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We analyze the magnetization at the interface between singlet and triplet superconductors and
show that its direction and dependence on the phase difference across the junction are strongly tied
to the structure of the triplet order parameter as well as to the pairing interactions. We consider
equal spin helical, opposite spin chiral, and mixed symmetry pairing on the triplet side and show that
the magnetization vanishes at φ = 0 only in the first case, follows approximately a cosφ behavior
for the second, and shows higher harmonics for the last configuration. We trace the origin of the
magnetization to the magnetic structure of the Andreev bound states near the interface, and provide
a symmetry-based explanation of the results. Our findings can be used to control the magnetization
in superconducting heterostructures and to test symmetries of spin-triplet superconductors.

I. INTRODUCTION

Attempts to combine dissipationless transport in su-
perconductors with the control of spin currents has driven
many recent studies of superconducting heterostruc-
tures1. In the vast majority of superconductors the con-
duction electrons pair in a spin-singlet state, freezing out
the spin degrees of freedom at low temperature. However,
triplet correlations near interfaces with magnetic materi-
als produce equal-spin Cooper pairs that can propagate
through a magnet leading, for example, to the long-range
proximity effect2–4.

The alternative pathway to spin control by super-
conductivity is via utilizing compounds that support
spin-triplet pairing. The number of known triplet su-
perconductors (TSCs) has been growing steadily, and
now includes UPt3

5, ferromagnetic superconductors such
as UGe2, URhGe, UIr and UCoGe6–8, quasi one-
dimensional organic system (TMTSF)2X (X=ClO4 and
PF6)9,10. Singlet and triplet states are mixed if the
material lacks inversion symmetry11,12, and among the
non-centrosymmetric superconductors Li2Pt3B has the
clearest indication of a significant triplet component13,14.
The strongest evidence for triplet superconductivity has
emerged for Sr2RuO4

15,16. Existence of very pure single
crystals with the perovskite structure made this material
a testbed for studying heterostructures based on triplet
superconductivity17,18.

From energetic considerations most of the non-
magnetic superconducting compounds that support
triplet pairing should have a unitary order parameter19,
so that the Cooper pairs do not have a net average
spin-derived magnetic moment20. Hence, triplet super-
conductors cannot by default be assumed to support
dissipationless spin transport. However, in conjunction
with superconducting orders of different symmetry, non-
trivial spin aspects of triplet superconductivity appear.
Andreev bound states in singlet-triplet Josephson het-
erostructures were analyzed21–25, and spin-accumulation
was found when a phase difference is established across
the junction26–28. In parallel, it was shown that admix-

ture of the subdominant order may lead to spin accu-
mulation, spin and charge currents near a boundary of
a chiral triplet superconductor29 or anomalous flux re-
sponse in mesoscopic loops30.

In this paper we show that the magnetism in singlet-
triplet superconducting heterostructures is fundamen-
tally linked to the nature of the triplet pairing. We con-
sider a microscopic model for a high-transparency inter-
face between a singlet and a unitary triplet (or mixed par-
ity, see below) superconductor, and self-consistently solve
the corresponding Bogoliubov-de Gennes (BdG) equa-
tions to obtain the energy spectrum. In all cases we
find spin-splitting of the Andreev bound states (ABS)
near the interface, leading to a magnetization parallel to
the spin-triplet d-vector. However, the variation of the
magnetization M with the phase difference φ across the
junction is non-trivial, and depends on the nature of the
pairing interaction on the triplet side. Our main results
are summarized in Fig. 1, where we consider three dis-
tinct cases. If there is no singlet component of the pairing
interaction on the triplet side, M ∝ sinφ only appears
under a finite phase difference, in agreement with Refs. 26
and 27. This is realized, for example, for equal spin
pairing states. Real space interactions leading to triplet
Sz = 0 pairing often promote a (subdominant) singlet
pairing, so that the singlet amplitude persists into TSC
near the interface. The magnetization resulting from this
mixed symmetry, M ∝ cosφ, is finite already at φ = 0.
Finally, motivated by the results of Ref. 29, we consider
a mixed parity superconductor in contact with a singlet
counterpart, and show that the magnetization has a com-
plex dependence on φ.

