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We examine the statics and dynamics of vortices in the presence of a periodic quasi-one dimen-
sional substrate, focusing on the limit where the vortex lattice constant is smaller than the substrate
lattice period. As a function of the substrate strength and filling factor, within the pinned state
we observe a series of order-disorder transitions associated with buckling phenomena in which the
number of vortex rows that fit between neighboring substrate maxima increases. These transitions
coincide with steps in the depinning threshold, jumps in the density of topological defects, and
changes in the structure factor. At the buckling transition the vortices are disordered, while be-
tween the buckling transitions the vortices form a variety of crystalline and partially ordered states.
In the weak substrate limit, the buckling transitions are absent and the vortices form an ordered
hexagonal lattice that undergoes changes in its orientation with respect to the substrate as a func-
tion of vortex density. At intermediate substrate strength, certain ordered states appear that are
correlated with peaks in the depinning force. Under an applied drive the system exhibits a rich
variety of distinct dynamical phases, including plastic flow, a density-modulated moving crystal,
and moving floating solid phases. We also find a dynamic smectic-to-smectic transition in which the
smectic ordering changes from being aligned with the substrate to being aligned with the external
drive. The different dynamical phases can be characterized using velocity histograms and the struc-
ture factor. We discuss how these results are related to recent experiments on vortex ordering in
thin films with periodic thickness modulations. Our results should also be relevant for other types
of systems such as ions, colloids, or Wigner crystals interacting with periodic quasi-one-dimensional

substrates.

PACS numbers: 74.25.Wx,74.25.Uv,74.25.Ha

I. INTRODUCTION

Commensurate-incommensurate transitions are rele-
vant to a number of condensed matter systems that can
be effectively described as a lattice of particles inter-
acting with an underlying periodic substrate. A com-
mensurate state occurs when certain length scales of
the particle lattice match the periodicity of the under-
lying substrate, such as when the number of particles
is equal to the number of substrate minima'2. Typi-
cally when commensurate conditions are met, the sys-
tem forms an ordered state free of topological defects,
while at incommensurate fillings there are several pos-
sibilities depending on the strength of the substrate. If
the substrate potential is weak, the particles maintain
their intrinsic lattice structure which floats on top of the
substrate, while for strong substrates a portion of the
particles lock into a configuration that is commensurate
with the substrate while the remaining particles form
excitations such as kinks, vacancies, or domain walls.
At intermediate substrate strengths, the lattice order-
ing can be preserved but there can be periodic distor-
tions or rotations of the particle lattice with respect to
the substrate lattice>®. These different cases are as-
sociated with differing dynamical responses of the par-
ticles under the application of an external drive®” 1,
When kinks or domain walls are present, multi-step de-
pinning process can occur when the kinks become mo-
bile at a lower drive than the commensurate portions

of the sample™®. Examples of systems that exhibit
commensurate-incommensurate phases include atoms ad-
sorbed on atomic surfaces™?, vortices in type-II super-
conductors interacting with artificial pinning arrays'? 24,
vortex states in Josephson-junction arrays>2%, super-
fluid vortices in Bose-Einstein condensates in the pres-
ence of co-rotating optical trap arrays2” 2, cold atoms
and ions on ordered substrates’ 33, and colloidal par-
ticles on periodic 83437 and quasi-periodic optical
substrates3®39,

In the superconducting vortex system, commensura-
bility occurs when the number of vortices is an inte-
ger multiple of the number of pinning sites, and vari-
ous types of commensurate vortex crystalline states can
occur with different symmetries!?3:16:17:19 At fillings
where there are more vortices than pinning sites, it
is possible to have multi-quantized vortices occupy the
pinning sites, and a composite vortex lattice can form
that is comprised of individual or multiple flux-quanta
vortices localized on pinning sites coexisting with vor-
tices located in the interstitial regions between the pin-
ning sites!'?19723 Ordered commensurate vortex states
have been directly imaged with Lorentz microscopy!? and
other imaging techniques*® 42, and the existence of com-
mensurate states can also be deduced from changes in the
depinning force needed to move the vortices, with peaks
or steps appearing in the critical current as a function
of vortex density!?!422, It is also possible for ordered
vortex structures such as checkerboard states to form at



rational fractional ratios of n/m with integer m and n,
where n is the number of vortices and m is the number
of pinning sites?® 44, Experiments” and simulations®4°
of colloidal assemblies on optical trap arrays examined
the depinning transitions and subsequent sliding of the
colloids and show that the depinning threshold is maxi-
mum for one-to-one matching of colloids and traps, while
it drops at incommensurate fillings due to the presence

of highly mobile kinks, anti-kinks, and domain walls.

Commensurate-incommensurate transitions can also
occur for particles interacting with a periodic quasi-one-
dimensional (q1D) or washboard potential, where the
particles can slide freely along one direction of the sub-
strate but not the other. An example of this type of
system is shown in Fig. 1 for a two-dimensional system
of vortices interacting with a quasi-one dimensional si-
nusoidal substrate. The potential maxima are indicated
by the darker shadings, so the vortices are attracted to
the light colored regions. This type of system has been
studied previously for colloids interacting with q1D pe-
riodic substrate arrays, where it was shown that vari-
ous melting and structural transitions between hexago-
nal, smectic, and disordered colloidal arrangements can
occur?052 In general, the colloidal studies focused on
the case where the particle lattice constant a is larger
than the substrate lattice constant w. Martinoli et al.
investigated vortex pinning in samples with a 1D peri-
odic thickness modulation®® % and observed broad com-
mensuration peaks in the depinning threshold that were
argued to be correlated with the formation of ordered
vortex arrangements that could align with the substrate
periodicity. Other vortex studies in similar samples
also revealed peaks in the critical depinning force as-
sociated with commensuration effects®:57, while studies
of vortices interacting with 1D magnetic strips showed
that commensurate conditions were marked by depinning
steps rather than peaks®®. Under an applied dc drive, de-
pinning transitions occur into a sliding state, and when
an additional ac drive is added to the dc drive, a series of
Shapiro steps in the voltage-current curves appears when
the frequency of the oscillatory motion of the vortex lat-
tice moving over the periodic substrate locks with the
ac driving frequency®. Similar commensuration effects
and Shapiro step phenomena were also studied for vor-
tices interacting with periodic washboard potentials or
q1D periodic sawtooth substrates®. Vortices interacting
with periodic q1D planar defects have also been studied
in layered superconductors when the field is aligned par-
allel to the layer directions. Here, different vortex lattice
structures, smectic states, and oscillations in the critical
current occur as a function of applied magnetic field%0-67.

