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The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment
Heisenberg spin systems is investigated. A general formulation is presented for calculating the
eigenvalues λ and eigenvectors µ̂ of the MDI tensor of the magnetic dipoles in a line (one dimension
1D), within a circle (2D) or sphere (3D) of radius r surrounding a given moment ~µi for given magnetic
propagation vectors k for collinear and coplanar noncollinear magnetic structures on both Bravais
and non-Bravais spin lattices. Results are calculated for collinear ordering on 1D chains, 2D square
and simple-hexagonal (triangular) Bravais lattices, 2D honeycomb and kagomé non-Bravais lattices
and 3D cubic Bravais lattices. The λ and µ̂ values are compared with previously reported results.
Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked
triangular and honeycomb lattices are presented for c/a ratios from 0.5 to 3 in both graphical
and tabular form to facilitate comparison of experimentally determined easy axes of ordering on
these Bravais lattices with the predictions for MDIs. Comparisons with the easy axes measured
for several illustrative collinear antiferromagnets (AFMs) are given. The calculations are extended
to the cycloidal noncollinear 120◦ AFM ordering on the triangular lattice where λ is found to be
the same as for collinear AFM ordering with the same k. The angular orientation of the ordered
moments in the noncollinear coplanar AFM structure of GdB4 with a distorted stacked 3D Shastry-
Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental
observations, indicating the presence of another source of anisotropy. Similar calculations for the
undistorted 2D and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of
dipolar magnets are calculated using the Weiss molecular field theory (MFT) for quantum spins,
including the magnetic transition temperature Tm and the ordered moment, magnetic heat capacity
and anisotropic magnetic susceptibility χ versus temperature T . The anisotropic Weiss temperature
θp in the Curie-Weiss law for T > Tm is calculated. A quantitative study of the competition between
FM and AFM ordering on cubic Bravais lattices versus the demagnetization factor in the absence
of FM domain effects is presented. The contributions of Heisenberg exchange interactions and of
the MDIs to Tm and to θp are found to be additive, which simplifies analysis of experimental data.
Some properties in the magnetically-ordered state versus T are presented, including the ordered
moment and magnetic heat capacity, and for AFMs the dipolar anisotropy of the free energy and
the perpendicular critical field. The anisotropic χ for dipolar AFMs is calculated both above and
below the Néel temperature TN and the results are illustrated for a simple tetragonal lattice with
c/a > 1, c/a = 1 (cubic) and c/a < 1, where a change in sign of the χ anisotropy is found at
c/a = 1. Finally, following the early work of Keffer, the dipolar anisotropy of χ above TN = 69 K of
the prototype collinear Heisenberg-exchange-coupled tetragonal compound MnF2 is calculated and
found to be in excellent agreement with experimental single-crystal literature data above 130 K,
where the smoothly increasing deviation of the experimental data from the theory on cooling from
130 K to TN is deduced to arise from dynamic short-range collinear c-axis AFM ordering in this
temperature range driven by the exchange interactions.

I. INTRODUCTION

Local magnetic moments generate magnetic dipole
fields around them. In local-moment spin systems, the
long-range magnetic dipole interaction between the lo-
cal magnetic moments (spins) is always present. How-
ever its strength is usually small compared to other in-
teractions such as exchange and RKKY interactions be-
tween the spins. The thermal-average magnitude of the
interaction energy is of order E ∼ µ2/r3, where µ is
the thermal-average value of the magnetic moment and
r is the distance between nearest-neighbor spins. Tak-
ing, e.g., µ = 7 µB for Gd+3 or Eu+2 (µB is the Bohr
magneton) and r = 3 Å gives E/kB ∼ 0.02 K (kB is
Boltzmann’s constant), which is usually very small com-
pared to the other interactions between the spins. How-
ever, even when the dipole interactions are weak, these

interactions can be decisive in determining the orienta-
tions of the ordered moments in magnetic structures of
local-moment ferromagnets (FMs) or antiferromagnets
(AFMs).

If the distance between local moments is large enough,
the magnetic dipole interaction can dominate the ex-
change interactions in local-moment insulators and result
in either FM or AFM dipolar ordering. Examples include
FM ordering between Mn+3

6 clusters with spin S = 12
at the Curie temperature TC = 0.161(2) K in mono-
clinic Mn6O4Br4(Et2dbm)6,

1,2 and AFM ordering in the
face-centered cubic (fcc) diamond lattice of rare-earth R
atoms (R = Gd, Dy, Er) in RPO4(MoO3)12 · 30H2O with
Néel temperatures TN = 0.01–0.04 K.3

The theoretical study of magnetic dipole interactions
and associated magnetic structures in crystals has a long
history. In 1946 Luttinger and Tisza solved for the



2

possible magnetic structures of simple cubic (sc), body-
centered cubic (bcc) and fcc Bravais spin lattices aris-
ing solely from classical magnetic dipole interactions,
where the ordered moments all had the same magnitude
(equal-moment magnetic structures).4 They found that
the ground state for the sc lattice is an AFM state with
propagation vector k = (12 ,

