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We study the competition between
√
3 ×

√
3 (RT3) and q = 0 (Q0) magnetic orders in spin-

one and spin-3/2 Kagome-lattice XXZ antiferromagnets with varying XY anisotropy parameter ∆,
using series expansion methods. The Hamiltonian is split into two parts: an H0 which favors the
classical order in the desired pattern and an H1, which is treated in perturbation theory by a series
expansion. We find that the ground state energy series for the RT3 and Q0 phases are identical up
to sixth order in the expansion, but ultimately a selection occurs, which depends on spin and the
anisotropy ∆. Results for ground state energy and the magnetization are presented. These results
are compared with recent spin-wave theory and coupled-cluster calculations. The series results for
the phase diagram are close to the predictions of spin-wave theory. For the spin-one model at the
Heisenberg point (∆ = 1), our results are consistent with a vanishing order parameter, that is an
absence of a magnetically ordered phase. We also develop series expansions for the ground state
energy of the spin-one Heisenberg model in the trimerized phase. We find that the ground state
energy in this phase is lower than those of magnetically ordered ones, supporting the existence of a
spontaneously trimerized phase in this model.

PACS numbers:

Kagome lattice antiferromagnets have been studied ex-
tensively both theoretically and experimentally over the
last few decades1,2. There is, by now, very strong nu-
merical evidence that the ground state of the nearest-
neighbor spin-half Heisenberg model on the Kagome-
lattice is a quantum spin-liquid and has no long-range
magnetic order3. However, the more general XXZ model
for larger spin and with XY anisotropy may well have
long-range magnetic order4. Indeed, several experimen-
tal Kagome systems with large spin are known to have
magnetic long-range order5.

Competing magnetic orders in these models were inves-
tigated recently by Chernyshev and Zhitomirsky6 using
non-linear spin-wave theory and real-space perturbation
theory, where they found a phase diagram with compet-
ing

√
3 ×

√
3 (RT3) and q = 0 (Q0) magnetic orders

at different spin and anisotropy ∆ values. The models
have also been studied recently using the coupled clus-
ter method by Gotze and Richter7 who found a simi-
lar but not identical phase diagram to spin-wave theory.
The main difference in the phase diagram was that in
the coupled-cluster calculations the RT3 phase occupies
a singificantly bigger region of the phase diagram at the
expense of the Q0 phase. The purpose of this paper is to
study the competing magnetic phases by series expansion
methods. Our numerical results appear much closer to
the spin-wave theory.

We consider the antiferromagnetic XXZ model on the
Kagome lattice with Hamiltonian
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where the sum is over the nearest neighbor pairs and ∆
is the anisotropy parameter. We will study spin-one and
spin-3/2 model with various ∆ values less than or equal
to unity corresponding to XY anisotropy (∆ < 1) and
Heisenberg symmetry (∆ = 1).
To carry out the series expansion around a particular

non-colinear ordered state, we rotate our axis of quan-
tization at each site so the local z axis points along the
ordering direction, and reexpress the Hamiltonian in this
rotated basis8,9. In this basis the ferromagnetic zz cou-
pling will lead to order in the desired classical pattern.
Thus by splitting the Hamiltonian into such an Ising term
and calling it the unperturbed Hamiltonian and treating
the rest of the Hamiltonian by perturbation theory, we
can calculate the properties of the system in the ordered
phase10,11. The Hamiltonian we end up with takes the
form:

H = H0 + λH1 + t(1 − λ)
∑
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with

ηij = +1 A → B,B → C,C → A (5)

−1 B → A,C → B,A → C

where A,B, and C are the three sublattices. The XXZ
model of interest only arises at λ = 1. Thus, the parame-
ter t can be varied to improve convergence as it does not
play any role at λ = 1. We have studied the model for
different spin and anisotropy ∆.
Our interesting finding is that regardless of spin,

anisotropy ∆ and redundant field value t, the ground
state energy for RT3 and Q0 phases are identical to 6th
order in the series expansion. This high degree of degen-
eracy is reminiscent of the q-independence of the high
temperature susceptibility for the classical Kagome anti-
ferromagnet to high orders12 and the high-temperature
order-parameter susceptibility degeneracy for the XY py-
rochlore antiferromagnets13. Here, the degeneracy is for

the ground state energy. The degeneracy is lifted in 7th
order. The difference between the ground state energy
for RT3 and Q0 phases are given order by order in Table
I for spin-one models and in Table II for spin-3/2 models.