For higher vortex densities in the presence of a qlD
substrate where the vortex lattice constant a is smaller
than the substrate lattice constant, a < w, there are
several possibilities for how the vortices can order. In
the weak substrate limit, they can form a hexagonal lat-
tice containing only small distortions, while in the strong
substrate limit the vortices could be strongly confined in
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FIG. 1: The real space images (left column), with the sub-
strate minima indicated by lighter regions and the vortex posi-
tions marked with circles, and the structure factor S(k) (right
column), for a system with a periodic quasi-one-dimensional
substrate with F, = 1.5. (a,b) At w/a = 1.85, each substrate
minimum contains a single row of vortices (r1) and the struc-
ture factor shows smectic order. (c,d) w/a = 2.054, at the
onset of a buckling transition. (e,f) At w/a = 2.651 there is
an ordered zig-zag rp vortex lattice. (g,h) At w/a = 3.0 there
is a mixture of two and three vortex rows per potential well.

each potential minima to form 1D rows, so that the over-
all two-dimensional (2D) vortex structure is anisotropic.
Between these limits, the vortices could exhibit buckling
transitions by forming zig-zag patterns within individual
potential troughs, so that for increasing vortex density
there could be a series of transitions at which increas-



ing numbers of rows of vortices appear in the potential
troughs. Transitions from 1D rows of particles to zig-
zag states or multiple rows have been studied for par-
ticles in single q1D trough potentials in the context of
vortices®® 7%, Wigner crystals”' "3, colloids™ "> 77, q1D
dusty plasmas™7, ions in ql1D traps®® 32, and other
systems®3®* where numerous structural transitions, dif-
fusion behavior and dynamics can occur. In the case of a
periodic array of channels such as shown in Fig. 1, much
less is known about what buckling transitions would oc-
cur and what the dynamics would be under an applied
driving force. Recently Guillamén et al. studied vortex
lattices in samples with a periodic q1D array of grooves.
As a function of the commensuration ratio p = w/a, they
found that for p < 6, the vortex lattice remains triangular
but undergoes a series of transitions that are marked by
rotations of the angle # made by the vortex lattice with
respect to the substrate symmetry direction®®. They also
observed that at much higher fields, the system transi-
tions into a disordered state with large vortex density
fluctuations. Open questions include what happens to
these reorientation transitions as the substrate strength
is increased, and what are the vortex dynamics when a
driving force is applied. Dynamical phases and structural
transitions between different kinds of nonequilibrium vor-
tex flow states have been extensively studied for driven
vortex systems interacting with random86°! and 2D pe-
riodic pining arrays®%°3; however, there is very little work
examining the dynamic vortex phases for vortices moving
over 1D periodic substrates. It is not known whether
the vortices would undergo dynamical structural transi-
tions or exhibit the same types of dynamic phases found
for vortices driven over random disorder, such as a dis-
ordered plastic flow state that transitions to a moving
smectic or anisotropic crystal as a function of increasing
drive.

In this work we consider ordering and dynamics of vor-
tices interacting with a periodic q1D sinusoidal potential
for fillings 0 < p < 5.5. We study a model represen-
tative of vortices in a slab of superconducting material
with a q1D surface modulation that is small compared
to the slab thickness. In the strong substrate regime,
the system undergoes a series of structural transitions
that are related to the number of rows of vortices that fit
within each substrate trough. These transitions include
transformations from 1D vortex rows to zig-zag patterns
that gradually increase the number of rows that are con-
fined in a single potential trough. The vortex structure
contains numerous dislocations at the buckling transi-
tions and is ordered between the buckling transitions.
For strong substrates, the transitions between buckling
and ordered phases produce a series of steps in the critical
current or depinning force as a function of vortex density,
while for weaker substrate strengths, some of the states in
which the vortices order produce peaks in the depinning
force. For the weakest substrates, the vortices form a tri-
angular lattice that undergoes rotations with respect to
the underlying substrate symmetry direction as a func-

tion of applied magnetic field, similar to the behavior
observed by Guillamon et al.3%. Under an applied drive
we observe plastic flow states, moving density-modulated
crystals, and dynamic floating solids. For certain fillings
we also find smectic-to-smectic transitions where the two
smectic states have different orientations. These different
flowing phases produce distinct features in the velocity
histograms and the structure factor. The commensura-
bility ratio p also strongly affects the driving force at
which the transition to a moving floating solid occurs.
Our results should be general to other types of systems
that can be represented as a collection of repulsive par-
ticles interacting with a periodic q1D substrate, such as
colloids on optical line traps, ions in coupled traps, and
Wigner crystals on corrugated substrates.

II. SIMULATION

We model a two-dimensional system of vortices in-
teracting with a periodic q1D potential with period w,
where there are periodic boundary conditions in the z
and y-directions. The vortices are modeled as point par-
ticles and the dynamics of an individual vortex i obeys
the following equation of motion:

dR;
dt

N =F  +F +F,+F. (1)
Here 7 is the damping constant which we set
equal to unity. The vortex-vortex forces F}¥ =
Z;-V:Ul F()Kl (le/)\)f{,”, where FO = ¢(2J/27Tu0)\3, gbo is the
elementary flux quantum, p is the permittivity, K is the
modified Bessel function, R; is the location of vortex i,
Rij = |Rl — Rj|, Rij = (Rz — Rj)/Rij, and A\ is the
penetration depth. If we match our simulation parame-
ters to the experiment in Ref.?* on Nb thin films, as an
example, we have n = 1.4 x 10712 N s/m, A\ = 368 nm,
and Fy = 1.09 x 10° N/m. The vortices have repulsive
interactions and form a triangular lattice in the absence
of a substrate.

The vortex interaction with the substrate is given by
F? = —VV(z;)% where the substrate has the sinusoidal
form

V(z) = Vysin(2mz/w). (2)

We define the pinning strength of the substrate to be
F, = Fy2nVp/w. Possible ways to experimentally cre-
ate this type of pinning include growing a uniform thin
superconducting film on a wave-modulated substrate or
on a flat substrate with periodically modulated interface
properties, or growing a superconducting film with pe-
riodic thickness modulations. The dc driving force FY,
arises from the Lorentz force induced by a current ap-
plied along the easy direction (y-axis) of the substrate
which produces a perpendicular force on the vortices and
causes them to move in the z-direction in our system.
Our simulations are performed in the limit that is well



below the Larkin-Ovchinnikov instability where vortex
cores may deform®. We measure the vortex velocity
(V) along the driving direction as we increase the ex-
ternal drive in increments of 6 F,;, and average the vortex
velocities over a fixed time in order to avoid any tran-
sient effects. The thermal forces F1 are modeled as ran-
dom Langevin kicks with the properties (Fr) = 0 and
(FL(O)F7 (1)) = 2nkpTé;;0(t—t"), where kp is the Boltz-
mann constant. The initial vortex positions are obtained
by annealing from a high temperature state and cooling
down to T' = 0. The dc drive is applied only after the
annealing procedure is completed. We consider a range
of vortex densities, which we report in terms of the ra-
tio w/a of the periodicity of the substrate to the vortex
lattice constant that would appear in the absence of a
substrate. We denote a state containing n rows of vor-
tices in each potential minimum as r,.

