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We study dynamics of a superconducting condensate in the presence of a domain wall defect
in the order parameter. We find that broken translation and reflection symmetries result in new
collective excitations, bound to the domain wall region. Two additional amplitude/Higgs modes lie
below the bulk pairbreaking edge 2∆; one of them is a Goldstone mode with vanishing excitation
energy. Spectrum of bound collective modes is related to the topological structure and stability of
the domain wall. The ‘unbound’ bulk collective modes and transverse gauge field mostly propagate
across the domain wall, but the longitudinal component of the gauge field is completely reflected.
Softening of the amplitude mode suggest reduced damping and possible route to its detection in
geometrically confined superfluids or in superconductor-ferromagnetic heterostructures.

PACS numbers: 74.20.De,74.81.-g

Observation of the Higgs particle at LHC[1] has em-
phasized the connection between high energy and con-
densed matter physics through collective modes. [2, 3]
These excitations are the normal modes of order pa-
rameter (OP) fluctuations, reflecting the symmetry and
structure of the OP’s potential landscape. In a singlet
isotropic superconductor with a complex order param-
eter ∆(r, t) = ψ(r, t) exp[iϕ(r, t)] a gapless Bogoliubov-
Anderson ϕ(r, t)-phase mode [4–6] is a result of spon-
taneously broken U(1) symmetry.[7, 8] Interaction with
electromagnetic gauge field shifts this mode up to plasma
frequency.[9] Fluctuations of the other degree of free-
dom, ψ(r, t), represents the amplitude mode, often called
Higgs mode, due to the close analogy to its particle
counterpart.[10]

Detection of the amplitude mode in condensed matter
systems has been a long-stading challenge. The origi-
nal discovery of this mode in charge-density-wave mate-
rial NbSe2 [11, 12] highlights the main difficulty associ-
ated with the fact that its energy is 2|∆| leading to its
quick decay into two-particle excitations. This search is
continuing due to its fundamental importance and in-
triguing possibility of insight into Standard Model from
low-energy experiments.[2, 13] Recently the amplitude
mode near a quantum critical point was investigated the-
oretically [14] and experimentally in neutral superfluid of
cold atoms.[15] Another report of amplitude mode detec-
tion in disordered superconductors[16] was questioned in
[17] due to expected strong mixing of the amplitude and
phase modes.

In this Letter we show that non-uniform superfluids
or superconductors may provide a different avenue to
investigate the amplitude/Higgs mode. We consider a
general problem of a domain wall that breaks extra sym-
metries beside U(1): translation and reflection, as shown
in Fig. 1. In the region of the domain wall additional
amplitude modes exist below the pairbreaking edge, in-
cluding one with gapless spectrum. While the free-
standing domain wall is not likely, their evolution and
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FIG. 1. (Color online) Domain wall with profile ∆(x)/∆0 ≡
p(x) = tanh(x/

√
2ξ) separates two degenerate values of the

order parameter ∆ = ±∆0 (top). The dynamics of the order
parameter perturbations is described by Schrödinger equation
with 1/ cosh2(x/

√
2ξ) potential well (bottom).

dynamics is interesting from the point of view of frozen
topological defects the early Universe.[18–20] In super-
conductors, domain wall structures appear in Fulde-
Ferrell-Larkin-Ovchinnikov states (FFLO),[21] or in thin
films.[22] Half-domain walls are more common and ap-
pear as OP suppression in the boundary regions of uncon-
ventional superconductors,[23, 24] or when a singlet su-
perconductor is in contact with a strong ferromagnet.[25]
Collective modes in unconventional superconductors with
broken momentum-space symmetries have been stud-
ied in d-wave materials [26]; UPt3 and UBe13 [27–29];
Sr2RuO4 [30, 31]. Superfluid 3He feature many collec-
tive modes.[32–35] In particular, several modes in 3He-
B phase[36] are easily detectable by ultrasound,[37] and
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have evolved into a tool that can distinguish details of the
pairing interactions on a few percent scale.[38] Distinct
characteristics of bound collective modes can be used in
detection of non-uniform superconducting states. Below
we investigate both neutral superfluid and charged su-
perconductor coupled to the gauge field.