The degeneracy to 6th order and its lifting at 7th or-
der can be understood in terms of the general real-space
perturbation theory arguments provided by Chernyshev
and Zhitomirsky6. These authors showed that for a gen-
eral 120 degree classical ground state order, bilinear real
space perturbations can not lift the degeneracy below 7th
order. In order to lift the degeneracy virtual spin-flips
must be created, propagate along a closed loop and then
annihilate. On the Kagome lattice, the smallest such
‘tunneling’ paths are the hexagons for which the lowest
order in perturbation theory, in which the degeneracy can
be lifted, is 7th order. Thus, our series expansion results
are a special case of this deep ‘topological’ or ‘protected’
nature of the ground state degeneracy of all 120 degree
ordered states on the Kagome lattice.

TABLE I: Difference between ground state energy series of RT3 and Q0 phases for S = 1 model

∆ t n = 7 n = 8 n = 9 n = 10 n = 11 n = 12
1.0 0.0 1.79281056E-05 -.00228441779 .00485266477 -.0131501048 .0244393622 -.048490238
1.0 0.5 -1.99373138E-05 -.000359989266 -4.05357305E-05 -.000541912718 -.000190168854 -.000584500274
1.0 1.0 -1.00496807E-05 -9.61299295E-05 -.000130394373 -.00017789055 -.000217321242 -.0002516233
0.8 0.0 .000337078044 -.00123165186 .0025634538 -.00520062285 .00822960621 -.0138676947
0.8 0.5 6.06764982E-05 -9.81439873E-05 4.17426967E-05 -.000109903463 -4.91074816E-05 -.000138445195
0.8 1.0 1.58188574E-05 -5.15123324E-06 -1.36613326E-05 -2.32793478E-05 -3.57282811E-05 -5.02830945E-05
0.6 0.0 .000368046153 -.000640326014 .00145292023 -.00238946797 .00383705524 -.00610563131
0.6 0.5 7.40771254E-05 4.96763165E-06 8.15631813E-05 1.48517701E-05 5.09012595E-05 -5.98002479E-06
0.6 1.0 2.09523323E-05 2.48510186E-05 3.090978E-05 3.26457591E-05 3.16691472E-05 2.69258504E-05
0.4 0.0 .00028381678 -.000321290585 .00085742526 -.00125112059 .00222202346 -.00350982038
0.4 0.5 5.95457596E-05 3.10517426E-05 8.18210584E-05 4.17878108E-05 7.49216123E-05 3.20756294E-05
0.4 1.0 1.73025349E-05 2.68002386E-05 3.72787257E-05 4.24146522E-05 4.52699282E-05 4.47170232E-05
0.2 0.0 .000179532034 -.000154891221 .000493208144 -.00066481917 .0012891238 -.00201744976
0.2 0.5 3.88092673E-05 2.72091805E-05 6.11630232E-05 3.75408522E-05 6.30259464E-05 3.42523708E-05
0.2 1.0 1.14936167E-05 1.93171026E-05 2.83962037E-05 3.35527207E-05 3.72330216E-05 3.83276157E-05
0.0 0.0 9.51120353E-05 -6.93197882E-05 .000254673693 -.000318821724 .000660552769 -.0010122032
0.0 0.5 2.1177613E-05 1.64290641E-05 3.6276253E-05 2.44400256E-05 4.05063144E-05 2.45502426E-05
0.0 1.0 6.39053891E-06 1.10355978E-05 1.6780207E-05 2.0390407E-05 2.33497084E-05 2.47684216E-05