III. PINNED PHASES

In Fig. 1(a,c,e,g), we plot the real space locations of
the vortices on the potential substrate after annealing
for a system with F, = 1.5 at fillings of w/a = 1.85,
2.054, 2.651, and 3.0, while in Fig. 1(b,d,f,h) we show
the corresponding structure factors S(k). At w/a = 1.58
in Fig. 1(a) the vortices form single 1D rows in each po-
tential minimum, corresponding to an r; state, and the
overall vortex structure is highly anisotropic with lattice
constants a, = 4.5 in the x—direction and a, = 1.31
in the y—direction. Additionally, each potential trough
captures a slightly different number of vortices, introduc-
ing disorder in the alignment of rows in adjacent minima,
and leaving the system with periodic ordering only along
the z-direction. The corresponding structure factor in
Fig. 1(b) exhibits a series of spots at k, = 0.0 and finite
k2, indicative of the 1D ordering associated with a smec-
tic phase. As the magnetic field increases, the vortex
ordering must become increasingly anisotropic in order
to maintain single rows of particles in each minimum.
This is energetically unfavorable, so instead a transition
occurs to a zig-zag or buckled state in which there are
two partial rows of vortices in every substrate minimum.
Figure 1(c) illustrates the real space vortex positions for
w/a = 2.054 at the beginning of the zig-zag transition,
where some of the troughs contain a buckled vortex pat-
tern. In the corresponding S(k) plot in Fig. 1(d), the
smectic ordering develops additional features at large k
associated with the shorter range structure that arises on
the length scale associated with the zig-zag pattern. As
the magnetic field is further increased, the zig-zag pattern
appears in all the substrate minima and the system forms
an ordered anisotropic 2D rg lattice as shown in Fig. 1(e)
for w/a = 2.651, where there are two rows of vortices in
each potential minimum that form a zig-zag structure
which is aligned with zig-zag structures in neighboring
minima. The corresponding S(k) in Fig. 1(f) has a se-
ries of peaks at small and large k indicating the presence

of a more ordered vortex structure. For higher fields,
the zig-zag lattice becomes increasingly anisotropic un-
til another buckling transition occurs to produce 3 with
three vortex rows per substrate minimum. Figure 1(g)
shows the transition point at w/a = 3.0 where certain
potential troughs contain three vortex rows while others
contain two vortex rows or mixtures of two and three
vortex rows. In Fig. 1(h), S(k) for this case shows that
the system is considerably more disordered than at the
commensurate case illustrated in Fig. 1(e,f).

In Fig. 2 we show the continuation of the evolution of
the vortex lattice from Fig. 1 in both real space and k-
space. At w/a = 3.3 in Fig. 2(a), there is an ordered r3
structure with three vortex rows in each potential mini-
mum, producing the ordered S(k) shown in Fig. 2(b). As
the vortex density is further increased, the row structure
disorders as shown in Fig. 2(c) for w/a = 3.644, corre-
sponding to a ring like structure in S(k) as indicated in
Fig. 2(d). There are still peaks along the k, = 0.0 line
due to the anisotropy induced by the substrate. For this
value of F),, further increasing the vortex density does
not produce a more ordered configuration; however, cer-
tain partially ordered structures can occur as illustrated
in Fig. 2(e) for w/a = 4.1455, where there are four vortex
rows per trough (r4) with mixed peaks and smearing in
the corresponding structure factor shown in Fig. 2(f). At
higher fields, the vortex structures become disordered as
shown in Fig. 2(g) at w/a = 5.15, where S(k) in Fig. 2(h)
has pronounced ring structures. There are still two peaks
at k, = 0 and finite k£, due to the smectic ordering im-
posed by the q1D substrate.

We can also characterize the system using the fraction
of six-fold coordinated vortices P = N1 Ef\;l 5(6—z),
where z; is the coordination number of vortex 7 obtained
from a Voronoi construction. In general, we find that Pg
drops at the buckling transitions due to the formation
of dislocations that are associated with the splitting of
a single row of vortices into two rows, creating a kink
at the intersection of the two rows. In Fig. 3(a) we plot
Ps versus w/a for a system with Fj, = 0.5. Over the
range 1.0 < w/a < 1.7, each pinning trough contains
an 7 state, while the dip in Ps at w/a = 1.77 corre-
sponds to the middle of the buckling transition when
there is roughly a 50:50 mixture of r; and r2. For
1.85 < w/a < 2.35, the system forms an ordered ry state
similar to that shown in Fig. 1(e), but less anisotropic
since the weaker substrate compresses the zig-zag struc-
ture less and permits it to be wider. Near w/a = 2.4,
there is another buckling transition from ry to r3 and the
system forms a disordered state similar to that shown in
Fig. 1(g). As w/a is further increased, there is a partially
ordered state near w/a = 3 that is similar to the state in
Fig. 2(a); however, due to the weaker substrate strength
a fully ordered rs state does not form. For w/a > 3.2 the
system adopts a polycrystalline configuration that be-
comes more ordered at high vortex densities. In Fig. 3(b),
we show that a similar set of features associated with
buckling transitions occurs for a stronger substrate with
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FIG. 2: The continuation of the real space images (left col-
umn) and S(k) (right column) from the system in Fig. 1 with
F, = 1.5. (a,b) At w/a = 3.3, there is an ordered structure
with three vortex rows per potential minimum (r3). (c,d)
At w/a = 3.644, there is a partially disordered state with
roughly three vortex rows per potential minimum. (e,f) At
w/a = 4.1455 there is a partially ordered state with four vor-
tex rows per minimum (74). (g,h) The disordered state at
w/a = 5.15 showing ring structures in S(k).

F, = 1.0; however, in this case the transition from ry to
r3 is sharper and a fully ordered three row state appears
near w/a = 3.0.

