to the chosen direction. As is ap-
parent in Fig. 1b, this corresponds to the breaking of
translational symmetry, leading to a four-site unit cell.
Notice, however, that the product of a translation by
the vector x̂ + ŷ followed by time-reversal is preserved.
Thus, there is an essential Z2 symmetry that interchanges
the magnetic and non-magnetic sublattices of the CSDW
state.

The order parameter field for this Z2 symmetry is ob-
tained via a Hubbard-Stratonovich transformation on the
quartic term with coefficient 2w in Eq. (1), 〈ϕCDW〉 =
2 |w| 〈M1 ·M2〉. Clearly, ϕCDW is a scalar that carries
momentum Q1 +Q2 = (π, π), i.e. the condensed phase
is a CDW that doubles the unit cell, but leaves time-
reversal and the tetragonal symmetry of the lattice intact
(see Fig. 2b). Thus, in real space, the CDW order pa-
rameter lives on the lattice sites. The fact that the unit
cell decreases from four to two sites upon going from the
CSDW to the CDW phase is due to the restoration of
time-reversal symmetry, which implies the restoration of
the translational symmetry by x̂ + ŷ. A simple change
of variables in Eq. (1), M1 → 2−1/2[M1 + M2] and
M1 → 2−1/2[M1−M2], interchanges the identities of the
two scalar orders, ϕnem ↔ ϕCDW, but leaves the form of
S unchanged albeit with (g, w) → − (w, g). Thus, the
properties of the CDW phase are akin to those of the
Ising-nematic phase – in particular, a quasi-2D system
will again display for a range of intermediate tempera-
tures a phase with 〈Mi〉 = 0 but 〈ϕCDW〉 6= 0.

C. Spin-vorticity density-wave

Consider now the SVC state, characterized by two
equal magnitude orthogonal vectors M1 and M2. Upon
fixing the direction of M1, which breaks the O(3) spin-
rotational symmetry, there remains an additional O(2)
symmetry related to choosing M2 in any direction along
the plane perpendicular to M1 [40]. Thus, the SVC phase
can be completely characterized by a pseudo-vector or-
der parameter ϕSVDW that specifies the ordering plane
which contains M1 and M2, and also by the orienta-
tion of M1 within that plane. ϕSVDW is obtained via
a Hubbard-Stratonovich transformation of the quartic
term w (M1 ·M2)

2 → −w (M1 ×M2)
2

in Eq. (1), yield-
ing 〈ϕSVDW〉 = 2w 〈M1 ×M2〉, which can be identified
as a vector chirality [41, 42]. Thus, upon approaching
the SVC phase from high-temperatures or by melting it,
there can be an intermediate state where 〈ϕSVDW〉 6= 0
but the orientation of M1 is not fixed, 〈M1〉 = 0. This
chiral paramagnetic state preserves time-reversal sym-
metry and retains the memory of the staggering pat-
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Figure 3: Phase diagram, within the saddle-point approxi-
mation, of the coupled SVDW paramagnetic and SVC mag-
netic transitions. In the shaded area, where the out-of-plane
anisotropy is strong, the two transitions are split. The tun-
ing parameters are the Ginzburg-Landau coefficients u and
w (see Eq. 1) and the magnetic coupling between layers Jz.
The parameter w̄ is given by w = TN,0w/2π, as discussed in
Appendix B.

tern of spin vortices along the plaquettes in the SVC
phase, and is therefore called a spin-vorticity density-
wave (SVDW) [42]. Note that the vector chiral order
parameter produces an emergent Dzyaloshinskii-Moriya
coupling ϕSVDW · (M1 ×M2) relating the translational
symmetry-breaking to a preferred “handedness” in spin-
space. In the SVDW state, not only is the translational
symmetry lowered by the doubling of the unit cell (since
ϕSVDW carries momentum Q1 +Q2 = (π, π)), but also
the soft spin fluctuations near the magnetic transition are
constrained to lie in the plane defined by ϕSVDW (see Fig.
2c).

Because ϕSVDW breaks a continuous O(3) symmetry,
there are two Goldstone modes in the SVDW phase.
Consequently, in contrast to the Ising-nematic cases, the
Mermin-Wagner theorem does not ensure the existence
of the SVDW phase even in the two-dimensional limit.
To investigate whether 〈ϕSVDW〉 6= 0 while 〈M1〉 = 0
is possible, we calculated the phase diagram for a mag-
netic SVC ground state treating the action in Eq. (1) in
the saddle point approximation (see Appendix A). We
find that for a strongly anisotropic system, i.e. Jz ≪ w,
there is a wide range of values of u/w for which there are
two transitions, with an intermediate SVDW phase and
a low-temperature SVC phase (see Fig. 3). However, in
this approximation, the transition to the SVDW phase is
always first-order.

Spin rotational symmetry is not an exact symmetry of
nature, and indeed most iron pnictides display a sizable
spin anisotropy [43–45]. Because the ordered moments
tend to point parallel to the FeAs plane, the most signif-
icant effects of spin-orbit coupling can be captured phe-
nomenologically in Eq. (1) by including an easy-plane
anisotropy term κ

(

M2
1,z +M2

2,z

)

with coupling constant
κ > 0 [46]. The spin rotational symmetry is thus reduced

to O(2) and the SVDW chiral order parameter becomes
the pseudo-scalar ϕSVDW = 2w (M1 ×M2)·ẑ, which only
breaks a discrete chiral Z2 symmetry. For such O(2)×Z2

model, it is known from both numerical and analytical
investigations that in 2D the Z2 symmetry is broken at
higher temperatures than the Kosterlitz-Thouless transi-
tion of the O(2) order parameter [47, 48], i.e. there is
no doubt that there is a vestigial chiral SVDW phase.
The extent to which the spin anisotropy is quantitatively
significant depends on the (currently unknown) value of
the ratio κ/ (TSVDW − TSVC).