Examining Table 1 and Table II closely, it is clear that
t = 0 does not have good convergence so we need to look
at higher t values. In this case all terms of the difference
series become negative for ∆ = 1, where as all terms are
positive for ∆ ≤ 0.6 for both spin-one and spin-3/2. In
other words, for ∆ = 1 the energy is lower for the RT3
phase whereas for ∆ ≤ 0.6 the energy is lowered for the
Q0 phase. For both spin values ∆ = 0.8 is at the bound-
ary between the two phases as all terms in the difference
series do not have the same sign. However, adding up all
the terms shows that the energy difference is still neg-
ative for both S = 1 and S = 3/2. This implies that

∆ = 0.8 is still in the RT3 phase. This suggests a phase
diagram in the ∆−S plane which runs roughly at a con-
stant ∆ separating the two phases with a critical ∆ value
a little below 0.8. This is in remarkably good agreement
with the non-linear spin wave calculation of Chernyshev
and Zhitomirsky6, who find that the phase boundary oc-
curs at ∆c ≈ 0.72. The coupled cluster calculation of
Gotze and Richter find a much larger extent of the RT3
phase. For spin-one they find that Q0 phase exists only
for ∆ less than about 0.3, while for S = 3/2 they find
that the Q0 phase only exists for ∆ less than about 0.5.
Clearly the series expansion results are much closer to
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TABLE II: Difference between ground state energies of RT3 and Q0 phases for S = 3/2 model.

∆ t n = 7 n = 8 n = 9 n = 10
1.0 0.0 -.000114472141 -.00121771703 .00246072529 -.00806875991
1.0 0.5 -5.29672613E-05 -.000398665752 .000174231254 -.00110052262
1.0 1.0 -2.56833861E-05 -.000162609093 -9.51666575E-05 -.000300829022
0.8 0.0 .000180186675 -.000626753577 .0012997734 -.00278227259
0.8 0.5 5.97067161E-05 -.00012385424 .000137564896 -.000258061125
0.8 1.0 2.339967E-05 -2.44231392E-05 6.79724913E-06 -3.93092026E-05
0.6 0.0 .000238660164 -.000315525754 .000746629417 -.00111861483
0.6 0.5 8.41645616E-05 -1.25172465E-05 .000119584595 -3.55451801E-05
0.6 1.0 3.46495049E-05 2.42397017E-05 4.47287003E-05 3.3561785E-05
0.4 0.0 .000197086688 -.00015596158 .000454414143 -.000547182914
0.4 0.5 7.0831025E-05 2.0197586E-05 9.64105041E-05 1.41819151E-05
0.4 1.0 2.95715969E-05 3.15245715E-05 4.76339757E-05 4.39917413E-05
0.2 0.0 .000130919478 -7.51355574E-05 .000273391632 -.000286281148
0.2 0.5 4.76753252E-05 2.16031853E-05 6.80384984E-05 2.10691061E-05
0.2 1.0 2.00976062E-05 2.41489131E-05 3.61438392E-05 3.53424359E-05
0.0 0.0 7.27922323E-05 -3.39489158E-05 .000149188932 -.000138119912
0.0 0.5 2.68531517E-05 1.42218295E-05 4.05437452E-05 1.64788846E-05
0.0 1.0 1.14277712E-05 1.43851135E-05 2.19416679E-05 2.23838979E-05

the non-linear spin-wave theory.

The ground state energies, estimated by the use of
Padé approximants, are shown in Table-3 and Table-4.
In general, the energy difference between the two ordered
phases is very small. The results are consistent with sim-
ply examining the series term by term. The ground state
energy is lower in the RT3 phase for ∆ = 1.0 and 0.8,
and it is lower in the Q0 phase for ∆ ≤ 0.6.