These results show that the phase difference can be
used to control interface magnetization. In addition, the
interface magnetization probes the spin structure of the
pairing interactions. This finding is especially relevant
for Sr2RuO4. There is no consensus on the exact form of
the triplet pairing in this system, and NMR Knight shift
measurements31, absence of edge currents32, and the ob-
servation of half-quantum vortices33 put in doubt strong
pinning of the triplet order spin vector, d(k), to the crys-
talline c-axis. The chiral, d(k) = ẑ(kx + iky), and the
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FIG. 1. (Color online). Schematics for the superconducting
heterostructures between spin-singlet (SC1) and triplet-active
(SC2) superconductors. Panel a): helical equal spin pairing
state with no pairing interaction in the singlet channel. Panel
b): chiral pairing with finite interaction in the singlet channel
(see discussion in text). Panel c): mixed-parity order pa-
rameter near the interface. VSi (VTi) are the couplings in the
singlet (triplet) channel for sides i = 1, 2. We show the profile
of the order parameters (full line), with dot-dashed line for
the proximity-induced order. We also indicate the qualitative
dependence of the interface magnetization on the phase φ.

helical, d(k) = x̂ky + ŷkx, states compete closely34, and
distinguishing between these two possibilities with sim-
ilar bulk gap is an important application of our results.
The remainder of the paper is organized as follows. We
present in Sect. II the model and the formalism for the
analysis of the singlet-triplet heterostructure. Sect. III
is devoted to the presentation of the results and the dis-
cussion concerning the evolution of the order parameters
and the magnetization at the inerface for the case of chi-
ral, helical spin-triplets and mixed-parity superconduc-
tors. Finally, the Sect. IV is for the concluding remarks.

II. MODEL AND FORMALISM.

We consider a two-dimensional lateral heterostructure
made of two superconductors, SC1 and SC2, having spin-
singlet (SC1) and spin-triplet or mixed-parity (SC2) pair-
ing. The x and y planar directions are perpendicular and
parallel to the SC1/SC2 interface, respectively. The sys-
tem is uniform along the y axis, so that the translational
symmetry is broken only in the x direction. The Hamil-
tonian is then defined on a square lattice of size L × L
(the lattice constant is unity), with periodic boundary

conditions along y,

H = H1 +H2 +H12 (1)

with Hm (m = 1, 2) being the Hamiltonians of each su-
perconducting side

Hm = −tm
∑
〈i,j〉, σ

(c†iσcjσ + h.c.)− µm
∑
i,σ

niσ (2)

−
∑
〈i,j〉

V σσ
′

m niσnjσ′ − Um
∑
i

ni↑ni↓ ,

and the interface term,

H12 =
∑
δ=±1

t⊥(c†0σcδ σ + h.c.) . (3)

Here the lattice sites are labeled by i ≡ {ix, iy}, with
ix and iy integers between −L/2 and L/2, 〈i, j〉 denote
nearest-neighbor sites, and µ is the chemical potential.
Labels 0 = {0, iy} and ±1 = {±1, iy} denote the sites
at the interface and their nearest-neighbors, respectively.
The attractive interaction −V σσ′

m (Vm > 0) can be chosen
to be effective in the Sz = 1, 0,−1 projections for the
the TSC and/or in the S = 0 singlet sector. The local
attractive term −Um (U > 0) only promotes spin-singlet
pairing. For simplicity we take t1 = t2 = t⊥ = t, and use
the hopping parameter t as a unit of energy. Below, in
the description of the results we discuss the qualitative
consequences of relaxing this assumption.

To investigate the model of Eq. (1) we decouple the
interaction term in the Hartree-Fock approximation by
introducing the pairing amplitude on a bond, ∆σσ′

ij =

〈ciσcjσ′〉, and on-site ∆0 = 〈ci ↑ci ↓〉, so that

V σσ
′
niσnjσ′ ' V σσ

′
(∆σσ′

ij c†jσ′c
†
iσ+∆̄σσ′

ij ciσcjσ′−|∆σσ′

ij |2) .