1
2 , 0) r.l.u., whereas a FM

state with k = 0 is the ground state for the bcc and fcc
lattices if the samples are in the shape of long thin nee-
dles, but AFM structures are the most stable structures
otherwise with k = (12 ,

1
2 , 0) r.l.u. and k = (12 ,

1
2 ,

1
2 ) r.l.u.,

respectively. The abbreviation r.l.u. means reciprocal lat-
tice unit, where 1 r.l.u. = 2π/a for cubic lattices and a
is the cubic lattice parameter. Cohen and Keffer con-
firmed using spin-wave theory that FM cannot be the
ground state at T = 0 for pure magnetic dipole inter-
actions in thin needles of a sc spin lattice but can be
the ground state for bcc and fcc lattices.5 The magnetic
structures of two-dimensional (2D) Bravais spin lattices
induced by magnetic dipole interactions have also been
investigated.6–10

Luttinger and Tisza also showed that in a classical cu-
bic dipolar AFM in the magnetically-ordered state at
temperature T = 0 with a magnetic field Hz applied
perpendicular to the easy axis of ordering, the compo-
nent µz of the ordered moment per spin in the direction
of Hz is proportional to Hz for 0 ≤ Hz ≤ Hc and is
equal to the saturation moment µsat for Hz > Hc, where
Hc is termed the critical field.4 An expression for the
magnetic susceptibility χz = µz/Hz for 0 ≤ Hz ≤ Hc

was given. The high-field state with H ≥ Hc is a field-
induced paramagnetic (PM) state in which the magnetic
moments are ferromagnetically aligned in the direction
of Hz with µz = µsat. According to the Weiss molecular
field theory (MFT), precisely the same type of µz(Hz)
behavior for the perpendicular magnetization occurs for
both collinear and coplanar noncollinear AFMs with the
spins interacting only by Heisenberg exchange.11 The sus-
ceptibility parallel to the easy axis at T < TN for dipolar
AFM ordering in a uniaxial (tetragonal or hexagonal)
crystal has not been calculated before to our knowledge.

The so-called pyrochlore spin lattice has attracted
much attention over the past two decades in the con-
text of spin-ice compounds.12 This non-Bravais fcc spin
lattice with 16 spins per fcc unit cell consists of a 3D net-
work of corner-sharing tetrahedra formed by either the
A or B sublattices of a pyrochlore-structure compound
A2B2X7 or by the B sublattice of a spinel-structure com-
pound AB2X4. An example is the Ho sublattice in the
pyrochlore compound Ho2Ti2O7, where due to crystalline
electric field effects the Ho cations behave at low T like
Ising spins that can only point along the [111] and equiv-
alent crystal directions (the Ti+4 cations are nonmag-
netic). The spin-ice arrangement of the Ho moments
at low T gives rise to a macroscopic degeneracy and a
nonzero spin entropy at T = 0, as occurs in water ice.
Magnetic dipole interactions between the Ho moments
have been determined to be important to this magnetic

behavior,12 and hence these compounds are sometimes
referred to as dipolar spin ices.

On another front, dynamic magnetic fluctuations in
long-range ordered 3D AFMs mediated by magnetic
dipole interactions are stronger than for exchange inter-
actions on the same lattice,3,13 contrary to what might
have been anticipated from the classical origin of the
magnetic dipole interaction. In particular, in the cubic
diamond lattice dipolar AFMs RPO4(MoO3)12 · 30H2O
(R = Gd, Dy, Er), White et al. found that the suppres-
sion of the T → 0 susceptibility versus 1/S (S is the
effective spin quantum number) due to quantum fluctu-
ations was a factor of two stronger than predicted for
the nearest-neighbor Heisenberg model on the diamond
lattice.3 Corruccini and White found that within spin-
wave theory, the 3D simple cubic lattice exhibits quan-
tum corrections to the Néel state that are also a factor
of two larger than those of the nearest-neighbor Heisen-
berg AFM on the same lattice, indicating that dipolar
magnets are more quantum mechanical than generally
suspected, whereas the 2D dipolar square lattice does
not exhibit long-range order at finite temperature.13 On
the other hand, several authors have found that dipolar
interactions in conjunction with Heisenberg interactions
can induce long-range order at finite temperatures on 2D
spin lattices.14–16

The influence of magnetic dipole interactions on the
magnetic properties of 3D Bravais spin lattices with unit
cell symmetries lower than cubic has been discussed for
particular cases. Rotter has discussed the predictions of
dipolar interactions for the easy axis of collinear AFMs
with AFM propagation vectors k that are determined by
isotropic Heisenberg exchange interactions in a variety
of collinear AFM compounds containing sc, fcc, hexago-
nal and body-centered tetragonal (bct) Gd sublattices.17