The sublattice magnetization series is analyzed by first
using a change of variables14 to remove the square-root
singularity caused by spin-waves and then using Padé ap-
proximants. Plots of the sublattice magnetization for the
phase with the lowest energy are shown in Fig. 1. The
results from linear spin-wave theory are also shown6,15.
For the XY model, our results of M/S = 0.86 for spin-
one and M/S = 0.94 for spin-3/2 are in excellent agree-
ment with the results of the coupled cluster calculations7.
For the spin-one Heisenberg model our results suggest a
vanishing sublattice magnetization or an absence of the
magnetically ordered phase. For the spin-3/2 Heisenberg
model, we find non-zero long range order. Our estimate
for the sublattice magnetization of M = 0.14 ± 0.03 is
in good agreement with earlier coupled cluster results of
0.112 by Gotze et al16. This provides strong support for
the existence of long-range order for the spin-3/2 Heisen-
berg model.

For the spin-one Heisenberg model, several candidate
ground state phases have been proposed17. Recent ex-
act diagonalization and density matrix renormalization
group (DMRG) studies by Changlani and Lauchli18 pre-
sented strong evidence for a spontaneously trimerized
phase in the model. These results were further supported
by Numerical Linked Cluster expansions done by Ixert,
Tischler and Schmidt19. Motivated by these studies, we
calculate the ground state energy of the trimerized phase
by series expansions.
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FIG. 1: Sublattice magnetization for the spin-one and spin-
3/2 XXZ Kagome antiferromagnets as a function of the XY
anisotropy parameter ∆. ∆ = 1 corresponds to the Heisen-
berg model, where the results for the spin-one model is consis-
tent with a vanishing order parameter. Also shown are results
from linear spin-wave theory6,15.

To carry out the expansion for the trimerized phase of
the spin-one model, we consider all bonds in up point-
ing triangles to have exchange constant of unity, where
as all bonds in down pointing triangles have exchange
constant of α. At α = 0, this system breaks into dis-
connected triangles. For spin S = 1, each triangle of
spins has a unique ground state. Series expansions can
be calculated for ground state properties in powers of α
by non-degenerate perturbation theory10,11. The ground
state energy per site, e0, has a series expansion

3e0 = −3− 2α2 + 2
3
α3 + 11

18
α4 − 0.33757716α5 (6)

−0.36266528α6 − 0.75868273α7 + . . .
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TABLE III: Ground state energy for S = 1 model. The mean
value of the Padé estimates for the ground state energy and
the spread in the values of the different approximants are
shown

Phase ∆ t mean spread
RT3 1.0 0.0 -1.3950 .0013
RT3 1.0 0.5 -1.3928 .00014
RT3 1.0 1.0 -1.3910 .00002
Q0 1.0 0.0 -1.3903 .0006
Q0 1.0 0.5 -1.3890 .0004
Q0 1.0 1.0 -1.3877 .00012

RT3 0.8 0.0 -1.3033 .0002
RT3 0.8 0.5 -1.3019 .0002
RT3 0.8 1.0 -1.3012 .0005
Q0 0.8 0.0 -1.3016 .0001
Q0 0.8 0.5 -1.3001 .00003
Q0 0.8 1.0 -1.2992 .00005

RT3 0.6 0.0 -1.2215 .0003
RT3 0.6 0.5 -1.2214 .0003
RT3 0.6 1.0 -1.2208 .0006
Q0 0.6 0.0 -1.2221 .0002
Q0 0.6 0.5 -1.2213 .0002
Q0 0.6 1.0 -1.2206 .0002

RT3 0.4 0.0 -1.1534 .00009
RT3 0.4 0.5 -1.1535 .0003
RT3 0.4 1.0 -1.1531 .00011
Q0 0.4 0.0 -1.1544 .0002
Q0 0.4 0.5 -1.1541 .0002
Q0 0.4 1.0 -1.1536 .0002

RT3 0.2 0.0 -1.0987 .00013
RT3 0.2 0.5 -1.0989 .00012
RT3 0.2 1.0 -1.0990 .0003
Q0 0.2 0.0 -1.0995 .00014
Q0 0.2 0.5 -1.0995 .00007
Q0 0.2 1.0 -1.0996 .00008

RT3 0.0 0.0 -1.0563 .00003
RT3 0.0 0.5 -1.0562 .00009
RT3 0.0 1.0 -1.0563 .0001
Q0 0.0 0.0 -1.0568 .00002
Q0 0.0 0.5 -1.0568 .00008
Q0 0.0 1.0 -1.0568 .00009