III. MICROSCOPIC IMPLICATIONS OF THE

VESTIGIAL ORDERS

A. Normal-state manifestations

To discuss the experimental manifestations of the ves-
tigial CDW and SVDW states, we investigate their cou-
pling to the low-energy electronic states of the pnic-
tides. We consider a three-band model [6, 8] with
a circular hole pocket ξh,k at the center of the Bril-
louin zone, and two elliptical electron pockets ξe1,k+Q1

and ξe2,k+Q2
centered at momenta Q1 = (π, 0) and

Q2 = (0, π), respectively (see Fig. 4). The magnetic
order parameters couple to these electronic states via
∑

k,αβ Mi · σαβ
(

c†h,kαcei,kβ + h.c.
)

, where the operator

ca,kα annihilates an electron in band a with momentum
k (measured with respect to the center of the pocket)
and spin α, and σαβ are Pauli matrices. We further in-
troduce magnetic ∆S and charge ∆C order parameters
with ordering vector Q1 +Q2 = (π, π), which couple to
the electronic states via

HS =
∑

k,αβ

[

∆S · σαβc
†
e2,kα

ce1,kβ + h.c.
]

,

HC =
∑

k,αβ

[

∆Cδαβc
†
e2,kα

ce1,kβ + h.c.
]

(2)

Here these fields have real and imaginary parts, ∆S =
∆′
S + i∆′′

S and ∆C = ∆′
C + i∆′′

C , where the real parts
correspond to conventional SDW or CDW orders, while
the imaginary parts corresponds to spin or charge cur-
rent orders. By integrating out the electronic degrees of
freedom, we obtain the coupling between Mi and ∆S ,
∆C to lowest-order in the action (see Appendix B):

δSeff = λ
[

∆′′
S · (M1 ×M2)−∆′

C (M1 ·M2)
]

(3)

with the coefficient λ = 4
´

k Gh,kGe1,kGe2,k, where

G−1
a,k = iωn − ξa,k is the corresponding non-interacting

Green’s function. As expected, the Ising-like order pa-
rameter ϕCDW ∝ M1 · M2 induces a checkerboard-like
charge order (see Fig. 2b). On the other hand, the
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Table I: Magnetic ground states of the pnictides and their corresponding vestigial states. M1 and M2 are the magnetic order
parameters corresponding to the ordering vectors Q1 = (π, 0) and Q2 = (0, π).

magnetic ground state vestigial state broken symmetry real space pattern physical manifestation

stripe: 〈M2〉 or 〈M1〉 = 0 nematic:
〈

M2

1 −M2

2

〉

6= 0 rotational (tetragonal) unequal bonds orthorhombic distortion

CSDW: 〈M1〉 ‖ 〈M2〉 CDW: 〈M1 ·M2〉 6= 0 translational unequal sites charge density-wave

SVC: 〈M1〉 ⊥ 〈M2〉 SVDW: 〈M1 ×M2〉 6= 0 translational + inversion unequal plaquettes spin-current density-wave

V>0

Q1

Q2Q1+

Q2

V>0

U <0

(p, p)-

(p,p)

( p, p)- -

( p,p)-

Figure 4: Schematic Fermi surface of the iron pnictides, with a
central hole pocket and elliptical electron pockets. The wavy
lines represent the inter-pocket pairing interactions generated
by the magnetic fluctuations (repulsive V > 0) and by fluc-
tuations of the vestigial CDW and SVDW states (attractive
U < 0).

SVDW order parameter ϕSVDW ∝ M1 × M2 is mani-
fested as a spin-current density-wave with propagation
vector (π, π), i.e. a spin current polarized parallel to
ϕSVDW and propagating along the bonds of the lattice
in a staggered pattern across the square plaquettes (see
Fig. 2c). Thus, the SVDW corresponds to a triplet d-
density wave [36].

Note that probing the CDW via x-rays may be difficult,
since the hybridization between Fe and As/Se doubles
the unit cell of the Fe-only square lattice, making (π, π)
a lattice Bragg peak. While the real CDW could in prin-
ciple be detected experimentally by a probe sensitive to
the local charge on the Fe sites, such as STM, detecting
a spin-current density-wave would be rather challenging.
Alternatively, one can consider the effects of a Zeeman
field H. Despite not coupling to ϕnem, we find that it cou-
ples to both ϕCDW and ϕSVDW in the action via the terms
γ∆′′

CH · (M1 ×M2) and γ
(

H ·∆′
S

)

(M1 ·M2), with the
same Ginzburg-Landau coefficient γ. Therefore, in the
presence of a magnetic field, a pattern of staggering or-
bital currents (i.e. a singlet d-density wave [36]) appears
in the SVDW state, which can in principle be detected
by NMR. Table I summarizes the magnetic ground states
of the pnictides along their vestigial paramagnetic states.