He found that in most cases the easy axis is consistent
with that predicted for magnetic dipole interactions. Sev-
eral authors calculated the local dipolar fields at a lat-
tice site for general simple tetragonal and body-centered
tetragonal Bravais spin lattices versus a parameter not
proportional to the c/a ratio.18–20 Maurya et al. calcu-
lated the influence of magnetic dipole interactions on the
magnetization versus field isotherms of three AFMs con-
taining Eu+2 spins-7/2 below their Néel temperatures of
12–15 K.21,22

Classical Monte Carlo (MC) simulations on Heisenberg
spin systems have been carried out on a variety of spin
lattices to examine the influence of magnetic dipole inter-
actions on the properties with either dipolar interactions
only or in combination with other spin interactions. For
purely dipole interactions, Bouchaud and Zérah studied
FM on the fcc lattice and determined the Curie temper-
ature TC.

23 They studied the critical exponents at TC

and determined the anisotropy constants K1 and K2,
where they found that the ordered moment direction in
the collinear FM state at the lowest T was along [100],
with a crossover from [111] at higher T . Tomita reported
MC simulations on 2D triangular, square, honeycomb
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and kagomé spin lattices with only dipolar interactions
and studied the ground state magnetic structures and
critical phenomena.24 One result was that the kagomé
lattice has a FM ground state with 1/3 of the spins dis-
ordered at T = 0 [an amplitude-modulated (AM) state]
with residual entropy (“missing entropy”) at T = 0 re-
sulting from macroscopic degeneracy of the ground state.
(An AM magnetic structure is one where the magnitude
of the ordered moment is not the same for all (identical)
spins in the spin lattice. Very recent MC simulations on
the kagomé lattice by Holden et al.25 and Maksymendo et
al.26 instead found a noncollinear coplanar equal-moment
ground-state magnetic structure on the kagomé latice.
Thus when an AM magnetic structure is obtained the-
oretically for a particular spin lattice, this may indicate
that a lower-energy equal-moment magnetic structure ex-
ists in which the moments have their maximum (satura-
tion) value.26 Other MC simulations examined the influ-
ence of dipolar interactions on the properties in combi-
nation with other interactions.26–28

In this paper previous work on the effects of mag-
netic dipolar interactions on the magnetic and thermal
properties of magnetic systems is significantly extended.
Usually exchange and/or RKKY interactions are stronger
than dipole interactions and determine the nature (FM or
AFM) and k of the magnetic structure. However, when
the exchange interactions are Heisenberglike (isotropic),
some sort of anisotropy is needed to determine the di-
rections of the ordered moments in the ordered state as
discussed above, even if very weak compared to the ex-
change interactions. The present work was initially mo-
tivated by the lack of systematic studies of this topic for
uniaxial tetragonal and hexagonal Bravais spin lattices
versus the c/a ratio to compare with experimental re-
sults such as for the Eu+2 spins S = 7/2 in EuCu2Sb2
on a bct sublattice that exhibit collinear AFM ordering
below TN = 5.1 K.29,30

We study the influence of dipolar interactions on the
magnetic ordering temperature Tm, on the collinear or-
dered moment directions and the temperature T depen-
dence of the ordered moment and other properties at
T ≤ Tm, and on the Weiss temperature in the Curie-
Weiss law at T ≥ Tm in a systematic way for a variety of
spin lattices including 1D, 2D and 3D spin lattices using
our recent formulation of the Weiss molecular field the-
ory (MFT).11 All spins in a given system are assumed
to be identical and crystallographically equivalent. The
3D spin lattices studied here include sc, bcc, fcc, simple
tetragonal, bct and simple hexagonal (triangular) Bra-
vais lattices. Non-Bravais spin lattices are also studied
which include the honeycomb (chickenwire) lattice, the
kagomé lattice and the Shastry-Sutherland lattice. For
the uniaxial stacked lattices, the eigenvalues and eigen-
vectors of the magnetic dipole interaction (MDI) tensor
are calculated for c/a ratios from 0.5 to 3. We utilize an
appropriately modified theory to calculate the properties
of noncollinear AFM structures and compare the results
with calculations assuming collinear AFM structures for

the same k. Within MFT, the contributions of different
sources of molecular fields to the Weiss temperatures and
the magnetic ordering temperatures are additive. There-
fore, for example, when dipolar and exchange interac-
tions are simultaneously present, one can calculate the
dipole contributions to good accuracy and then subtract
them from the observed values to obtain the contribu-
tions from the exchange interactions. Then with a model
for the exchange interactions one can estimate their val-
ues. In addition to calculating the magnetic and thermal
properties of pure dipolar magnets, the anisotropy in the
susceptibility of Heisenberg AFMs in the paramagnetic
regime with T ≥ Tm is also computed. We compare our
predictions to the magnetic properties measured for illus-
trative real materials. In this paper we do not consider
critical phenomena, domain formation and similar effects
in ferromagnets or other potential sources of magnetic
anisotropy in a spin system such as single-ion effects.