We consider time-dependent Ginzburg-Landau
(TDGL) Lagrangian, where the order parameter field
∆(r, t) is minimally coupled to electromagnetic gauge
field (Φ(r, t),A(r, t)),

L = −γ |(i~∂t − 2eΦ) ∆|2 + κ
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+
B2 −E2

8π
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(1)

Here B = ∇ ×A, E = −∇Φ − (1/c)∂tA are magnetic
and electric fields, and we put ~ = 1 from now on. In
the superconducting state below Tc we take α > 0, and
∆0 is the real amplitude of uniform solution to GL equa-
tions without fields. In relativistic Lorentz-invariant the-
ories γ = κ. This particular choice of L agrees with
microscopically derived equations of motion for the OP,
which are of the wave type at low temperatures.[39, 40]
From reference 40 we can extract low-T phenomenolog-
ical coefficients: γ = Nf/8∆2

0, α = Nf/4 = 2γ∆2
0, κ =

Nfv
2
f/24∆2

0 = n/8m∆2
0, where Nf is the density of states

at the Fermi level for two spin projections, vf is the Fermi
velocity, n = Nfmv

2
f/3 is the uniform electronic density.

We define wave speed v2 = κ/γ = v2f/3, and coherence

length ξ2 = κ~2/α = ~2v2/2∆2
0.

Model (1) is an adequate first step to investigate gen-
eral relations between collective modes, topology and
broken spatial symmetry. However, its main limitation
is the lack of coupling to fermionic quasiparticles that
would contribute to damping of collective modes. This
is in part due to absence of first-order time derivative
terms (diffusion), dominant near Tc,[39] which is also
an indication of complete particle-hole symmetry that
results in full decoupling of the amplitude and phase
dynamics.[3, 41] The domain wall region hosts a high
density of Andreev bound states, that interact with col-
lective modes and limit their lifetime. One might expect
that bound states’ damping effects are similar to those of
low-energy quasiparticles in uniform nodal superconduc-
tors. For example, in 3He-A phase, collective modes are
damped[42] but still detectable.[43] It is then plausible
that in some frequency range, depending on the avail-
ability of excitation phase space, the collective modes
near a domain wall will not be overdamped.[44] The com-
plete treatment of dynamics of coupled order parameter
modes, excitations and charge density will require future
fully microscopic calculation.

In terms of the OP amplitude and phase, this model is

L = −γ
[
(∂tψ)2 + ψ2(∂tϕ+ 2eΦ)2

]
+
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8π
(2)
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)
Finding extrema of the action S =

∫
dr
∫
dt L with

respect to amplitude ψ, field potentials A and Φ, gives
the dynamics of the order parameter

γ
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and that of the gauge field:

∇×B− 1

c

∂E

∂t
=

4π

c
j, ∇ ·E = 4π ρ, (4)

j = 4eκψ2

(
∇ϕ− 2e

c
A

)
, ρ = −4eγψ2(∂tϕ+ 2eΦ) .

Minimization with respect to the phase of the order pa-
rameter ϕ results in a statement of charge conservation,
∂tρ + ∇ · j = 0, that also follows from Eqs. (4) as a
consequence of the gauge symmetry. [45]

A real-valued domain wall ψ0(x) in the absence of the
fields, is a solution to −κψ′′ − αψ

(
1− ψ2/∆2

0

)
= 0:

p(x) ≡ ψ0(x)

∆0
= tanh

x√
2ξ
. (5)

Free-standing kink extends from −∞ < x < ∞, Fig. 1.
Half of the domain wall, 0 ≤ x < ∞, can be pinned by
an interface with ∆(x = 0) = 0.