In Fig. 3(c) we plot Ps versus w/a for samples with
F, = 1.5, the same pinning strength at which the images
in Figs. 1 and 2 were obtained. Here the dips in Ps asso-

FIG. 3: The fraction of six-fold coordinated vortices Ps vs w/a
for (a) Fp = 0.5, (b) Fp = 1.0, (¢) Fp = 1.5 and (d) Fp = 2.0.
In panel (c), the labels a, c, e, g indicate the values of w/a at
which the images in Fig. 1 were obtained, while the labels A,
C, E, and G indicate the values of w/a at which the images in
Fig. 2 were obtained. The dips in Ps coincide with transitions
in the number of vortex rows contained within each potential
minimum.

ciated with the r1 to rq, o to r3, and r3 to r4 transitions
are sharper. We also observe the development of a small
dip near w/a = 4.4 corresponding to a partial transition
from 74 to 5. The values of w/a at which row transitions
occur shift upward with increasing F},. For example, the
r1 to re transition occurs at w/a = 1.768 for F, =05
but at w/a = 2.05 for F,, = 1.5, since the higher F), sta-
bilizes the r; state up to higher anisotropies. Figure 3(d)
shows Py versus w/a for samples with F,, = 2.0. Here
the dip in P at the ry to ro transition broadens, while
a pronounced jump emerges at w/a = 4.7 corresponding
to the r4 to rs transition. We expect that for higher val-
ues of F),, additional dips in Fs for transitions from r,
to Tp41 states for n > 5 will appear at w/a values higher
than those we consider here.

It is difficult to determine if the buckling transitions
are first or second order in nature. For particles in an
isolated trough, the transition from a single row to a
zig-zag pattern is second order, and there have been sev-
eral studies in cold ion systems of quenches through this
transition in which the density of kinks was calculated for
different quench rates and compared to predictions from
nonequilibrium physics on quenches through continuous
phase transitions®? 2. We expect that the buckling tran-
sitions we observe are second order; however, it may be
possible that the additional coupling to particles in neigh-
boring potential minima could change the nature of the
transition, and we have observed a coexistence of chain
states which is suggestive of phase separation. For vor-
tex systems it could be difficult to change the substrate



FIG. 4: The depinning force F. vs w/a for F, = 0.1 (circles),
0.25 (squares), 0.5 (diamonds), 1.0 (up triangles), 1.5 (left
triangles), and 2.0 (down triangles) showing that for F, >
0.25 the buckling transitions correspond to step features in
F.. The labels a, c, e, g indicate the values of w/a at which
the images in Fig. 1 were obtained, while the labels A, C, and
E indicate the values of w/a at which the images in Fig. 2 were
obtained. Inset: a highlight of the main panel illustrates that
for weaker pinning, peaks in F. occur, as shown for F,, = 0.1
(circles) and 0.25 (squares). The peak is associated with the
formation of an ordered zig-zag lattice similar to that shown
in Fig. 1(e).
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FIG. 5: (a) Real space image of the vortex configuration at
the peak in F. at F, = 0.5 and w/a = 1.94 for the system
shown in the inset of Fig. 4 where an ordered zig-zag structure
occurs. (b) The corresponding S(k) contains various peaks
reflecting the ordered nature of the state.

strength as a function of time, but for colloidal systems
it is possible to create q1D periodic optical substrates of
adjustable depth and use them to study time dependent
transitions by counting the number of kinks that form as
a function of the rate at which the substrate strength is
changed.

In Fig. 4 we plot the depinning force F. versus w/a
for F, = 0.1, 0.25, 0.5, 1.0, 1.5, and 2.0 to show that
the buckling transitions are associated with changes in
the slope of the depinning force, which decreases with
increasing w/a in a series of steps. The first drop in F,

near w/a = 2.0 corresponds to the r; to 7o transition.
In the r; state, the particle-particle interactions roughly
cancel in the z-direction, so the depinning force is approx-
imately equal to F},, while close to the buckling transition
the vortices on the right side of a zig-zag experience an
additional repulsive force in the driving direction from
the vortices on the left side of the zig-zag, decreasing the
driving force needed to depin the vortices. To estimate
the magnitude of this reduction in F., we note that the
average z-direction spacing between vortices in a given
zig-zag is approximately r, = 2.0. For a zig-zag with a
30° angle between the two closest neighbors on the other
side of the chain from each vortex, the vortex-vortex in-
teraction force of K;(2) produces an additional repulsive
force of f, = 0.55, giving a value of F, = F,, — f, that is
close to the value of F, = 0.78 observed after the r1 to 79
step for the F}, = 1.5 system. Similar arguments can be
made for the magnitudes of the drops in F, at the higher
order transitions as well. At w/a = 1.85 in the F,, = 1.5
sample, F, already begins to drop below Fj, even though
the pinned configuration shown in Fig. 1(a) is an 71 state.
This occurs because in this range of w/a, application of
a finite F,; < F, induces a slight buckling of the vortices,
while for w/a < 1.5 the r1 rows remain in a 1D pinned
state up to Fy = F,. The inset of Fig. 4 shows a blowup
of F, versus w/a for the weaker pinning cases F,, = 0.25
and F, = 0.1. At w/a = 1.94 there is a peak in F, for
the F,, = 0.25 sample coinciding with the formation of
the long range ordered zig-zag state shown in Fig. 5(a).
The corresponding S(k) in Fig. 5(b) contains a series of
peaks that reflect the ordered nature of the state, which
resembles the zig-zag state in Fig. 1(e,f) expect that the
system is more ordered and the zig-zag structure is wider.
For F, = 0.1 the zig-zag state transitions into a hexago-
nal lattice and the peak in F, begins to disappear. Some
experiments examining vortices in q1D periodic pinning
structures show that peaks in the critical current occur
at certain fillings®®5°57 in regimes where the pinning is
weak, whereas other experiments performed in the strong
pinning limit reveal more step-like features in the critical
current. This suggests that the experiments in the strong
pinning limit are producing buckling transitions®®.

In Fig. 6 we plot representative real space images with
the matching S(k) for some other substrate strengths to
highlight other types of ordering we observe. Figure 6(a)
shows the real space ordering of the vortices at F,, = 0.5
and w/a = 4.825, where the vortex lattice is polycrys-
talline and contains regions of triangular ordering with
different orientations. The corresponding structure fac-
tor in Fig. 6(b) has ring features with some remnant
of the smectic ordering appearing at smaller values of
k. In Fig. 6(c), at F, = 2.0 and w/a = 4.33 an ry
state appears, while S(k) in Fig. 6(d) has smectic or-
dering features along with additional crystalline ordering
signatures due to the ordered arrangement of the parti-
cles within the troughs. At F, = 2.0 and w/a = 4.67
in Fig. 6(e) a new type of ordered structure appears in
which the vortices can pack more closely by forming al-
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FIG. 6: Real space images (left column), with the substrate
minima indicated by lighter regions and the vortex positions
marked with circles, and S(k) (right column). (a,b) At F, =
0.5 and w/a = 4.825 there is a polycrystalline structure. (c,d)
At F, = 2.0 and w/a = 4.33 there is a partially ordered ry4
structure. (e,f) At F, = 2.0 and w/a = 4.67, an ordered
structure appears. (g,h) At F, = 2.0 and w/a = 5.15 the
structure is disordered.

ternate regions of r3 and r4 states, producing a consider-
able amount of triangular ordering as seen in the plot of
S(k) in Fig. 6(f), where there are sixfold peaks at large
k and smectic peaks at smaller k. In Figs. 6(g,h), for
F, = 2.0 and w/a = 5.15, a more disordered structure
appears, with some regions of the sample containing r4
or 75 states.