Our theoretical framework allows easy extensions to
calculate the dipolar contributions to the magnetic prop-
erties of spin lattices not discussed here such as collinear
or noncollinear ordering on orthorhombic, monoclinic
and triclinic Bravais or other non-Bravais spin lattices.

In Sec. II we first write down the expressions relating
the macroscopic magnetic induction, applied magnetic
field and magnetization including shape (demagnetizing)
effects. The expression for the local field seen by a spin
is discussed in Sec. II B. The part of that local field (the
near field) due to discrete moments inside a macroscopic
Lorentz sphere is discussed in Sec. II C, together with the
energy of a spin interacting with the near field. Applica-
tions of the general theory in Sec. II C to magnetically-
ordered states in collinear magnets, non-Bravais spin lat-
tices and coplanar noncollinear helical or cycloidal AFMs
are presented in Secs. II D, II E and II F, respectively.
The expression for the near field due moments within a
Lorentz line (1D), circle (2D) or sphere (3D) is discussed
in Sec. IIG. Some details about calculations of the MDI
tensor are given in Sec. II H. In Appendix A some infor-
mation useful for implementing the theory in Sec. II is
discussed.

The calculations of the eigenvalues and eigenvectors
of the MDI tensor for collinear magnetic structures with
specific magnetic propagation vectors for 1D and 2D spin
lattices are given in Secs. III, where the 2D spin lattices
include the square, triangular, honeycomb and kagomé
lattices. 3D spin lattices are considered in Sec. IV, where
results are given for the three cubic Bravais lattices, the
two tetragonal Bravais lattices, the simple hexagonal lat-
tice and the honeyomb lattice. For the 3D tetragonal and
hexagonal lattices the eigenvalues and eigenvectors are
obtained versus the c/a ratio from c/a = 1 to 3 in 0.1 in-
crements. For all spin lattices, we carry out calculations
of the MDI tensor of a central spin with its neighbors by
direct summation with increasing radius away from the
central moment until convergence is achieved within at
least 0.001%. The convergence of the dipolar sums is dis-
cussed in the corresponding section, and representative
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convergence plots are given in Appendix B.
The predictions of the easy axis for collinear AFM or-

dering are compared with experimental results for the
simple-tetragonal Mn and Fe sublattices in BaMn2As2
and BaFe2As2, the body-centered tetragonal spin lattices
in GdCu2Si2, EuCu2Sb2 and MnF2. For these cases we
compare the results of the eigenvalues and eigenvectors
versus the c/a ratio in graphical format with the exper-
imental data, and the graphical results for other cases
are placed in Appendix C. The treatment of noncollinear
AFMs is presented in Sec. V, with application to the 120◦

ordering on the triangular lattice, the 90◦ ordering on the
distorted Shastry-Sutherland GdB4 compound and to the
undistorted 2D and 3D Shastry-Sutherland lattices.
Section VI presents the calculation of the FM order-

ing temperature TC and AFM ordering temperature TN

arising from dipolar interactions within our recent for-
mulation of MFT.11 A quantitative discussion of the
competition between FM and AFM ordering on cubic
Bravais lattices versus the demagnetization factor of a
sample in the absence of FM domain formation is given
in Sec. VII. The properties of dipolar magnets in the
magnetically-ordered state are derived in Sec. VIII. The
ordered moment and heat capacity of dipolar magnets in
zero magnetic field versus temperature are presented in
Sec. VIII A, where the results are the same within MFT
for both FMs and AFMs. The dipolar anisotropy param-
eter K1 for uniaxial dipolar AFMs versus temperature
is derived in Sec. VIII B. Calculations of the perpen-
dicular susceptibility below TN and the associated criti-
cal field for uniaxial AFMs are presented in Secs. VIII C
and VIII D, respectively.
The Curie-Weiss law for dipolar magnets in the para-

magnetic state is derived in Sec. IX, where the Weiss
temperature is found to be anisotropic in general. In
Sec. X we specialize to spherical samples of collinear
AFMs, where the anisotropic susceptibilities χ for tem-
peratures above TN as well as both the parallel and per-
pendicular susceptibilities below TN are presented and
discussed. Examples of these anisotropic χ(T ) behaviors
are given in Sec. XD for simple tetragonal lattices with
c/a < 1, c/a = 1 (cubic) and c/a > 1.
The anisotropic χ(T ) of a Heisenberg-exchange AFM

at T > TN due to MDIs is derived in Sec. XI and applied
to fit the experimental data for single-crystal MnF2. The
paper concludes with a short summary in Sec. XII.
Tables of values of the dipolar eigenvalues and eigen-

vectors versus c/a plotted in the text and Appendix C
are available in the Supplementary Information.32

II. THEORY

The magnetization per unit volume of magnetic ma-
terials can be significant compared to the applied field
and results in a demagnetizing field and an internal field
smaller than the applied field. In the following the theory
for this important demagnetizing correction is discussed

within the Gaussian cgs system of units33,34 that is used
throughout this paper.