These expressions yield the spin singlet (S) and triplet

(T ) components in the Sz = 0 sector, ∆S,T = (∆↑↓ij ±
∆↑↓ji )/2, and the triplet pairing in the Sz = {1,−1} sec-
tors, ∆σσ

T = ∆σσ
ij . They define in turn the supercon-

ducting pair amplitudes with s- or p-wave symmetry, i.e.
∆s(i) = (∆S

i,i+x̂ +∆S
i,i−x̂ +∆S

i,i+ŷ +∆S
i,i−ŷ)/4, ∆px(y)

(i) =

(∆T
i,i+x̂(ŷ) −∆T

i,i−x̂(ŷ))/2 and ∆σσ
px(y)

(i) = ∆σσ
i,i+x̂(ŷ), which

are then determined self-consistently35. It is important
to note that, while the terms V ↑↑,V ↓↓ generate equal spin
triplet pairing, the coupling V ↑↓ generically promotes
both triplet Sz = 0 and non-local singlet (extended s-
wave) pairing. Similar decoupling of the U term produces
local singlet pairing only.

By suitable choices of the interactions V σσ
′

and U we
can therefore model interfaces between superconductors
with different symmetries of the order parameter. We
take the most conventional SC1 with U 6= 0, V σσ

′
= 0,

and compare the results for three different choices of SC2.

Case a): equal spin triplet pairing, V ↑↑=V ↓↓ 6= 0;
V ↑↓ = U = 0. In the bulk this corresponds to the

helical state, ∆̂(k) = i(d(k) · σ)σy with d(k) =
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x̂ky + ŷkx, where ∆̂(k) = V −1/2
∫
drij∆̂ij exp(ik ·

rij) and ∆̂ij is the order parameter in spin space
defined above.

Case b): a TSC with Sz = 0 and a subdominant ex-
tended s-wave pairing, V ↑↑=V ↓↓ = U = 0; V ↑↓ 6=
0.

Case c): a TSC with Sz = 0, V ↑↓ 6= 0, but possible
local s-wave pairing, U 6= 0, while V ↑↑=V ↓↓ = 0.

For the last two situations the most favorable pairing
state due to the V ↑↓ depends on the electron density,
n, and the chiral kx + iky order is stabilized in the re-
gion between low doping µ ' 1.2 and high (low) den-
sity (|µ| ' 2.25)36. Hence we choose |µ| ' 1.8. All
the numerical results below have been obtained for non-
vanishing components of the pairing interaction V = 2.5,
and U = 2.5, and system size L = 120. Greater values
of L and modification of the couplings leave the results
qualitatively unchanged. To investigate the effects of the
phase difference between the two superconductors, as is
commonly done for the Josephson junctions, we trans-
form the pairing wave-function in the SC1 and SC2 by
the phase factors exp[−iφ/2] and exp[iφ/2], respectively.
Self-consistent solution of the BdG equations gives the
spin-resolved energy spectrum of the system, including
both bulk and the surface (Andreev) states. The spec-
trum sets the surface magnetization, and we compute M
by summing the spin expectation values over all the oc-
cupied states at zero temperature.

The computational procedure used to determine the
self-consistent pairing amplitude at any given phase dif-
ference across the junction follows the general approaches
for the solution of the Bogoliubov-de Gennes equa-
tions35–38. The decoupling of the quartic term on the
singlet and triplet superconducting sides of the junction
introduces a set of N variational parameters Λi given by

the set of amplitudes
{

Λ↑↓i ,Λ
↑↑
i ,Λ

↓↓
i ,∆0,i

}
, where Λ↑↓i =

{∆↑↓i,i+x̂,∆
↑↓
i,i−x̂,∆

↑↓
i,i+ŷ,∆

↑↓
i,i−ŷ}, Λσσi = {∆σσ

i,i+x̂,∆
σσ
i,i+ŷ},

with σ = (↑, ↓) and ∆0,i are the local singlet order pa-
rameters. Here, x̂(ŷ) are the unit vectors connecting the
nearest neighbor sites along the direction perpendicular
(parallel) to the interface. Due to the translational invari-
ance along the y direction, the number of variational pa-
rameters can be further reduced by performing a Fourier
transform. The mean-field Hamiltonian HMF is, then, a
function of the variational parameters Λix .

For a given set of variational Λix , and for fixed val-

ues of the microscopic parameters {t, V σσ′
, U, µ} in the

singlet and triplet sides of the heterostructures, the spec-
trum of the bilinear mean-field Hamiltonian is obtained
by standard diagonalization routines.

At finite temperature the functional to be used for de-
termining the variational parameters is the Gibbs energy
F . It can be directly computed from the spectrum of the
mean-field Hamiltonian by performing the trace over all

the eigenstates as

F (Λix , φ) = − 1

LxLyβ
ln (Tr {exp[−βHMF ]}) .