First, consider a neutral superconductor, e = 0, where
condensate is not coupled to the gauge field. The field
equations, ∇2A − ∂2tA/c2 = 0 give the electromagnetic
wave with two transverse polarizations ω = ck, k ·Ak =
0, propagating with the speed of light. The dynamics
of the order parameter perturbation around domain wall
solution (ψ0(x), ϕ0 = 0) follows from (1) with substi-
tution ∆(r, t) = ψ0(x) + D(r, t). One introduces D± =
[D(r, t)±D(r, t)∗]/2, related to amplitude and phase fluc-
tuations in linearized theory: D+(r, t) = δψ(r, t) and
D−(r, t) = iψ0(x)δϕ(r, t). Equations for the amplitude
and phase are,

1

v2
∂2

∂t2
D+ −∇2D+ −

3

ξ2
[1− p2(x)]D+ = − 2

ξ2
D+

1

v2
∂2

∂t2
D− −∇2D− −

1

ξ2
[1− p2(x)]D− = 0

(6)

In a uniform superconductor we put p(x) = 1 and
obtain an amplitude (Higgs) mode ω2

+ = v2k2 +
2v2/ξ2 = v2k2 + 4∆2

0, with ‘mass’ 2∆0,[12] and the
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FIG. 2. (Color online) Dispersion of order parameter modes
propagating along the domain wall. ω0 = 2∆0. The solid lines
are the modes bound to the domain wall with ω+ < ωuniform

(dotted line). The phase mode ω− is unstable for long wave-
lengths k < 1/

√
2ξ. The transverse EM modes are decou-

pled from the order parameter dynamics. We use exaggerated
v/c = 0.2.

massless Bogoliubov-Anderson phase mode ω− = vk =
(vf/
√

3)k.[6]
In the presence of a domain wall we look for collective

modes that are localized in x-direction, and propagate
along y, D±(r, t) = D±(x)e−iωt+ikyy. For D±(x) pre-
factors from Eq. (6) we obtain

−D′′+ −
3/ξ2

cosh2(x/
√

2ξ)
D+ =

(
ω2

v2
− k2y −

2

ξ2

)
D+ ,

−D′′− −
1/ξ2

cosh2(x/
√

2ξ)
D− =

(
ω2

v2
− k2y

)
D− .

(7)

These equations are similar to Schrödinger equation for
eigenstates of a particle in one-dimensional Eckart po-
tential −U0[1− tanh2(x/w)] = −U0/ cosh2(x/w), shown
in Fig. 1. The energies of the bound states are En =
−(s − n)2/w2 with n < s = −1/2 +

√
1/4 + U0w2.[46]

Even/odd n give symmetric/asymmetric eigenfunctions
D(−x) = ±D(x). The OP amplitude has two bound
eigenmodes (U0 = 3/ξ2, w =

√
2ξ, s = 2 and n = 0, 1)

ω2
+/v

2−k2y−2/ξ2 = −(2−n)2/2ξ2 resulting in dispersion
relations

ω2
+s = v2k2y , ω2

+a = v2k2y + 3∆2
0 . (8)

The symmetric, n = 0, Higgs mode is massless. Its eigen-
function is D+s(x, y) ∝ exp(ikyy)/ cosh2(x/w) which can

be written as tanh(x/w)
∣∣x+δx0 exp(ikyy)

x
- a ripple of the

domain wall plane. For ky = 0 it is a uniform lateral
shift of entire domain wall plane without energy cost -

consequence of spontaneously broken translational sym-
metry. Thus, the amplitude Higgs mode became a Gold-
stone mode, propagating along the defect with speed
v = vf/

√
3. The n = 1 mode, in addition to translations,

breaks the discrete reflection symmetry x→ −x and cor-
responds to excited state of the domain wall condensate;
it has minimal energy

√
3∆0 = ω0

√
3/4. Analogous re-

sults appear in extended-hadron model in field theory,[47]
and for dynamics of domain walls in structurally-unstable
lattices.[48] Low-energy modes associated with dynamics
of periodic lattice-like FFLO structures were explored in
superconductors [49] and in cold atoms [50].