@

FIG. 7: Real space images of the vortices in a sample with
F, = 0.2 showing that the hexagonal vortex lattice can adopt
various orientations 6 with respect to the substrate periodicity
direction. (a) At w/a = 2.0, § = 2.4°. (b) At w/a = 3.272,
0 =24°. (c) At w/a = 3.53, 06 = 27.1°. (d) At w/a = 3.75,
0 =13.2°.

IV. LATTICE ROTATIONS FOR WEAK
SUBSTRATES

We have also studied systems with a pinning strength
of F, = 0.02. Here, for w/a > 1.77 the vortices form
a triangular lattice and the features associated with the
buckling transitions observed in Fig. 3 are lost. In this
case the vortex lattice can orient at various angles with
respect to the underlying substrate. We measure this an-
gle as in Ref.®® by identifying the smallest positive angle
between a major symmetry axis of the vortex lattice and
the = axis, which is the underlying substrate periodicity
direction. In Fig. 7(a) we show the real space vortex po-
sitions at w/a = 2.8, where the vortices form a triangular
lattice that is aligned at an angle § = 2.4° with respect
to the z-axis. In Fig. 7(b) at w/a = 3.272, § = 24°, while
in Fig. 7(c) at w/a = 3.53, # = 27.1°, and in Fig. 7(d) at
w/a = 3.75, § = 13.2°. In Ref.3®, Guillamon et al. ob-
served experimentally that vortices on a qlD substrate
retained triangular ordering but that the vortex lattice
was oriented at an angle § ranging from 6 = 0 to 8 = 30°
with respect to the substrate. In several cases, they found
that the system locked to specific angles close to 8 = 30°,
0 = 24°, and § = 0°. We find a much larger variation
in the orientation of the lattice with respect to the sub-
strate as a function of filling than was observed in the
experiments, which may be due to differences the pin-
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FIG. 8: The fraction of six-fold coordinated vortices Ps (dark
black curves) and the average nearest-neighbor distance dn
(light red curves) vs Fy for a system with F, = 1.5. (a)
At w/a = 1.767 the system depins from an r; state. (b)
At w/a = 2.5 the system dynamically orders into a moving
triangular lattice with Ps = 0.97. (¢) w/a = 3.061. (d)
At w/a = 3.535, the onset of the dynamically ordered phase
coincides with a drop in d,, near Fy = 4.0. The labels a, c,
and e correspond to the values of Fy used for the images in
Fig. 9.

ning strength or the finite size of our simulations. Our
results show that for weak pinning, the buckling transi-
tions are lost and are replaced with orientational transi-
tions of the vortex lattice with respect to the substrate.
Another feature we observe when the pinning strength
is increased is that the vortex lattice becomes disordered
or polycrystalline. Guillamon et al. also observe that
at higher fillings the vortex lattice becomes disordered;
however, in their system there are strong random vor-
tex density fluctuations, while for our samples the vortex
density at higher fields is generally uniform.

V. DYNAMIC PHASES

In Fig. 8 we plot simultaneously Ps; and the aver-
age nearest neighbor spacing d,,, versus Fy for a sam-
ple with F, = 1.5 at varied w/a. Here, we obtain
dnn by performing a Voronoi tessellation to identify
the z; nearest neighbors of particle 7, and then take
dpm = (NS, z) POV, > ;=1 7ij, where 1y is the dis-
tance between particle ¢ and its jth nearest neighbor. For
w/a = 1.76 in Fig. 8(a), Ps = 0.83 in the pinned r; state
that occurs for 0 < Fy < 1.4. There is a dip in Py over
the range 1.4 < Fy < 1.7, corresponding to the plastic
flow state in which some of the vortices remain immobile
while other vortices hop in and out of the potential wells.
For Fy; > 1.7, Ps increases and reaches a saturated value

of Ps; = 0.93 when the vortices form a moving triangular
lattice containing a small fraction of dislocations. The
value of d,,,, drops at the depinning transition, and sev-
eral additional drops in d,, occur at higher drives. In
the r; pinned state, each vortex has two close nearest
neighbors that are in the same pinning trough, and four
more distant nearest neighbors that are in adjacent pin-
ning troughs. Once the vortices depin and enter a moving
state, they adopt a more isotropic structure, causing d,
to drop as the distance to the four more distant near-
est neighbors decreases. The additional drops in dpn at
higher F; occur whenever the vortex lattice rearranges
to become still more isotropic.

In Fig. 8(b) we plot Ps and d,,,, versus F; for the same
sample at w/a = 2.5 where an ordered zig-zag state with
Ps = 0.89 appears at zero drive, as shown in Fig. 1(e).
The depinning threshold is F, = 0.65, much lower than
the value of F, for the w/a = 1.767 filling in Fig. 8(a),
and the depinning transition is marked by a drop in P
to Ps = 0.2. Over the range 0.65 < F; < 2.0, the
vortices are in a dynamically disordered state, while the
saturation of d,,,, above Fj; ~ 2.0 indicates that a par-
tially ordered state has formed. The value of Py does
not reach a maximum until Fy = 3.9, where Ps ~ 0.97
and an ordered state appears. For 1.5 < F; < 3.9, we
observe a moving density-modulated solid. The value of
F' the drive at which the sample reaches a moving tri-
angular lattice state, is higher for w/a = 2.5 than for
w/a = 1.767, even though the depinning threshold F. is
smaller for the w/a = 2.5 system. At w/a = 2.5, dp,
is initially small and jumps up at the depinning transi-
tion, unlike the decrease in d,, at depinning found in
Fig 8(a). Since the vortices in Fig. 8(b) form a zig-zag ro
structure in the pinned state, each vortex has four close
nearest neighbors in the same pinning trough, and two
more distant nearest neighbors in an adjacent pinning
trough. This causes dy,, to be smaller in the pinned state
than it was for the r; structure in Fig. 8(a), and when
the vortex lattice becomes more isotropic in the moving
state, dp, increases rather than decreasing as the two
halves of each zig-zag structure move further apart. At
F; = 4.1 we observe a drop in d,, that coincides with
a dip in FPs. This feature is associated with a transi-
tion from a density-modulated lattice to a more uniform
moving floating lattice.