A. Macroscopic Fields

We initially assume that a sample has the shape of
an ellipsoid of revolution and that the applied field is
along one of the three principal axes α. Then the volume
magnetization (net magnetic moment per unit volume)
M (units: G) is uniform in the sample and the magnetic
induction B (units: G), the magnetic field H (units: Oe
= G) and M are collinear with components Mα, Hα and
Bα for the external field Hα applied along the α axis.
For each point in space one has

Bα = Hα + 4πMα. (1a)

Thus internal to the sample one has

Bintα = Hintα + 4πMα. (1b)

The demagnetizing field internal to the sample due to
Mα is

Hdα = −4πNdαMα, (1c)

where here the demagnetizing factor Ndα is defined as
in the SI system of units for which 0 ≤ Ndα ≤ 1 and∑3

α=1 Ndα = 1. Thus the internal magnetic field Hintα

and the magnetic induction Bshape
intα due to sample shape

effects and including the applied field Hα are

Hintα = Hα − 4πNdαMα, (2a)

Bshape
intα = Hintα + 4πMα

= Hα + (1−Ndα)4πMα. (2b)

For a given Mα, the internal field is Hintα in Eq. (2a).
Thus in descriptions of the magnetic behavior of a sample
in terms of Mα and Hα, one can correct for the demag-
netizing field by retaining the measured value of Mα but
replacingHα by Hα−4πNdαMα, where Ndα is estimated
from the sample shape and the field orientation with re-
spect to the sample (see below).
The magnetic susceptibility of a material is often

defined as χ = M(H)/H , which in general is field-
dependent. In the present discussion, M is the volume
magnetization, so χ is the susceptibility per unit vol-
ume and is dimensionless. The observed susceptibility
is then χobs

α = Mα/Hα and the intrisic susceptibility is
χα = Mα/Hintα. Utilizing Eq. (2a) one obtains χα from
χobs
α according to

χα =
Mα

Hintα
=

Mα

Hα − 4πNdαMα
=

Mα/Hα

1− 4πNdαMα/Hα

=
χobs
α

1− 4πNdαχobs
α

. (3)

At each temperature one can correct the observed sus-
ceptibility for the demagnetizing field using Eq. (3).
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Alternatively, using Eq. (3) one can write the observed
susceptiblity in terms of the intrinsic one as

χobs
α =

χα

1 + 4πNdαχα
. (4)

Thus when 4πNdαχα ≫ 1, one obtains the field-
independent susceptibility and linear Mα(Hα) behavior

χobs
α =

1

4πNdα
, Mα =

1

4πNdα
Hα. (5)

The latter behavior holds until Mα reaches it saturation
(maximum) value Msatα; at higher fields Mα is of course
equal to its constant saturation value. In practice, the
limiting behaviors in Eqs. (5) are realized only when a
material is approaching its FM transition temperature
from above.
An expression for the demagnetizing factors Ndα for

the general ellipsoid of revolution was calculated long
ago.35 For sample shapes other than ellipsoids, M is
not uniform within the sample except for limiting cases.
What is then relevant in the present context is the de-
magnetizing field averaged over the sample volume as
expressed in the associated “magnetometric” demagne-
tizing factor. Such sample shapes include the cylinder
and the rectangular parallelepiped (rectangular prism)
for which the magnetometricNdα values have been calcu-
lated for arbitrary sample dimensions in Refs. 36 and 37,
respectively.

B. Local Magnetic Induction from Magnetic
Dipole Interactions

Theoretical predictions of magnetic properties for local
magnetic moments are often cast in terms of the local
magnetic induction Blocal

int i seen by a local moment ~µi at
position ri. This local magnetic induction along a given
principal axis α is traditionally written for a 3D spin
lattice in terms of the four contributions38

Blocal
intα i = Bα +Bshape

intα +BLorentz
intα +Bnear

intα i, (6)

where Bα = Hα is the applied magnetic induction aris-

ing from currents outside the sample and Bshape
intα is the

contribution in Eq. (1b) due to the sample shape. The
contribution

BLorentz
intα =

4π

3
Mα (7)

is the Lorentz cavity field inside a spherical cavity of ra-
dius R surrounding the point at its center at position ri
at which Blocal

intα i is to be calculated. The fourth contribu-
tion Bnear

intα i is the sum of the dipolar fields at position ri
arising from the other magnetic dipoles inside the Lorentz
cavity at positions rj . This is the only term that depends
on the crystal structure of the material. The Lorentz
cavity radius R is much larger than the distance between
magnetic moments in a sample and is large enough so

that the calculated Bnear
intα i becomes independent of R to

within some specified precision. Substituting Eqs. (2b)
and (7) into (6) gives

Blocal
intα i = Hα +

(
1

3
−Ndα

)
4πMα +Bnear

intα i. (8a)