The phase mode (U0 = 1/ξ2, w =
√

2ξ, and s = 1)
has only one eigenvalue with n = 0, ω2/v2 − k2y = −(1−
n)2/2ξ2, and dispersion

ω2
− = v2k2y −∆2

0 . (9)

For a free-standing kink this indicates ‘imaginary’ mass
and instability at wave vectors ky < 1/

√
2ξ, resulting in

the decay of the domain wall, which we address later. For
a half-kink pinned at the surface, the symmetric solutions
n = 0 are excluded by the boundary condition on the
order parameter, ∆(0) = 0, and only the asymmetric
amplitude mode propagates.

If e 6= 0, the phase degree of freedom is not longer
independent, and is absorbed into potentials (Φ,A).
A → A − (c/2e)∇ϕ ,Φ → Φ + (1/2e)∂tϕ. This is the
unitary gauge with real order parameter, ϕ(r, t) = 0.
We assume no topological defects in the phase (vortices),
that in this gauge would represent themselves as non-
physical singularities in the gauge field (e.g. supercon-
ducting vortex ϕ(r, φ) ∝ φ gives Aφ ∼ 1/r [51]). We
linearize equations (3-4) around zero-field domain wall
solution ψ0(x) = ∆0p(x),Φ0 = A0 = 0. Equation for the
amplitude mode does not change from the neutral case,
and the dispersion relations Eq. (8) remain the same.

Combining the continuity equation with Ampère law
in (4), we eliminate Φ and obtain a single equation for
the vector potential:

−∇2A +
1

c2
∂2A

∂t2
+ ∇

(
divA− v2

c2
1

p2(x)
div[p2(x)A]

)
− 1

λ2
[1− p2(x)]A = − 1

λ2
A . (10)

The magnetic penetration length is λ−2 =
32πe2κ∆2

0/c
2 = 4πe2n/c2m = ω2

p/c
2, with plasma

frequency ω2
p = 4πe2n/m. In uniform superconductor

this equation gives dispersion ω2 = c2k2 + ω2
p for two

transverse (kA = 0) modes, and ω2 = v2k2 + ω2
p for

longitudinal (kA` = kA`) mode that couples phase
oscillations with motion of the electric charge. For
bound waves propagating along the domain wall,
A(r, t) = A(x)eikyy−iωt we find several solutions. Trans-
verse wave with z polarization ẑAz(x) satisfies equation
similar to (7), with Eckart potential amplitude U0 = 1/λ2
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FIG. 3. (Color online) EM modes in a superconductor.
Uniform superconductor modes are gapped with plasma fre-
quency (open symbols). Modes bound to the domain wall are
a transverse Az(x)-mode, and (Ax(x), Ay(x))-coupled modes.
For chosen parameters, c/v = 5, λ/ξ = 1, examples of profiles
for ‘longitudinal’ and one of the ‘transverse’ modes are shown
in the inset.

and eigenvalues ω2/c2 − k2y − 1/λ2 = −(s− n)2/2ξ2

(n < s = −1/2 +
√

1/4 + 2ξ2/λ2) producing

ω2 = ω2
p(s, n) + c2k2y , (11)

with lowered plasma frequency ω2
p(s, n) =

ω2
p

[
1− λ2(s− n)2/2ξ2

]
. For λ ≥ ξ there is only

one bound solution n = 0, while for λ < ξ one has s > 1
and multiple branches of the plasmon mode. Other
modes satisfy coupled differential equations for Ax(x)
and Ay(x), that we solve numerically. The dispersion
relations and structure of these modes for λ = ξ are
shown in Fig. 3. These modes have a resemblance to the
plasmon polariton modes that are bound to the interface
regions between two different dielectrics, for example.