In Fig. 8(c), we show Ps and d,,,, versus Fy at w/a =
3.06 where there is an r3 pinned state, as illustrated in
Fig. 2(a). Here the depinning threshold F, = 0.3, and
the system transitions into a moving triangular lattice at
F™ = 1.6, which is somewhat lower than the value of
F! for w/a = 2.5 in Fig. 8(b). The behavior of d,, in
Fig. 8(c) follows a similar pattern as in Fig. 8(b), with d,,,
increasing with increasing F,;. We plot the same quan-
tities for w/a = 3.53 in Fig. 8(d), where the depinning
threshold F, = 0.087 and the system dynamically orders
for Fy > 4.0. There is a small dip in d,, at Fy = 4.15
along with a saturation in Ps which is correlated with a
structural change to a dynamic floating lattice.
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FIG. 9: Real space images (left column), with the substrate
minima indicated by lighter regions and the vortex positions
marked with circles, and S(k) (right column) for the dynamic
system from Fig. 8(d) with F}, = 1.5 and w/a = 3.535 at the
values of Fy labeled a, ¢, and e. (a,b) At Fy = 0.5 the sample
contains pinned vortices coexisting with individual vortices
that hop from trough to trough. (c,d) At F; = 3.5, all the
vortices move together to form a disordered lattice with a
periodic density modulations. (e,f) At Fy = 7.0 the system
forms a moving floating triangular lattice.

In order to characterize the nature of the dynamic vor-
tex structures in the moving states, in Fig. 9(a,b) we plot
the real space images and S (k) for the system in Fig. 8(d)
at w/a = 3.53 and Fy; = 0.5. Here, individual vortices
jump from one pinning well to the next while a portion
of the vortices remain immobile in the substrate minima.
As shown in the plot of S(k), the vortex configuration
is fairly ordered and takes the form of a distorted non-
triangular structure which causes P to be low for this
value of Fy. For F; > F,, the vortices move together so
there is no plastic motion, and form a distorted lattice
containing pronounced density modulations as shown in
Fig. 9(c,d) for Fy = 3.5. For Fy; > 4.0 we find a tran-
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FIG. 10: Vortex velocities for the system in Fig. 9 with
F, = 1.5 and w/a = 3.535. Left column: Histogram P(V;)
of the instantaneous vortex velocities in the driving direction
Vz. Center column: Histogram P(Vj,) of the instantaneous
vortex velocities in the transverse direction V,. Right col-
umn: Heightfield map of V, versus V,. (a,b,c) The plastic
flow regime at Fy = 0.5. (d,e,f) The moving modulated solid
regime at Fg = 3.5. (g,h,i) The moving floating solid regime
at Fy =7.0.

sition from the density modulated lattice to a moving
homogeneous floating triangular lattice which coincides
with the drop in d,,, in Fig. 8(d) and the maximum in Ps.
Fig. 9(e) shows the floating lattice at Fy = 7.0, where as
illustrated in Fig. 9(f) S(k) contains sixfold peaks that
are indicative of triangular ordering. The smectic order-
ing induced by the substrate is substantially weaker or
almost absent at this drive, as shown by the weakness
of the spots in S(k) at k, = 0, indicating that the sys-
tem has formed a floating solid. We find similar types of
transitions in the dynamics at other fillings as well.

We can also characterize the different dynamic states
in Figs. 8 and 9 by examining histograms of the vortex
velocities. In Fig. 10(a) we plot the distribution P(V}) of
V; in the driving direction at Fy = 0.5 for the system in
Fig. 8(a,b) with F,, = 1.5 and w/a = 3.535. Figure 10(b)
shows the transverse velocities P(V,), while in Fig. 10(c)
we plot V,, versus V, as a heightfield map. At this drive,
the motion is plastic and occurs by individual vortex hop-
ping, so there is a sharp peak in P(V;) at V, = 0.15 which
reflects the fact that most of the vortices are slowly mov-
ing within an individual pinning trough. When a single
vortex jumps into an adjacent pinning trough, it creates
a pulse of motion through the trapped vortices that trig-
gers the jump of another single vortex to the next pinning
trough, where the process repeats. This depinning cycle
creates two peaks in P(V,). The peak at low V, cor-
responds to the motion of a velocity pulse through the



dense assembly of vortices at the bottom of the pinning
trough, while the peak at high V, is produced by in-
dividual vortices escaping over the potential maximum.
This peak falls near V,, = 1.1, which is larger than Fy,
reflecting the fact that after an individual vortex passes
the crest of the substrate maximum, the substrate con-
tributes an additional force term in the driving direction
as the vortex moves toward the next substrate minimum.
In this case the maximum force exerted by the pinning
site is F,, = 1.5 while the driving force is Fy = 0.5, so
that the maximum possible instantaneous vortex velocity
would be V., = 2.0; however, vortex-vortex interactions
prevent individual vortices from moving this rapidly. In
Fig. 10(b), P(V,) is centered at V,, = 0 since there is
no driving force in the transverse direction; however, we
observe some asymmetry in P(V,) as well as peaks at
finite V}, due to the fact that the vortex lattice segments
inside the pinning troughs are oriented at an angle with
respect to the substrate symmetry direction, as shown in
Fig. 9(a). This asymmetry also appears in the V,, versus
V.. plot in Fig. 10(c), which has two prominent features.
The first is a wide band of V}, values at low V,, that are
associated with soliton-like pulses moving through the
dense regions of the vortex clusters, which pushes vor-
tices in both the positive and negative y-direction.

In Fig. 10(d,e,f) we show instantaneous velocity plots
for the system in Fig. 9(c,d) with Fy = 3.5 where the
vortices are moving elastically in the density-modulated
solid phase. Here P(V,) in Fig. 10(d) has peaks at
Ve = 2.01 and V,, = 4.75 which are smoothly connected
by finite P(V,) values. The shape of this histogram shows
the velocity imposed by the driving force of Fy = 3.5
when the substrate forces alternately act with or against
the driving force. When the substrate force is against
the drive the velocity is V, = Fjy — F,, = 2.0, while when
the substrate and driving forces are in the same direc-
tion, V, = Fy + F, = 5.0, close to the observed values
of the peaks in P(V,). In Fig. 10(e), P(V,) has two
peaks close to V;, = 0.1 and V}; = —0.1, indicating that
there is an oscillatory motion in the y-direction. This
effect can be seen more clearly in the V,, versus V, plot
in Fig. 10(f) which has two symmetric lobes. Since the
vortices are in a density-modulated lattice, shearing in
the y-direction occurs between adjacent density modula-
tions, with one density modulation moving in the pos-
itive y-direction while the other moves in the negative
y-direction.