This is an important fundamental equation for calculat-
ing the local field.
Two special cases of Eq. (8a) are of use. In the first, one

corrects the applied field for the demagnetizing field in
the measurements as described above which is equivalent
to removing Ndα from Eq. (8a), yielding

Blocal
intα i = Hα +

4π

3
Mα +Bnear

intα i. (8b)

This equation is sometimes favored for comparison of
theoretical predictions of the dipolar magnetic proper-
ties with experimental data because it is independent of
sample shape. Here Mα is the total magnetic moment
per unit volume. If all spins are identical and crystallo-
graphically equivalent as assumed throughout this paper,
one can write Mα = µα/Vspin where µα is the net average
ordered and/or induced moment per spin in the α direc-
tion and Vspin is the volume per spin, so an equivalent
form of Eq. (8b) is

Blocal
intα i = Hα +

4π

3Vspin
µα +Bnear

intα i. (8c)

Note that Mα = µα = 0 for an antiferromagnet in H = 0.
Alternatively, one can shape a sample into a sphere,

giving Ndα = 1/3 for all three principal directions α, and
then Eq. (8a) becomes

Blocal
intα i = Hα +Bnear

intα i, (8d)

which eliminates the effect of the Lorentz field but only
applies to a spherical sample. This formulation is de-
sirable if one wishes to ameliorate the tendency of the
Lorentz field to enhance dipolar FM ordering with re-
spect to AFM ordering, as illustrated in Fig. 13 below
where FM is favored for small values of Ndα for bcc and
fcc Bravais lattices.

C. Magnetic Induction Due to Collinear Alignment
of Magnetic Dipoles Inside Lorentz Cavity

The magnetic induction Bij seen by a central moment
~µi at a position ri due to a point magnetic dipole moment
~µj at position rj is

Bij =
1

r5ji
[3(~µj · rji)rji − r2ji~µj ], (9a)

where

rji = rj − ri, rji = |rji|. (9b)



6

The energy of interaction Ei of ~µi at position ri due
to the magnetic induction Bij is

Ei = −1

2
~µi ·Bij = − 1

2r5ji
[3(~µi · rji)(~µj · rji)− r2ji~µi · ~µj ],

(10)

where the factor of 1/2 in the first equality recognizes
that the interaction energy of the ~µi with Bij from ~µj is
equally shared between ~µi and ~µj . Expanding the first
term on the right side of Eq. (10) in Cartesian coordi-
nates, one can write the term in matrix form as

(~µi · rji)(~µj · rji) = (µix µjy µjz)




r2jix rjixrjiy rjixrjiz
rjixrjiy r2jiy rjiyrjiz
rjixrjiz rjiyrjiz r2jiz







µjx

µjy

µjz


 = ~µT

i rjirji~µj , (11)

where ~µT
i is the transpose of the column vector ~µi, ~µj is

a column vector and rjirji is a 3 × 3 diadic. Similarly,
the scalar product in the second term on the right side
of Eq. (10) can be written in matrix form as

~µi · ~µj = ~µT
i 1~µj, (12)

where 1 is the 3 × 3 identity matrix. Using Eqs. (11)
and (12), Eq. (10) can be summed over all neighbors ~µj

within a length of chain (1D), a circle of specified radius
(2D) or Lorentz sphere (3D), all centered on ~µi, and then
can be succinctly written in matrix form as

Ei = −1

2
~µT
i Gi~µj . (13a)

where the 3× 3 symmetric tensor Gi is

Gi =
∑

j 6=i

1

r5ji
(3rjirji − r2ji1). (13b)

In order to solve Eq. (13a) for the eigenenergies Ei and
eigenvectors µ̂i of the tensor Gi, one must first express
each ~µj in terms of ~µi. In the following three sections we
discuss our methods for doing so for collinear magnetic
structures on Bravais and non-Bravais spin lattices and
coplanar noncollinear AFM structures, respectively.

D. Collinear Magnetic Structures

In this section we consider collinear magnetic struc-
tures with magnetic wavevector k where

~µj = cos(k · rji)~µi. (14)

Since the cosine function is a scalar with a value between
±1, Eq. (14) expresses that ~µj can be either parallel or
antiparallel to ~µi. For cos(k · rji) = ±1 for each ~µj the
magnetic structure is an “equal-moment” (EM) structure
where the ordered moments all have the same magnitude
µ (which depends on T ). For cos(k · rji) 6= ±1 for some
~µj , µ depends on j and the structure is a collinear AM
AFM structure. Collinear magnetic structures include

both FM (k = 0) and AFM structures below the magnetic
ordering temperature Tm and the FM-aligned magnetic
structure induced above Tm by an external magnetic field
applied along one of the three principal axes of the MDI
in Eq. (16c) below. From Eq. (14) one obtains the “ex-
tinction condition”