B. Impact on the superconducting state

Fluctuations of the SVDW and CDW states arise from
four-spin correlations, and are complementary to the
magnetic fluctuations that arise from two-spin correla-
tions. An important issue is whether these fluctuation
modes promote compatible superconducting states. Be-
cause the magnetic fluctuations are peaked at momenta
Q1 = (π, 0) and Q2 = (0, π), they promote a repulsive

inter-pocket interaction V > 0 between the hole and
the electron pockets (see Fig. 4). Solution of the cor-
responding linearized gap equations yields the so-called
s+− state, where the gap functions have different signs
in the electron and in the hole pockets [49]. The tran-

sition temperature is given by Tc ∝ exp
(

− 1
Λ0

)

, with

Λ0 =
√
2NhNe V , and Na denoting the density of states

of band a.
The SVDW and CDW fluctuations, on the other hand,

are peaked at the momentum Q1 + Q2 = (π, π) and
promote an attractive inter-pocket interaction U < 0
between the two electron pockets (see Fig. 4 and Ap-
pendix C). Solution of the linearized gap equation re-
veals that the leading eigenstate remains the s+− one,
but the eigenvalue is enhanced, Λ =

√

Λ2
0 + Λ2

U + ΛU ,

with ΛU = Ne|U|
2 > 0. Therefore, fluctuations associated

with these vestigial states may enhance the value of Tc
promoted by spin-fluctuations pairing, without affecting
the symmetry of the Cooper pair wave-function. Similar
conclusions have been found for the combination of pair-
ing promoted by nematic fluctuations (peaked at Q = 0)
and magnetic fluctuations (peaked at Q1 and Q2) [23].

IV. CONCLUDING REMARKS

In summary, we showed that both biaxial tetrago-
nal magnetic ground states of the pnictides – the non-
uniform CSDW and non-collinear SVC states – can melt
in two-stage processes, giving rise to CDW and SVDW
vestigial states, respectively. While both preserve the
point-group and time-reversal symmetries, but break the
translational symmetry of the iron square lattice, only
the SVDW state also breaks inversion symmetry by en-
tangling the spin-space handedness to a doubling of the
real-space unit cell. Because in the iron superconductors
the hybridization with the puckered As atoms already
doubles the unit cell of the Fe square lattice, the CDW
and SVDW states are more rigorously classified as intra-
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unit-cell orders. Recent experiments on Sr1−xNaxFe2As2
[53] and Ba1−xKxFe2As2 [54] found direct evidence for
a low-temperature CSDW phase, which can support a
CDW vestigial phase. It remains to be seen whether the
tetragonal magnetic phase can be reached in these com-
pounds without first crossing the stripe magnetic state.
In contrast, in Ba(Fe1−xMnx)2As2 [25], the tetragonal
magnetic phase has been reported to exist over a wide
doping range as the primary instability of the paramag-
netic phase.

Beyond the physics of iron-based superconductors, our
results establish the melting of double-Q orders as a mi-
croscopic mechanism to create d-density wave states. The
latter have been proposed to be realized in other strongly
correlated systems, such as the pseudogap phase of un-
derdoped cuprates [36] and the hidden-order phase of
the heavy fermion compound URu2Si2 [50–52], mostly
on phenomenological basis. Whether our mechanism is

directly applicable to those systems is an appealing topic
for future investigation.
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Appendix A: Saddle-point equations for the SVDW order

We start with the effective action for the magnetic order parameters:

S [Mi] =

ˆ

q

χ−1
q

(

M2
1 +M2

2

)

+
u

2

ˆ

x

(

M2
1 +M2

2

)2 − g

2

ˆ

x

(

M2
1 −M2

2

)2
+ 2w

ˆ

x

(M1 ·M2)
2

(A1)

where
´

q ≡ T
∑

ωn

´

ddq

(2π)d
and
´

x ≡
´ β

0 dτ
´

ddx. To proceed, we use the identity:

(M1 ·M2)
2
=

1

4

(

M2
1 +M2

2

)2 − 1

4

(

M2
1 −M2

2

)2 − (M1 ×M2)
2

(A2)

yielding:

S [Mi] =

ˆ

q

χ−1
q

(

M2
1 +M2

2

)

+
(u+ w)

2

ˆ

x

(

M2
1 +M2

2

)2 − (g + w)

2

ˆ

x

(

M2
1 −M2

2

)2 − 2w

ˆ

x

(M1 ×M2)
2

(A3)

Hereafter for simplicity we introduce the parameters g̃ = g + w and ũ = u + w. Since we are interested in the
vestigial phase of the spin vortex-crystal, which has tetragonal symmetry, the nematic order parameter

〈

M2
1

〉

−
〈

M2
2

〉

never condenses, and we can ignore the corresponding quartic term. Introducing the Hubbard-Stratonovich fields
corresponding to the other two quadratic terms, we obtain:

e−
u
2 (M

2

1
+M2

2 )
2

= N
ˆ

dψ e
ψ2

2u
−ψ(M2

1
+M2

2 )

e2w(M1×M2)·(M1×M2) = N
ˆ

dϕSVDW e
−ϕ2

2w
+2ϕSVDW·(M1×M2) (A4)

Here, ϕSVDW is the spin-vorticity density-wave (SVDW) vectorial order parameter whose mean value is given by
〈ϕSVDW〉 = 2w 〈M1 ×M2〉. The field ψ is not an order parameter, and just renormalizes the magnetic correlation
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length via 〈ψ〉 = ũ
(〈