The variational parameters are then determined by
solving the coupled set of gap equations

∂F (Λix)

∂Λix
= 0 .

To evaluate the phase response of the heterostructure,
we have carried out two different approaches. First, we
evaluate the response of the system to the application of
a phase drop with a step function profile at the interface.
Specifically, we first minimize the Gibbs energy at φ = 0
to obtain the pairing amplitudes Λ̄ix(φ = 0). The pairing
amplitudes are calculated iteratively until the difference
between successive iterations is smaller than the desired
accuracy. Then, from Λ̄ix(φ = 0) we obtain the pairing
amplitude Λ̄ix(φ) at a given phase differences φ by first
multiplying the pairing amplitudes in the two supercon-
ductors forming the heterostructure by the phase factors
exp[−iφ/2] and exp[iφ/2], and then evaluating the ex-
pectation value of the superconducting order parameter
in the ground state or at finite temperature by means of
the thermal density matrix. This approach is commonly
employed in the study of Josephson junctions.

In the second approach we determine the response to
a phase drop by searching for the optimal spatial con-
figuration of the pairing amplitude that minimizes the
Gibbs potential for a fixed phase profile. Such solution
is obtained by iteratively calculating the pairing ampli-
tudes Λ̄ix in the presence of the constraint of the given
phase difference at the interface of the heterostructure
until one achieves the convergence to the desired accu-
racy. In the next section of the results we present the
phase dependent magnetization for the cases with and
without performing the optimization of the pairing am-
plitudes. We stress that the phase difference is to be
treated as a parameter like an effective external field, not
as a minimization variable, in order to obtain the phase
dependence of the observables.

III. RESULTS AND DISCUSSION

In this section we first present the case of a phase re-
sponse with no optimization of the amplitude of the order
parameters. Then we discuss the results obtained follow-
ing the iterative approach previously explained where the
order parameters that minimize the Gibbs potential are
determined under the constraint of a fixed phase drop at
the junction interface.

On general grounds, the interface breaks the trans-
lational symmetry in the x direction, and is therefore
pair-breaking for the kx component of the triplet pair-
ing. The differences between the three cases listed in
previous section stem from the consequences of this sup-
pression for the interface magnetization. Case a), equal
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FIG. 2. (Color online). Order parameter and magnetization
for heterostructures based on a spin-singlet (left side of the
junction) interfaced to different spin-triplet superconductors.
Panels (a) are for helical equal spin pairing, (b) for chiral
Sz = 0pairing, and (c) for the mixed symmetry case. Left
column shows the evolution of the singlet and triplet pairing
amplitudes, while the right column shows the net magnetiza-
tion along the direction of the d-vector component for which
the surface is pairbreaking as a function of the phase differ-
ence, φ.

spin pairing, corresponds to the usual proximity coupling
with step-like change of the symmetry of the pairing in-
teraction across the junction, where the reduction of the
amplitude of the px component simply changes the ef-
fective coupling between the two sides, see Figs. 2(a).
The magnetism of the Andreev states localized at the
interface is due to the splitting of the energy levels for
opposite spins. This splitting appears because the phase
shift between the singlet and the triplet enters the con-
tinuity condition for the wave function at the boundary
with opposite signs for the two spin orientations. Hence
the magnetization vanishes at φ = 0, and is nearly con-
stant away from this point, see Fig. 2(a2). The situation
is analogous to that discussed in Ref. 27, where a step-
like change was found without the self-consistency on the
order parameters, and assuming a delta-function barrier
at the interface (BTK approximation).

The origin of this dependence is easy to understand
from the Ginzburg-Landau (GL) expansion of the free
energy density, with the relevant terms f = am2 +
i bm(ψ?ηx−ψη?x). Here a > 0 is the inverse susceptibility,
ψ (ηx) are the amplitudes of the singlet (triplet kx) order,

FIG. 3. (Color online). Spatial dependence of the spin-
polarization. Panels (a)-(c) correspond to the cases of helical,
chiral, and mixed symmetry order parameters as discussed
in the text. Panel (d) shows a typical energy spectrum (for
mixed symmetry case and φ = 0). The thick line through the
gap is the chiral edge state away from the interface. A signifi-
cant contribution to the magnetization is due to the Andreev
state just within the gap at large values of ky.