~µj = 0 if k · rji = odd multiple of
π

2
rad, (15)

as in Eq. (A6) for AM AFM structures associated with
specific k values and spin lattices. A general k corre-
sponds to either an EM or AM collinear AFM structure.
All simple Bravais lattices have EM magnetic struc-

tures. AM AFM structures occur when the simple Bra-
vais lattices have more than one spin in the unit cell
such as for bcc, bct and fcc spin lattices. With the
cos(k · rji) term as given in Eq. (14), EM structures oc-
cur for bcc and bct lattices with k =

(
1
2 ,

1
2 , 0

)
,
(
1
2 , 0,

1
2

)

and (001) r.l.u., and AM structures for k =
(
1
2 , 0, 0

)

and
(
1
2 ,

1
2 ,

1
2

)
r.l.u. For the fcc lattice, EM structures

occur for k =
(
1
2 ,

1
2 ,

1
2

)
and (0,0,1) r.l.u, whereas AM

structures occur for k =
(
1
2 , 0, 0

)
,
(
1
2 ,

1
2 , 0

)
,
(
1
2 , 0, 1

)
and(

1
3 ,

1
3 ,

1
3

)
. With the exception of the last one, all AM

structures considered can be converted into EM struc-
tures by inserting an additive phase in the cosine term:
cos(k · rji) → cos(k · rji + φ), where φ = π/4 rad. In
that case, all eigenvalues are reduced in magnitude by
the factor cos(π/4) = 1/

√
2, which corresponds to a re-

duction in the ordered moment by a factor of 1/21/4. All
eigenvalues plotted or listed in this paper were obtained
for φ = 0.
In pure magnetic dipole AFMs, the above discussion

shows that the AFM ground state can be an AM state,
depending on the AFM wavevector. However, even in
systems in which the magnetic dipole interaction is not
expected to play an important role, this interaction can
still cause a small modulation of the ordered moment
versus position in the magnetic unit cell. Furthermore,
large-amplitude AM AFM structures are observed in
geometrically-frustrated systems such as in Gd2Ti2O7.

39

Because AM structures contain at least some fraction of
spins with ordered moments less than the saturation mo-
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ment and hence show strong quantum fluctuations in the
ground state, the entropy increase on heating from low
temperatures would be less than the value R ln(2S + 1)
per mole of spins. This can be checked by calorimetry.
The discussion throughout this paper applies to iden-

tical crystallographically-equivalent spins with identical
saturation moments µsat and with thermal-average (or-
dered) magnetic moments ~µi = µµ̂i, where µ can be dif-
ferent for different spins in AM structures. We express
rji in units of the lattice parameter a of the respective
crystal structure. The crystallographic unit cell often
contains more than one spin per unit cell in the exam-
ples described. Then using Eq. (14), Eqs. (13) become40

Ei = −ǫ µ̂T
i Ĝi(k)µ̂i, (16a)

where

ǫ =
µ2

2a3
(16b)

has dimensions of energy and the dimensionless symmet-
ric MDI tensor is

Ĝi =
∑

j 6=i

1

(rji/a)5

(
3
rjirji

a2
−

r2ji
a2

1

)
cos(k · rji). (16c)

Labeling the eigenvalues of Ĝi(k) as λkα, Eq. (16a) gives
the eigenenergies as

Eiα = −ǫ λkα, (16d)

where the subscript α refers to a Cartesian principal or-
dering axis eigenvector of the collinear magnetic struc-
ture, where the three principal axes are orthogonal to
each other. Thus the ground state energy and order-
ing axis for a given k due to the MDI corresponds to
the largest of the three λkα eigenvalues. The MDI en-
ergy scale is set by the value of ǫ in Eq. (16b) which is
system-dependent. The value of ǫ/kB is typically of order
0.01–0.1 K.
The magnetic propagation vector k must be specified

in terms of the reciprocal lattice translation vectors in

Cartesian coordinates in advance of computing Ĝia(k).
One can calculate the λkα eigenvalues and corresponding
eigenvectors (ordered moment axes µ̂i) for various k vec-
tors, including k = 0 for FM-aligned moments which may
occur due to FM ordering in applied field H = 0 or to
H > 0 in the paramagnetic state. Usually the magnetic
k vector observed by, e.g., neutron diffraction measure-
ments, is determined by exchange or RKKY interactions
rather than dipole interactions. In that case one can still
test whether the easy axis predicted by the MDI is con-
sistent with the observed one. A negative answer would
indicate that the MDI does not contribute to determining
the easy axis, and hence some stronger source of magne-
tocrystalline anisotropy must be present that overcomes
the preference of MDIs. A positive answer would mean

that the MDI at least contributes to ordering along the
observed easy axis; however, this does not rule out other
sources of anisotropy that may also contribute.
A general feature of the eigenvalues λkα of the MDI

tensor Ĝi for a given k and spin lattice is that their sum
over the three eigenvectors α is identically zero when no a

priori constraint is placed on the ordering axis of ~µi. This
sum rule is violated when such a constraint is imposed
such as for coplanar noncollinear helical or cycloidal AFM
order as discussed in Secs. II F and VA. In those cases,
one of the λkα is the eigenvalue for FM ordering (k = 0)
along the helix or cycloid axis. The other two eigenvalues
and corresponding eigenvectors are the ones associated
with the actual AFM components of the helix or cycloid.