We close this discussion by mentioning reflection prop-
erties of the domain wall. Traveling wave solution
D±(r, t) = D±(x) exp(−iωt) to equations (6), with
boundary conditions on far left/right

D±(−∞) ∼ eikxx+R±e
−ikxx , D±(+∞) ∼ T±eikxx ,

is known.[46] The transmission is determined by a com-
binations of Γ-functions:

T± =
Γ(−s± − ikxw)Γ(s± + 1− ikxw)

Γ(−ikxw)Γ(1− ikxw)
, (12)

with k2x = (ω2 − ω2
0)/v2, s+ = 2 for amplitude, and

k2x = ω2/v2, s− = 1 for phase, modes. For integer pa-
rameter s there is no reflected wave R± ∝ 1/Γ(−s) =

1

e i ϕ

−1 +1
+1−1

neutral  SC gauge sector

order parameter sector
ψ

A

ψ

FIG. 4. (Color online) In neutral condensate the real-valued
domain wall (red line) is unstable with respect to deforma-
tions towards phase texture (dashed semicircle), that can be
continuously deformed into a trivial uniform configuration.
After coupling to the EM potentials, the field/phase sec-
tor separates from the amplitude sector, and the degeneracy
space of the real OP amplitude becomes disconnected (±1),
stabilizing the real-valued kink.

0.[48] Similarly, for a transverse EM waves at nor-
mal incidence, Ay,z, Eq. 10 reduces again to one with
−(1/λ2)/ cosh2(x/w) potential. The transmission am-

plitude is given by (12) with kx =
√
ω2 − ω2

p/c and

s = −1/2 +
√

1/4 + ξ2/λ2. For frequencies such that
kxw � 1 or s � 1, |T⊥| ∼ 1. The longitudinal compo-
nent, Ax, is entirely reflected, T|| = 0 due to divergent
term 1/p2(x).

Finally, we interpret the collective mode frequencies
in terms of topological properties of the order parame-
ter space and stability of the domain wall. The ω2

− < 0
frequency of the imaginary component (9) in neutral su-
perfluid indicates that the real-valued domain wall is not
stable. Indeed, the kink has energy α(4

√
2/3)∆2

0ξ over
the uniform configuration; it is represented by the red
line on the left of Fig. 4. An alternative solution to a
hard domain wall is a long-wavelength ‘soft texture’ of
phase variation ∆(x)/∆0 = eiϕ(x), ϕ = π → 0 along
the connected U(1) degeneracy manifold, denoted by
the dashed semi-circle. This configuration has the en-
ergy of trivial uniform state, and can be continuously
deformed into one, due to gapless nature of the phase
fluctuations.[18] |Imω−| gives the decay rate of the hard
domain wall towards the topologically trivial texture. In
a charged superconductor the phase degree of freedom is
absorbed into the gauge field sector, gapped with plasma
frequency. The manifold of the degenerate states of real
order parameter becomes disconnected, containing just
two points ±∆0, which stabilizes the topological kink.
This manifold has Z2 symmetry: kink and anti-kink
are unstable and will continuously deform into lower en-
ergy uniform configuration.[52] This also follows from the
Schrödinger equation (6) for D+ with two potential wells
separated by L. In WKB solution the zero-frequency
mode ω2

+(ky = 0) = 0 is split, and one of the frequen-
cies becomes imaginary: ω2 ∼ − exp(−L/ξ), signifying
instability of the double domain wall configuration.
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In summary, a region of strongly varying condensate,
such as a domain wall or a pairbreaking interface, hosts
additional bound collective modes of the order param-
eter. For a single-component complex order parameter
we find two additional amplitude modes below the bulk
pairbreaking edge 2∆. One mode lies at 1.73∆, and the
other has zero excitation mass, due to broken transla-
tional symmetry, Fig. 2. The non-uniform region sup-
ports extra bound gauge field modes as well, Fig. 3. Do-
main wall completely reflects the longitudinal component
of the field and is transparent to others; perfectly trans-
mistting bulk amplitude modes.
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