and m is the component of the magnetization along the
d-vector coupled to kx, in our case ŷ. Near the interface
where both ψ = |ψ|e−iφ/2 and ηx = |ηx|eiφ/2 coexist, lin-
ear coupling to the magnetization ensures that the mimi-
mum of the free energy is at m ∝ sinφ. The GL analysis
is valid near Tc where indeed a sinφ-like shape develops
from the step-like behavior of the same symmetry.27 The
spatial profile of the magnetization, shown in Fig. 3(a),
confirms that it is constrained to the region of the order
of the coherence length around the junction’s interface.

In general the magnetization linearly couples to the
component of the d-vector for which the surface is pair
breaking, and hence will be along the ẑ axis for the re-
maining two situations. The phase dependence also be-
comes more complex if there is pairing in the subdom-
inant s-wave channel on the triplet side, as in cases b)
and c). Recall that we have a chiral triplet order stabi-
lized in the bulk. Reduction in the triplet kx component

near the interface generically implies ∆↑↓i,i+x̂ 6= −∆↑↓i,i−x̂,

and allows for admixture of singlet pairing. The differ-
ence from the well-known case of subdominant pairing
near the surfaces in d-wave superconductors39 is that it
is the same coupling constant V ↑↓ that promotes cou-
pling in both channels, and therefore the admixture is
at least parametrically stronger than in the case of sub-
dominant coupling. Indeed, it was found that even small
variations in the surface barrier at the boundary of a
triplet superconductor generated a substantial admix-
ture of a singlet component and emergence of mixed par-
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FIG. 4. (Color online). Spatial dependence of the spin-
polarization and integrated interface magnetization vs applied
phase difference for the cases of helical (a), and chiral (b) sym-
metry order parameters. The pairing amplitudes are com-
puted self-consistently with the constraint of a given phase
drop at the interface.

ity superconductivity near the edge29. Assuming that
it is the subdominant extended s-wave that is coupled
to the triplet component near the interface, the lin-
ear coupling terms in the GL expansion take the form
fm = b′m[ψ(x)∗∂xη(x) + ψ(x)∂xη(x)∗], and promote
m ∝ cosφ phase dependence of the magnetization (a sim-
ilar term was found in the microscopic theory40). This is
illustrated in Figs. 2(b1) and 2(c1), where the ky com-
ponent of the chiral order is suppressed concomitantly
with the kx component (in contrast to Fig. 2(a1)), and
the magnetization already exists without the phase dif-
ference across the junction.

In principle both sinφ and cosφ contributions should
be present in such a junction, leading to a non-trivial
phase dependence. However, we believe that in case b)
the competition with the subdominant pairing on the
SC2 side causes the triplet components to decay more
rapidly towards the interface and save energy via singlet
pairing (compare Fig. 2(a1) and Fig. 2(c1)), enhancing
the latter term, and exhibiting dominant cosφ behavior.
Indirectly this is also supported by the magnetization
that is more sharply localized near the interface, com-
pare Fig. 3(a) and Fig. 3(b).

Finally, inclusion of the on-site s-wave pairing for case
c) dramatically extends the range of coexistence of triplet
and singlet pairing in SC2, see Fig. 2(c1). This implies a
more pronounced competition between the non-gradient
and gradient couplings of the superconducting orders to
the magnetization, but there is an additional complex-
ity because the “local” s-wave component suppresses the
ky component of the pairing faster than the kx compo-
nent, Fig. 2(c1). The induced s-wave order on the SC2
side is phase-locked to the triplet component, yielding

FIG. 5. (Color online). Comparison of the order parameters
for a chiral spin-triplet heterostructure at a representative
phase difference φ/π = 0.3 as obtained by a non optimized
procedure for the pairing amplitudes (a), and by minimizing
the Gibbs potential in the presence of the phase drop con-
straint (b).

a finite magnetization that only weakly depends on the
phase for φ ∈ (0, π/2), but changes sign as the phase
difference approaches π. Presumably this occurs because
of additional states appearing due to the singlet com-
ponent changing sign across the junction. This view is
supported by considering the spatial profile of the mag-
netization, Fig. 3(c), which shows a two-peak structure
for small φ, including the contribution away from the in-
terface, but only exhibits a single peak at the interface
for φ = π. The resulting phase dependence of the mag-
netization contains many Fourier components.