M2
1

〉

+
〈

M2
2

〉)

, i.e. it corresponds to Gaussian magnetic fluctuations. Thus, the effective action
is given by:

S [Mi, ψ,ϕSVDW] =

ˆ

q

(

χ−1
q + ψ

) (

M2
1 +M2

2

)

− 2

ˆ

x

ϕSVDW · (M1 ×M2) +
ϕ2
SVDW

2w
− ψ2

2ũ
(A5)

Approaching the SVDW phase from the paramagnetic state, we can integrate out the magnetic degrees of freedom,
yielding an effective action for ψ and ϕSVDW:

Seff [ψ,ϕSVDW] =
ϕ2
SVDW

2w
− ψ2

2ũ
+

1

2

ˆ

q

log

(

∏

i

λi,q

)

(A6)

where λi,q are the eigenvalues of the matrix Aij corresponding to the Gaussian action in Mi. The Gaussian part of
the action can be rewritten in the convenient matrix form:

(

M1 M2

)





















χ−1
q + ψ 0 0 0 −ϕz ϕy

0 χ−1
q + ψ 0 ϕz 0 −ϕx

0 0 χ−1
q + ψ −ϕy ϕx 0

0 ϕz −ϕy χ−1
q + ψ 0 0

−ϕz 0 ϕx 0 χ−1
q + ψ 0

ϕy −ϕx 0 0 0 χ−1
q + ψ





















(

M1

M2

)

(A7)

Evaluation of the eigenvalues gives:

Seff [ψ,ϕSVDW] =
ϕ2
SVDW

2w
− ψ2

2ũ
+

ˆ

q

log
[(

χ−1
q + ψ

) (

χ−1
q + ψ + ϕSVDW

) (

χ−1
q + ψ − ϕSVDW

)]

(A8)

So far our result is exact. To proceed, we employ the saddle-point approximation to determine the equations of
state for ψ and ϕSVDW, which corresponds to self-consistently accounting for the Gaussian magnetic fluctuations.
The saddle-point equations become:

ϕSVDW

w
=

ˆ

q

1

χ−1
q + ψ − ϕSVDW

−
ˆ

q

1

χ−1
q + ψ + ϕSVDW

ψ

ũ
=

ˆ

q

1

χ−1
q + ψ − ϕSVDW

+

ˆ

q

1

χ−1
q + ψ + ϕSVDW

+

ˆ

q

1

χ−1
q + ψ

(A9)

Since our focus is on the proximity to a finite-temperature magnetic transition, we ignore the spin dynamics and
use the low-energy expansion for the spin susceptibility appropriate for anisotropic layered systems:

χ−1
q = r0 + q2‖ + Jz sin

2 qz
2

(A10)

where r0 = a (T − TN), a > 0, TN is the mean-field magnetic transition temperature, q2‖ = q2x + q2y, and Jz is the

inter-layer magnetic coupling. Defining the renormalized magnetic mass:

r = r0 + ψ ∝ ξ−2 (A11)

where ξ is the magnetic correlation length, we obtain:

ϕSVDW = w

[

ˆ

q

1

r + q2‖ + Jz sin
2 qz

2 − ϕSVDW

−
ˆ

q

1

r + q2‖ + Jz sin
2 qz

2 + ϕSVDW

]

(A12)

r = r0 + ũ

[

ˆ

q

1

r + q2‖ + Jz sin
2 qz

2 − ϕSVDW

+

ˆ

q

1

r + q2‖ + Jz sin
2 qz

2 + ϕSVDW

+

ˆ

q

1

r + q2‖ + Jz sin
2 qz

2

]



9

The integrals can be evaluated in a straightforward way (we consider only the ωn = 0 contribution to the sum over
Matsubara frequencies, since we are interested in the finite temperature transition):

ˆ

q

1

q2‖ + Jz sin
2 qz

2 + a
=

TN
4π

ˆ 2π

0

dqz
2π

ˆ Λ2

Jz sin2 qz
2
+a

dx

x

=
TN
4π

ˆ 2π

0

dqz
2π

ln

(

Λ2

Jz sin
2 qz

2 + a

)

=
TN
2π

[

ln 2Λ− ln
(

√

Jz + a+
√
a
)]

(A13)

Defining the renormalized critical temperature r̃0 = a(T − T̃N) via:

r̃0 = r0 +
3ũTN
2π

ln
2Λ√
Jz

(A14)

we obtain the self-consistent equations:

ϕSVDW =
wTN
2π

ln

√
Jz + r + ϕSVDW +

√
r + ϕSVDW√

Jz + r − ϕSVDW +
√
r − ϕSVDW

(A15)

r = r̃0 −
ũTN
2π

ln

[

(√
Jz + r + ϕSVDW +

√
r + ϕSVDW

) (√
Jz + r − ϕSVDW +

√
r − ϕSVDW

) (√
Jz + r +

√
r
)

J
3/2
z

]

For simplicity, we define the renormalized parameters (w̄, ū) ≡ (w, u) TN2π as well as α ≡ ũ
w = u

w +1 and J̃z ≡ Jz/w̄.
Then the equations can be written as:

ϕSVDW = ln

√

J̃z + r + ϕSVDW +
√
r + ϕSVDW

√

J̃z + r − ϕSVDW +
√
r − ϕSVDW

(A16)

r = r̃0 − α ln









(

√

J̃z + r + ϕSVDW +
√
r + ϕSVDW

)(

√

J̃z + r − ϕSVDW +
√
r − ϕSVDW

)

(
√

J̃z + r +
√
r
)

J̃
3/2
z









where r, r̃0, and ϕSVDW were rescaled by w̄ as well. The SVDW transition temperature can be obtained by linearizing
the equations around ϕSVDW = 0. From the first equation, we obtain the correlation length r1 at the SVDW transition:

r1 =

√

J̃2
z + 4− J̃z

2
(A17)

which, when substituted in the second equation, gives the SVDW transition temperature r̃0,SVDW:

r̃0,SVDW =

√

J̃2
z + 4− J̃z

2
+ 3α ln









√

√

J̃2
z + 4 + J̃z +

√

√

J̃2
z + 4− J̃z

√

2J̃z









(A18)

The magnetic transition temperature r̃0,mag is signaled by the vanishing of the renormalized magnetic mass, i.e.
the lowest eigenvalue of the Eq. (A7), r − ϕSVDW. Therefore, it takes place when r reaches the value r2 determined
implicitly by:
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r2 = ln

√

J̃z + 2r2 +
√
2r2

√

J̃z
(A19)

The magnetic transition temperature is therefore given by:

r̃0,mag = r2 (1 + α) + α ln

[√

J̃z + r2 +
√
r2

√

J̃z

]

(A20)

The SVDW and magnetic transitions are split when r̃0,SVDW > r̃0,mag. The region in the
(

u
w , J̃z

)

parameter space

where this condition is satisfied corresponds to the shaded area of Fig. 3 in the main text (recall that u
w = α− 1).

To determine the character of the SVDW transition, we can expand r̃0 for small ϕSVDW. Substituting r = r1 +
aϕ2

SVDW in the first equation of (A16) and expanding for small ϕSVDW gives the coefficient of the quadratic term:

a =
8 + 3J̃2

z

12

√

J̃2
z + 4

(A21)

Substituting it in the second equation of (A16) and collecting the quadratic terms in ϕSVDW yields:

r̃0 (ϕSVDW) ≈ r̃0,SVDW +





16 + 3J̃2
z (2 + α)

24
√

J̃2
z + 4



ϕ2
SVDW (A22)

Therefore, because the coefficient is always positive, the solution with ϕSVDW 6= 0 is achieved at a larger temperature
than the solution with ϕSVDW = 0, in other words, r̃0 (ϕSVDW > 0) > r̃0 (ϕSVDW → 0). As a result, the SVDW
transition is first-order within the saddle-point approximation, even when it is split from the magnetic transition.

Appendix B: Derivation of the Ginzburg-Landau free energy

Our starting point is a 3-band model with a circular hole pocket h centered at (0, 0) and two elliptical electron
pockets e1,2 centered at Q1 = (π, 0) and Q2 = (0, π), respectively. The band dispersions can be conveniently
parametrized by [8]:

ξh,k = −ξk = − k2

2m
+ ε0

ξe1,k+Q1
= ξk − (δ0 + δ2 cos 2θ)

ξe2,k+Q2
= ξk − (δ0 − δ2 cos 2θ) (B1)

Here, δ0 is proportional to the chemical potential and δ2 to the ellipticity of the electron pockets. The angle θ is
measured relative to the kx axis. The non-interacting Hamiltonian is therefore given by (hereafter sums over repeated
spin indices are implicitly assumed):

H0 =
∑

k

ξh,kc
†
h,kσch,kσ +

∑

k

ξe1,kc
†
e1,kσ

ce1,kσ +
∑

k

ξe2,kc
†
e2,kσ

ce2,kσ (B2)

These electronic states couple to the magnetic order parameters M1 and M2 according to:

Hmag =
∑

k,i

Mi ·
(

c†ei,kασαβch,kβ + h.c.
)

(B3)

In principle, this last term can be obtained via a Hubbard-Stratonovich transformation of the original interaction
terms projected into the magnetic channel, as shown in Ref. [8]. Here, because we are interested in the higher-order
couplings of the action involving the Mi order parameters, we neglect these interaction terms, since they only affect
the quadratic terms of the action.
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1. Absence of magnetic field

In the case where there is no external magnetic field, we focus on the two types of fermionic order that couple
directly to the SVDW order parameter, M1 ×M2, and to the CDW order parameter M1 ·M2. Thus, we introduce
the Q1+Q2 = (π, π) spin-current density-wave ∆′′

S (i.e. a purely imaginary SDW) and the checkerboard charge order
∆′
C (i.e. a purely real CDW) defined by:

HiS = i
∑

k

∆′′
S · σαβ

(

c†e2,kαce1,kβ − c†e1,kαce2,kβ

)

HC =
∑

k

∆′
Cδαβ

(

c†e2,kαce1,kβ + c†e1,kαce2,kβ

)

(B4)

To proceed, we introduce the 6-dimensional Nambu operator:

Ψ†
k =

(

c†h,k↑ c†h,k↓ c†e1,k↑ c†e1,k↓ c†e2,k↑ c†e2,k↓

)

(B5)

which allows us to write the fermionic action in the compact form:

S = −
ˆ

k

Ψ†
kĜ−1

k Ψk + S0

[

M2
i

]

(B6)

In the previous expression, S0

[

M2
i

]

corresponds to the terms M2
i that arise from the decoupling of the fermionic

interactions. As we explained above, these terms can be ignored for our purposes. The total Green’s function is given
by:

Ĝ−1
k =

(

Ĝ(0)
k

)−1

− V̂mag − V̂iS − V̂C (B7)

The bare part is:

Ĝ(0)
k =



















Gh,k 0 0 0 0 0

0 Gh,k 0 0 0 0

0 0 Ge1,k 0 0 0

0 0 0 Ge1,k 0 0

0 0 0 0 Ge2,k 0

0 0 0 0 0 Ge2,k



















(B8)

where G−1
i,k = iωn − ξi,k are the non-interacting single-particle Green’s functions. The interacting parts are:

V̂mag =



















0 0 −M1,z −M1,x + iM1,y −M2,z −M2,x + iM2,y

0 0 −M1,x − iM1,y M1,z −M2,x − iM2,y M2,z

−M1,z −M1,x + iM1,y 0 0 0 0

−M1,x − iM1,y M1,z 0 0 0 0

−M2,z −M2,x + iM2,y 0 0 0 0

−M2,x − iM2,y M2,z 0 0 0 0



















(B9)
and:

V̂iS =





















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 i∆′′
S,z i

(

∆′′
S,x − i∆′′

S,y

)

0 0 0 0 i
(

∆′′
S,x + i∆′′

S,y

)

−i∆′′
S,z

0 0 −i∆′′
S,z −i

(

∆′′
S,x − i∆′′

S,y

)

0 0

0 0 −i
(

∆′′
S,x + i∆′′

S,y

)

i∆′′
S,z 0 0





















(B10)
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as well as:

V̂C =



















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −∆′
C 0

0 0 0 0 0 −∆′
C

0 0 −∆′
C 0 0 0

0 0 0 −∆′
C 0 0



















(B11)

It is now straightforward to integrate out the fermions and obtain the effective magnetic action:

Seff

[

M1,M2,∆
′′
S ,∆

′
C

]

= −Tr ln
[

1− Ĝ0

(

V̂mag + V̂iS + V̂C

)]

≈
∑

n

1

n
Tr
[

Ĝ0

(

V̂mag + V̂iS + V̂C

)]n

(B12)

where, in the last step, we expanded for small M1, M2. Here, Tr (· · · ) refers to sum over momentum, frequency and
Nambu indices. A straightforward evaluation gives, to leading order in the coupling between ∆′′

S , ∆′
C , and Mi:

Seff

[

M1,M2,∆
′′
S ,∆

′
C

]

= S [M1,M2] + λ∆′′
S · (M1 ×M2)− λ∆′

C (M1 ·M2) (B13)

with the coefficient:

λ = 4

ˆ

k

Gh,kGe1,kGe2,k (B14)

For perfect nesting, δ0 = δ2 = 0, this coefficient vanishes. For a system in proximity to a finite temperature phase
transition, expansion in powers of δ0 gives:

λ ≈ 4ρFT
∑

n

ˆ

dξ
1

(iωn + ξ)

1

(iωn − ξ + δ0)
2

λ ≈ −8δ0ρFT
∑

n

ˆ

dξ
1

(iωn + ξ)

1

(iωn − ξ)
3

λ ≈ −
(

δ0
T

)

7ζ (3) ρF
2π2T

(B15)

where ρF is the density of states at the Fermi level. Therefore, it is clear that a spin-current density-wave ∆′′
S parallel

to ϕSVDW is triggered by the SVDW order parameter, ϕSVDW ∝ M1×M2, whereas a checkerboard charge order ∆′
C

is triggered by the CDW order parameter ϕCDW ∝ M1 ·M2.

2. Non-zero magnetic field

In the presence of a magnetic field, additional types of fermionic order are triggered by the condensation of the
SVDW and CDW order parameters. To show that, we first introduce the Zeeman coupling between the uniform field
H and the electrons:

HZeeman =
∑

k,i

H · σαβc†i,kαci,kβ (B16)

We also introduce the Q1 +Q2 = (π, π) charge-current density-wave ∆′′
C (i.e. a purely imaginary CDW) and the

spin density-wave ∆′
S (i.e. a purely real SDW) defined by:
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HS =
∑

k

∆′
S · σαβ

(

c†e2,kαce1,kβ + c†e1,kαce2,kβ

)

HiC = i
∑

k

∆′′
Cδαβ

(

c†e2,kαce1,kβ − c†e1,kαce2,kβ

)

(B17)

Following the same steps as in the previous subsection, we obtain the expanded action:

Seff

[

M1,M2,∆
′
S ,∆

′′
C

]

≈
∑

n

1

n
Tr
[

Ĝ0

(

V̂mag + V̂S + V̂iC + V̂Zeeman

)]n

(B18)

where the Nambu-space matrices are given by:

V̂Zeeman =



















−Hz −Hx + iHy 0 0 0 0

−Hx − iHy Hz 0 0 0 0

0 0 −Hz −Hx + iHy 0 0

0 0 −Hx − iHy hz 0 0

0 0 0 0 −Hz −Hx + iHy

0 0 0 0 −Hx − iHy Hz



















(B19)

and:

V̂iC =



















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 i∆′′
C 0

0 0 0 0 0 i∆′′
C

0 0 −i∆′′
C 0 0 0

0 0 0 −i∆′′
C 0 0



















(B20)

as well as:

V̂S =





















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −∆′
S,z −

(

∆′
S,x − i∆′

S,y

)

0 0 0 0 −
(

∆′
S,x + i∆′

S,y

)

∆′
S,z

0 0 −∆′
S,z −

(

∆′
S,x − i∆′

S,y

)

0 0

0 0 −
(

∆′
S,x + i∆′

S,y

)

∆′
S,z 0 0





















(B21)

A straightforward evaluation yields, to leading order in the magnetic field:

Seff = Seff [H = 0] + ζ
[

(H ·M1)
2 + (H ·M2)

2
]

(B22)

+ γ
[

∆′′
CH · (M1 ×M2) +

(

H ·∆′
S

)

(M1 ·M2)
]

+ η
[

(M1 ·H)
(

M2 ·∆′
S

)

+ (M2 ·H)
(

M1 ·∆′
S

)]

where we neglected all isotropic biquadratic terms of the form H2M2
i . The coefficients are given by:

ζ = 4

ˆ

k

G2
h,kG

2
e1,k

γ = 4

ˆ

k

Gh,kGe1,kGe2,k (Ge1,k +Ge2,k −Gh,k)

η = 4

ˆ

k

G2
h,kGe1,kGe2,k (B23)
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It is useful to perform an expansion around perfect nesting, δ0 = δ2 = 0. The coefficients ζ and η become identical
in this limit:

ζ = η =
ρF
T 2

(

7ζ (3)

2π2

)

(B24)

The fact that ζ > 0 implies that the magnetic field induces an easy plane, rather than an easy axis anisotropy. As
for the coefficient η, it remains zero in all orders in perturbation theory if an infinite bandwidth is assumed. However,
keeping the top of the hole pocket W (or bottom of the electron pocket) throughout the calculation gives:

γ ≈ ρF
T 2

(

W

T

)−2

(B25)

The fact that γ 6= 0 implies that, in the presence of a uniform field, the SVDW order parameter ϕSVDW ∝ M1×M2

also triggers a charge-current density-wave ∆′′
C , whereas the CDW order parameter ϕCDW ∝ M1 ·M2 triggers a spin

density-wave of same period, ∆′
S . Although this was expected by symmetry, here we have microscopic expressions

for the corresponding Ginzburg-Landau coefficients. It is interesting then to compare the coefficient γ in Eq. (B22),
which determines the amplitudes of ∆′′

C and ∆′
S , to the coefficient λ in Eq. (B13), which determines the amplitudes

of ∆′′
S and ∆′

C . We find that:

γH

λ
≈ −2.3

(

T 2H

W 2δ0

)

(B26)

Therefore, for pnictides whose band dispersions do not deviate strongly from perfect nesting, and whose bandwidths
are not too large either, it is conceivable that the two coupling constants γH and λ will be of similar order for moderate
values of the magnetic field H . As a result, the charge-current density-wave and the spin density-wave generated in
the presence of the field could be as large as the spin-current density-wave and the charge density-wave generated in
the absence of the field.

Appendix C: Superconducting pairing interactions

Here we show explicitly that fluctuations associated with an imaginary SDW instability or with a real CDW
instability give rise to attractive pairing interactions. For our purposes, it is sufficient to consider only the two Fermi
pockets connected by the momentum transfer Q = (π, π) associated with these two ordered states. To simplify the
notation, here we will denote the fermionic operators associated with these bands by dkσ and fkσ. In both cases, k
is measured relative to the center of each Fermi pocket. Consider first the action describing the coupling between the
electrons and the complex SDW bosonic field ∆S = ∆S ẑ (for simplicity, we consider it polarized along the z axis):

S = −
ˆ

k

[

(iωn − εd,k) d
†
kσdkσ + (iωn − εf,k) f

†
kσfkσ

]

+ g

ˆ

k,q

σ
(

∆′
S,−k−qd

†
kσfqσ +∆′

S,−k−qf
†
kσdqσ

)

+g

ˆ

k,q

σ
(

i∆′′
S,−k−qd

†
kσfqσ − i∆′′

S,−k−qf
†
kσdqσ

)

+

ˆ

k

χ−1
S (k,Ωn)∆

′
S,k∆

′
S,−k +

ˆ

k

χ−1
iS (k,Ωn)∆

′′
S,k∆

′′
S,−k (C1)

where k ≡ (k, ωn),
´

k ≡ T
∑

n

´

ddk
(2π)d

(with the appropriate bosonic Ωn or fermionic ωn Matsubara frequency), and we

left implicit the sum over spin indices, as well as the dependence of the fermionic operators on the fermionic Matsubara
frequencies. χS and χiS are the susceptibilities associated with the real and imaginary SDW, and g is the coupling
constant. Note that, because Q is a commensurate vector, the real and imaginary SDW fields are independent.
Introducing the four-dimensional Nambu operator:

Ψ†
k =

(

d†k↑ d−k↓ f †
k↑ f−k↓

)

(C2)
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the action can be written conveniently as:

S = −
ˆ

k

Ψ†
k

(

iωn1̂− ε̂k
)