We use Dlog Padé approximants to estimate the sum
of the series. The [2/4], [1/5], [3/3] and [2/3] approxi-
mants give −4.1555, −4.3801, −4.1391, −4.1236, respec-
tively. Upon averaging, this give an energy per site of
e0 = −1.40, which is indeed lower than our estimate
for the energy of the ordered phases. This supports
the results by Changlani and Lauchli18 that the spin-one
Heisenberg model has a spontaneously trimerized ground
state.
We have also developed series expansions for the

trimerized phase of the spin-one model with ∆ < 1.20

We find that the energy of the trimerized phase becomes
even more stabilized with anisotropy and its ground state
energy is always lower than the energy of the magneti-
cally ordered state until the series begin to diverge below
∆ ≈ 0.2. This suggests that the trimerized phase may
extend well beyond just the Heisenberg model in the spin-
one case.

TABLE IV: Ground state energy for S = 3/2 model. The
mean value of the Padé estimates for the ground state energy
and the spread in the values of the different approximants are
shown

Phase ∆ t mean spread
RT3 1.0 0.0 -2.8193 .004
RT3 1.0 0.5 -2.8250 .004
RT3 1.0 1.0 -2.8175 .005
Q0 1.0 0.0 -2.8185 .004
Q0 1.0 0.5 -2.8229 .003
Q0 1.0 1.0 -2.8162 .004

RT3 0.8 0.0 -2.6661 .002
RT3 0.8 0.5 -2.6674 .002
RT3 0.8 1.0 -2.6664 .0008
Q0 0.8 0.0 -2.6660 .002
Q0 0.8 0.5 -2.6671 .002
Q0 0.8 1.0 -2.6662 .0006

RT3 0.6 0.0 -2.5481 .0005
RT3 0.6 0.5 -2.5476 .0007
RT3 0.6 1.0 -2.5469 .0002
Q0 0.6 0.0 -2.5485 .0004
Q0 0.6 0.5 -2.5481 .0006
Q0 0.6 1.0 -2.5475 .00005

RT3 0.4 0.0 -2.4559 .0001
RT3 0.4 0.5 -2.4553 .0004
RT3 0.4 1.0 -2.4548 .00012
Q0 0.4 0.0 -2.4564 .00011
Q0 0.4 0.5 -2.4563 .0006
Q0 0.4 1.0 -2.4552 .0002

RT3 0.2 0.0 -2.3830 .00012
RT3 0.2 0.5 -2.3834 .0006
RT3 0.2 1.0 -2.3826 .00006
Q0 0.2 0.0 -2.3834 .00014
Q0 0.2 0.5 -2.3838 .0006
Q0 0.2 1.0 -2.3830 .00009

RT3 0.0 0.0 -2.3261 .00003
RT3 0.0 0.5 -2.3261 .0002
RT3 0.0 1.0 -2.3261 .00003
Q0 0.0 0.0 -2.3264 .00004
Q0 0.0 0.5 -2.3266 .0003
Q0 0.0 1.0 -2.3264 .00002

In conclusion, in this paper we have studied the com-
peting ground state phases of spin-one and spin-3/2
Kagome Lattice antiferromagnets with XY anisotropy.
We find that near the XY limit the q = 0 magnetically
ordered phase is obtained, whereas near the Heisenberg
model the

√
3 ×

√
3 phase is realized. Our phase dia-

grams are in remarkably good agreement with spin-wave
theory. The degeneracy between the ground state energy
of the two states is lifted only in 7th order of pertur-
bation theory, which can be understood in terms of the
mechanism discussed by Chernyshev and Zhitomirsky6,
requiring creation, propagation and annihilation of vir-
tual excitations around closed loops. For the spin-one
Heisenberg model, the ground state is not magnetically
ordered. We presented evidence that in this case the
ground state is spontaneously trimerized. For spin-3/2
Heisenberg model, our estimate for long-range order is
in good agreement with earlier coupled-cluster results of
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Gotze et al16, providing strong support to the existence
of an ordered phase in this model.
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