The velocity plots for the system in Fig. 9(e,f) at Fy =
8.5 appear in Fig. 10(g,h,i). In Fig. 10(g), P(V;) has a
two-peak feature similar to that in Fig. 10(d), but with
peak values at V,, = 7.0 and V,, = 10. Figure 10(h) shows
that P(V,) has a single peak centered at V}, = 0, while in
Fig. 10(i), there is a single lobe in the V,, versus V, plot.
Here the vortices have formed a floating triangular solid,
and their motion is close to one-dimensional along the
driving direction. As Fy is further increased, the width
of the lobe feature gradually decreases. We find similar
histograms for the other fillings in the strong pinning
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FIG. 11: Real space images (left column), with the substrate
minima indicated by lighter regions and the vortex positions
marked with circles, and S(k) (right column) for a system
at F, = 0.5 and w/a = 1.767. (a,b) The plastic flow phase
at Fy = 0.3 where there is individual vortex hopping form
well to well and S(k) indicates a smectic phase with periodic
ordering along the z—direction. (c,d) At Fy = 0.6, all the
vortices are flowing and form chains that are aligned in the x-
direction. S(k) shows that a new smectic order has appeared
with periodic ordering along the y-direction. (e,f) At Fy = 3.6
there is a moving floating triangular crystal.

limit for the plastic flow, moving modulated solid, and
moving floating solid regimes.

A. Smectic to Smectic Transitions

For F}, < 1.0, we find that a dynamically induced smec-
tic to smectic transition can occur. In Fig. 11(a,b) we
show the real space and S(k) images for a system with
F, = 0.5 and w/a = 1.767 in the plastic flow regime
where there is a combination of vortices that are trapped
in the pinning troughs and a smaller amount of vortices
that hop by jumping from one trough to the next and
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FIG. 12: Vortex velocities for the system in Fig. 11. Left col-
umn: P(V,). Center column: P(V;). Right column: Height-
field map of Vj, versus V;. (a,b,c) The plastic flow phase at
Fyq = 0.3 where there is a large peak in P(V;) at V; = 0 due
to the pinned vortices. (d,e,f) The moving smectic phase from
Fig. 11(c,d) at Fq = 0.6. (g,h,i) The moving triangular solid
phase at Fy = 3.6.

then triggering a jump of another vortex from one trough
to the next. Here, S(k) indicates that the overall system
has smectic ordering due to the chain-like structure of
the vortices within the pinning troughs. In Fig. 12(a) we
plot P(V,) at Fy = 0.3, where there is a peak at V,, =0
due to the pinned vortices along with a small bump at
V = 0.6 due to the vortex hopping. Figure 12(b) shows
that P(V,) has a maximum at V;, = 0, while in Fig. 12(c),
the V,, versus V, plot is asymmetric in V,,, with a peak at
Ve =V, = 0.0 and a second peak at higher V, produced
by the moving vortices.

In Fig. 11(c) we show the real space vortex configura-
tion at Fy = 0.6, which is higher than the maximum pin-
ning force of F,, = 0.6. All the vortices are in motion, but
instead of retaining their alignment along the y-direction
induced by the substrate, they form a chain-like structure
aligned in the z-direction with a slight tilt in the posi-
tive y-direction. This alignment in the drive direction is
more clearly seen in the corresponding S(k) in Fig. 11(d),
where the peaks fall along k,; = 0.0, indicating a smec-
tic phase with ordering along the y-direction. There are
some very weak peaks on the k, = 0.0 axis due to the sub-
strate, but overall the vortex structure is a smectic state
rotated 90° from the y-axis. The strongest S(k) peaks
do not fall exactly at k, = 0 but are at a slight angle,
due to the channels in Fig. 11(c) being slightly tilted in
the positive y-direction. In Fig. 12(d), the corresponding
P(V,) shows a peak at V,, = 0.19, while there is an ab-
sence of weight in P(V,,) at V; = 0.0, indicating that the
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vortices are always in motion. Figure 12(e) shows that
P(V,) peaks at V,, = 0.0 and has an overall asymmetry,
which also appears in the V,, versus V, plot in Fig. 12(f).
The vortex channeling occurs when the vortices form ef-
fective pairs aligned along the z-direction. In each pair,
one vortex is slowed by the backward-sloping side of the
potential trough, while the other vortex is being sped up
by the forward-sloping side of the potential. The faster
vortex pushes the slower vortex, giving the pair an in-
creased net motion along the x direction. This pairing
effect is visible in the real space image in Fig. 11(c).

As Fy further increases, there is a transition to a
flowing solid phase as shown in Fig. 11(e,f) for Fy =
3.6, where S(k) has sixfold ordering. The correspond-
ing P(V,) in Fig. 12(g) has two peaks, while P(V})
in Fig. 12(h) has a symmetrical distribution with three
peaks indicating that there is an oscillation in the vor-
tex orbits in the z-direction. The plot of Vj, versus V
in Fig. 12(h) contains a single lobe similar to that found
for the moving floating solid in Fig. 10(i). As Fy is in-
creased still further, the width of this lobe decreases.
The smectic-to-smectic transition is limited to the range
1.5 < w/a < 2, in which two vortices can fit between
adjacent potential maxima in the dynamically moving
regime.

VI. DYNAMICAL PHASE DIAGRAM

For F, > 0.25, the drive F?* at which the system tran-
sitions from a density modulated moving crystal to an
ordered moving floating solid shows considerable varia-
tion with w/a, particularly for the larger values of F.
In Fig. 13(a) we plot F?", determined from the location
of a feature in Ps, versus w/a for F, = 0.5, 1.0, 1.5,
and 2.0. For F, = 0.5, F" has a local maximum near
w/a = 2.5, and then drops for w/a > 3.0. In the pinned
phase for w/a > 3.0, the system forms a polycrystalline
state, and in the moving state the grains realign to form
a moving crystalline state. For F,, = 1.0, 1.5, and 2.0, for
w/a < 1.75 the system depins from a single chain of vor-
tices and can partially form a moving crystal state. When
w/a is large enough that a pinned zig-zag state forms, the
moving density-modulated state can persist up to much
higher drives. For F}, = 1.0 the system forms a pinned
polycrystalline state for w/a > 4.5 which coincides with
the drop in F2* for w/a > 4.5. For Fj, = 1.5 and 2.0,
there are local peaks in F' that correlate with the mov-
ing buckled phases which occur when groups of vortices
can fit between adjacent pinning maxima as the vortices
move. This effect is most pronounced for F, = 2.0.