Ψk +

ˆ

k

χ−1
S (k,Ωn)∆

′
S,k∆

′
S,−k +

ˆ

k

χ−1
iS (k,Ωn)∆

′′
S,k∆

′′
S,−k

+g

ˆ

k,q

∆′
S,−k−qΨ

†
kρ̂SΨp + g

ˆ

k,q

∆′′
S,−k−qΨ

†
kρ̂iSΨp (C3)

where we defined the 4× 4 matrices:

ε̂k =

(

εd,kτz 0

0 εf,kτz

)

; ρ̂S =

(

0 τ0
τ0 0

)

≡ τ0 ⊗ σx ; ρ̂iS =

(

0 iτz
−iτz 0

)

≡ −τz ⊗ σy (C4)

where τi are the Pauli matrices and 0 denotes the 2×2 matrix whose elements are all zero. To obtain the Eliashberg-like
gap equations, we need to solve Dyson’s equation:

Ĝ−1
k = Ĝ−1

0,k − Σ̂k (C5)

with Ĝ−1
0,k = iωn1̂− ε̂k and the one-loop self-energy:

Σ̂k = g2
ˆ

q

χS (k − q) ρ̂SĜq ρ̂S + g2
ˆ

q

χiS (k − q) ρ̂iSĜq ρ̂iS (C6)

It is convenient to parametrize the self-energy by:

Σ̂k =
(

1̂− Ẑk

)

iωn + Ŵk + ξ̂k (C7)

where we introduced the imaginary normal components Zµ,k, the real normal components ξµ,k, and the anomalous
components Wµ,k (µ = d, f is a band index):

Ẑk =

(

Zd,kτ0 0

0 Zf,kτ0

)

; Ŵk =

(

Wd,kτx 0

0 Wf,kτx

)

; ξ̂k =

(

ξd,kτz 0

0 ξf,kτz

)

(C8)

The superconducting gap in band µ is therefore proportional toWµ,k. Using Eqs. (C5) and (C7), it is straightforward

to invert the matrix and obtain Ĝ. Substituting it in (C6) and comparing back with Eq. (C7), we arrive at a set of
six self-consistent equations. Four of them have the same form for either real or imaginary SDW, namely, the two
equations that renormalize the dispersion ε̃a,k = ξa,k + εk and the two that renormalize the quasi-particle weights
Zµ,k. However, the two self-consistent gap equations acquire different forms:

Wd,k = −
ˆ

q

[

g2χS (k − q)
] Wf,q

Df,q
−
ˆ

q

[

−g2χiS (k − q)
] Wf,q

Df,q

Wf,k = −
ˆ

q

[

g2χS (k − q)
] Wd,q

Dd,q
−
ˆ

q

[

−g2χiS (k − q)
] Wd,q

Dd,q
(C9)

where we defined D2
µ,q = Z2

µ,qω
2
n + ε̃2µ,q +W 2

µ,q. From the form of these equations, it becomes clear that while the

fluctuations near the real SDW instability give rise to a repulsive inter-band pairing interaction, Vdf ∝ g2χS , the
fluctuations near the imaginary SDW instability promote an attractive inter-band pairing interaction, Vdf ∝ −g2χiS .
This difference relies ultimately on the different structures of the matrix elements (C4) in Nambu space.

A similar analysis can be performed in the charge channel:

S = −
ˆ

k

[

(iωn − εd,k) d
†
kσdkσ + (iωn − εf,k) f

†
kσfkσ

]

+ g

ˆ

k,q

(

∆′
C,−k−qd

†
kσfqσ +∆′

C,−k−qf
†
kσdqσ

)

+g

ˆ

k,q

(

i∆′′
C,−k−qd

†
kσfqσ − i∆′′

C,−k−qf
†
kσdqσ

)

+

ˆ

k

χ−1
C (k,Ωn)∆

′
C,k∆

′
C,−k +

ˆ

k

χ−1
iC (k,Ωn)∆

′′
C,k∆

′′
C,−k (C10)
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In Nambu space, we obtain:

S = −
ˆ

k

Ψ†
k

(

iωn1̂− ε̂k
)

Ψk +

ˆ

k

χ−1
C (k,Ωn)∆

′
C,k∆

′
C,−k +

ˆ

k

χ−1
iC (k,Ωn)∆

′′
C,k∆

′′
C,−k

+g

ˆ

k,q

∆′
C,−k−qΨ

†
kρ̂CΨp + g

ˆ

k,q

∆′′
C,−k−qΨ

†
kρ̂iCΨp (C11)

where we defined the 4× 4 matrices:

ρ̂C =

(

0 τz
τz 0

)

≡ τz ⊗ σx ; ρ̂iC =

(

0 iτ0
−iτ0 0

)

≡ −τ0 ⊗ σy (C12)

Solving the one-loop Dyson equation, we obtain the two self-consistent gap equations:

Wd,k = −
ˆ

q

[

−g2χC (k − q)
]Wf,q

Df,q
−
ˆ

q

[

g2χiC (k − q)
]Wf,q

Df,q

Wf,k = −
ˆ

q

[

−g2χC (k − q)
]Wd,q

Dd,q
−
ˆ

q

[

g2χiC (k − q)
]Wd,q

Dd,q
(C13)

Therefore, in the charge channel, real CDW fluctuations promote inter-band pairing attraction, Vdf ∝ −g2χC ,
whereas imaginary CDW fluctuations promote repulsion, Vdf ∝ g2χiC .