Analysis of the energy spectrum, Fig. 3(d), supports
these conclusions. If the structure of the order parameter
near interface plays the major role in the emergence of
the magnetization, nearly grazing trajectories must have
a significant contribution. Indeed, the spin-split branches
of Andreev states crossing the Fermi surface are moved
to large values of ky/π ≈ 0.5. In addition, there is a sec-
ondary branch for the occupied states just below the gap
edge at large ky, and the peak in the energy dispersion of
this state implies a van-Hove-like singularity contributing
to the net M .
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At this stage, it is useful to compare the obtained re-
sults with the phase dependent magnetization profiles for
the same singlet-triplet junctions found by by searching
for solutions where the pairing amplitudes are optimized
under the constraint of a step-function profile for the
phase φ across the interface. Such a comparison allows to
evaluate how the phase dependent interface magnetiza-
tion is affected by allowing the singlet and triplet order
parameters to further adjust in order to minimize the
Gibbs potential in the presence of a constrained phase
drop at the interface. In Fig. 4 we present the result-
ing spin-polarization for the cases of helical and chiral
symmetry of the order parameters in the triplet side of
the heterostructure. As one can observe the helical case
is substantially unaffected by allowing further optimiza-
tion of the order parameters with respect to the case in
Fig. 2. Hence, the result indicates that the response to
a single-step phase twist of the order parameter is very
close to the ground state configuration and further op-
timization does not produce significant changes in the
order parameter amplitudes. On the other hand, slight
differences in the overall magnetization profile are ob-
tained for the case of the chiral symmetry spin-triplet
superconductor. Though the qualitative behavior of the
spin polarization is not modified, confirming a cos[φ] like
functional behavior, differences emerge close to the point
where the magnetization changes sign. The magnetiza-
tion exhibits rapid variations close to φ = π/4 with a
further slope change close to φ ∼ π/2. Such behavior in-
dicates that in the phase window [π/4±2π, π/2±2π] the
system optimizes the energy by reducing the mixing of
the order parameters close to interface, and renormaliz-
ing down the integrated magnetization accordingly. This
is evident from Fig. 5 where we compare the order pa-
rameter profiles for the two approaches. Finally, for the
heterostructure between the singlet and a mixed-parity
singlet-triplet superconductor, we find that the magneti-
zation exhibits largely the same behavior as that already
shown in Fig. 2(c2). However, notably, in the region
where the magnetization has an abrupt jump (φ ∼ π/4)
the analysis shows a tendency to an instability towards
solutions with an inhomogeneous phase gradient across
the interface. We find that there are many competing
states which are very close in energy and thus the sys-

tem exhibits a highly non trivial phase response which
was already anticipated by the first-order like jump in
the magnetization response (Fig. 2(c2)). For the phase
differences very close to that value we may expect slight
differences in the magnetization values from those found
above, but the overallM(φ) dependence, and our qualita-
tive results, remains unchanged. A variation of the phase
away from the interface may reduce the phase drop at the
junction interface thus constraining the phase space of
the possible magnetic configurations that can be achieved
in the heterostructure. Further investigation along this
direction is left for future work.

IV. CONCLUSIONS

We showed that the magnetic properties of singlet-
triplet heterostructures are extraordinary sensitive to the
type of triplet pairing, and to subdominant pairing chan-
nels. The dependence of the magnetization on the phase
distinguishes between helical and chiral pairing. Vice
versa, our results allow control of the interface magneti-
zation by the phase difference. We considered an inter-
face of good transparency and identical band structure
on both sides. Relaxing this assumption will reduce the
amplitude of the leaking superconducting component. In
the first two cases we expect a reduction in the ampli-
tude of M(φ), while in the last example the magneti-
zation is weakly sensitive to the interface mismatch ex-
cept near φ ∼ π. Finally, our results suggest that such
junctions act as possible spin pumps. A voltage bias
across the heterostructure would make the phase differ-
ence time-dependent, φ = 2eV t, and the dynamics of
the magnetization is determined by this driving force as
well as damping. If damping is small, for our last case
of mixed-parity superconductor in contact with a con-
ventional s-wave system, the magnetization oscillations
do not average to zero over a period of π/eV . Detailed
investigation of this effect is left for future work.
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