In Fig. 13(b) we plot a dynamic phase diagram as a
function of Fy and w/a for a system with F, = 1.5.
Above depinning in the regime where F,; < F},, the sys-
tem is in a plastic flow state in which there is a coexis-
tence of moving vortices and immobile vortices. In this
regime the structure factor generally shows disordered
features. For Fj > F}, all the vortices are moving and



FIG. 13: (a) F?T, the drive at which the system transitions
from a density modulated moving crystal to an ordered mov-
ing floating solid, vs w/a at F, = 0.5 (red circles), 1.0 (green
squares), 1.5 (orange diamonds), and 2.0 (black triangles).
(b) Dynamic phase diagram as a function of F,; and w/a for a
system with Fj, = 1.5. P: pinned phase. Plastic: plastic flow
regime. ML: moving modulated lattice state. MFS: moving
flowing solid state. Dashed lines are guides to the eye that
indicate the transition from 71 to 72, 72 to 73, and r3 to a
disordered pinned state.

the system is either in a modulated lattice (ML) state
or a moving flowing solid (MFS) state. We find similar
dynamical phase diagrams for other values of £, > 1.0,
while for the weaker substrates, the size of the plastic
flow region is reduced and the ML phase is replaced
with a smectic moving state similar to that shown in
Fig. 11(c,d).

VII. DISCUSSION

The dynamic phases we observe have certain similar-
ities to the dynamic states observed for vortices moving
over random pinning arrays in that there can be pinned,
plastic, and dynamically ordered phases as a function of
external drive86 2!, There are some differences, includ-
ing the fact that the moving modulated lattice we observe
does not form a smectic state that is fully aligned in the
drive direction, as found for vortices moving over ran-
dom pinning arrays® 2!, Experimental observations of
the smectic to smectic phase transition could be achieved
using direct dynamical imaging techniques'®®> or neu-
tron scattering techniques®. Voltage noise measure-
ments could also reveal the transitions between the differ-
ent dynamical phases, as in experiments on samples with
random pinning®™97%8. The dynamical transitions can
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be observed if the depinning current is sufficiently far be-
low the depairing current, which will depend on the mag-
netic field, the strength of the intrinsic pinning, and how
close the system is to T,. According to Fig. 13, the dy-
namical reordering currents are expected to be 2.5 to 10
times higher than the depinning current, so the accessible
current range needs to be at least this wide in order to
experimentally observe the dynamical transitions. Simu-
lations with random pinning arrays indicate that for in-
creasing vortex density, the drive at which the transition
to the ordered state occurs decreases due to the increase
in the strength of the vortex-vortex interactions®!'. For
the q1D substrate, the location of the ordering transition
fluctuates strongly due to the ability of the moving lat-
tice to become dynamically commensurate with the pe-
riodicity of the substrate. Future studies might consider
combinations of random disorder with periodic disorder,
which would introduce a competition in the moving phase
between the smectic ordering imposed by the substrate
and the smectic ordering induced by the drive.

We focus on vortices driven along the direction of the
substrate periodicity, but it would also be interesting to
study the response of the system when the vortices are
driven perpendicular or at an arbitrary angle to the sub-
strate periodicity. Previous studies of vortices driven at
varied angles through 2D periodic pinning arrays show
that the substrate can induce a number of dynamical
effects, including directional locking of the vortex mo-
tion as well as vortex channeling effects6799-102, For a
q1D substrate, vortices driven at arbitrary angles should
exhibit channeling along the substrate troughs, and the
drive at which this channeling is overcome and the vor-
tices start to flow in the direction of drive should be a
function of driving angle. Measurements of the trans-
verse and longitudinal vortex velocities in this case should
show zero velocity in the direction of the substrate pe-
riodicity at low drives, and finite velocity both parallel
and perpendicular to the driving direction for interme-
diate drives. Studies of vortices driven over a 1D line
potential show channeling effects of this type!02:103,

We consider a particle based model, but simulations
based on time-dependent Ginzburg-Landau (TDGL) the-
ory may reveal other interesting behavior for higher fields
or currents than we study, such as the elongation of
the vortices along certain directions or the formation of
multiple-quanta vortices. TDGL studies of vortices in
2D periodic pinning arrays show that a rich variety of
commensurate and incommensurate states can form with
multi-quanta vortices or combinations of multi-quanta
and interstitial vortices!? 22, Similar effects could arise
for q1D substrates. A TDGL approach could capture
additional features in the depinning behavior and subse-
quent flow such as merging, splitting, elongation, or lo-
cal heating effects of the vortices'®* 107, It can also treat
the effect of the substrate thickness in the limit of a thin
film. Our particle-based model assumes that the vortices
experience the same driving force regardless of their po-
sition in the sample; however, recent TDGL simulations



show that the applied current can be modified by the
thickness of the sample, and that the effective viscosity
also varies with thickness due to the changing length of
the vortex'%8 111 Such effects could be explored using
TDGL simulations or modified particle-based models in
which additional terms are introduced to represent the
spatial dependence of the viscosity or the applied driving
force.

VIII. SUMMARY

We examine the statics and dynamics of vortices inter-
acting with a periodic quasi-one-dimensional substrate
in the limit where the vortex lattice spacing is smaller
than the spacing of the periodic lattice. For weak sub-
strate strengths, we find that the vortices retain hexago-
nal ordering but exhibit numerous rotations with respect
to the substrate, similar to recent experimental observa-
tions. For stronger substrates there are a series of buck-
ling transitions where the vortices can form anisotropic
1D chains, zig-zag patterns, and higher order numbers of
chains within each substrate minimum. At some fillings
the overall lattice has long range order and becomes par-
tially distorted at the transitions between these states.

13

For higher fillings the buckling transitions are lost and
the system forms a polycrystalline state. We also find
that the depinning shows a series of step-like features
when the system transitions from a state with n chains
to a state with n + 1 chains in each substrate minimum,
and that for weaker pinning there are some cases where
there is a peak in the depinning force as a function of fill-
ing. For weak substrates, under an applied drive the vor-
tices depin elastically and retain their triangular order-
ing, while for strong substrates the buckled states tran-
sition to a partially disordered flowing state followed by
various other transitions into moving modulated crystal
or homogeneous floating moving crystal states. Our re-
sults should also be applicable to other systems of par-
ticles with repulsive interactions in the presence of a pe-
riodic quasi-one dimensional substrate, such as electron
crystals, colloids, and ions in optical traps.
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