E. Non-Bravais Spin Lattices

A crystal structure consists of a Bravais lattice plus
a basis of atoms attached to each Bravais lattice point.
Non-Bravais spin lattices are Bravais lattices with more
than one spin in the basis. These include, e.g., the fcc
diamond lattice and the 2D hexagonal honeycomb (or
chickenwire) lattice, each with two spins in the basis,
and the kagomé lattice with three spins in the basis. In
such cases one must modify Eq. (16c) to include a sum
over the atoms in the basis, in addition to the sum over
Bravais lattice points already included in Eq. (16c) via,
e.g., Eqs. (A1). AFM structures in such non-Bravais spin
lattices include those with AFM propagation vector k =
0 for Néel-type ordering on the 2D honeycomb lattice,
which is the same propagation vector as for FM order-
ing. In such AFM structures where the magnetic and
crystallographic unit cells are the same, in order to cal-

culate Ĝi one must specify the orientations of the ordered
moments within a unit cell with respect to the orienta-
tion of a central moment ~µi. Thus Eq. (16c) is modified
to read

Ĝi =
∑

j

∑

k

1

(rjki/a)5

(
3
rjkirjki

a2
−

r2jki
a2

1

)
Rki, (17a)

where the sum over j again refers to the sum over the
Bravais lattice positions, the sum over k sums over all
atoms in the basis, the position ri of the central moment
~µi is not necessarily at the origin of of a central unit cell,
and the vector from ~µi to a moment ~µk is

rjki = rj + rk − ri, (17b)

where rk is the position of moment ~µk in the basis with
respect to the position of the associated Bravais lattice
point rj . The term with rjki = 0 is omitted from the sum
because that term corresponds the difference in position
of moment ~µi with itself. The Cartesian rotation matrix
Rki in Eq. (17a) expresses the moment direction of ~µk in
the basis with respect to that of the central moment ~µi

via

~µk = Rki~µi, (17c)
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similar to Eq. (14) for collinear ordering associated with
a magnetic propagation vector k. Prior to calculating

Ĝi, the 3 × 3 Rki rotation matrix must be specified for
each spin in the basis via a model for the AFM structure.
For example, for the Néel AFM structure in Fig. 1 below,

if ~µi were at a red position ri/a = 1
3 â+

2
3 b̂, then R1i for

a spin at another red position would be Rki = 1 and
that for a black position would be −1, where again 1

is the 3 × 3 identity matrix. This procedure is easily
generalized to more than two spins per Bravais lattice

point, as illustrated in Sec. VB below for calculating Ĝi

for the known coplanar noncollinear AFM structure of
tetragonal GdB4 in Fig. 12 containing four moments in
the basis, each pointing in different directions, and for
the related Shastry-Sutherland spin lattice.

F. Coplanar Noncollinear Helical or Cycloidal
Antiferromagnets

Here we extend the above discussion to coplanar non-
collinear helical or cycloidal AFM ordering on tetragonal
or hexagonal Bravais lattices. For both types of AFM
order, the ordered moments are defined to lie in the crys-
tallographic ab plane. For helical AFM ordering, the
ordered moments are ferromagnetically aligned in the
ab plane and the helix wavevector k axis is the c axis.
For cycloidal AFM ordering, k lies in the ab plane and
the moments in planes perpendicular to both k and the
ab plane are aligned ferromagnetically. The Cartesian x-
axis is parallel to a, the y-axis is perpendicular to a in the
ab plane and the z axis is perpendicular to the ab plane
along the c axis. Pictures of the helical and cycloidal
structures are given in Refs. 31 and 41, respectively. In
either structure, the azimuthal angle φji = φj − φi with
respect to the positive a axis between moments ~µj and
~µi in the ab plane is given by

φji = k · rji. (18a)

The relationship between the central moment direction
µ̂i at position ri and that of another moment at position
rj in either AFM structure is

µ̂j =




cosφji 0 0
0 sinφji 0
0 0 1


 µ̂i, (18b)

which can be written

µ̂j = (x̂x̂ cosφji + ŷŷ sinφji + ẑẑ)µ̂i, (18c)

where the Cartesian coordinate system is used through-

out. Then Ĝi in Eq. (16c) becomes

Ĝi =
∑

j 6=i

1

(rji/a)5

(
3
rjirji

a2
−

r2ji
a2

1

)
(19)

×(x̂x̂ cosφji + ŷŷ sinφji + ẑẑ).

As with collinear AFM ordering, one must specify k

in terms of the reciprocal lattice translation vectors in

Cartesian coordinates in advance of computing Ĝia(k).

Note that µ̂k̂

j = µ̂k̂

i . Hence when Ĝia(k) is diagonalized,
one eigenvalue and corresponding eigenvector is for FM
ordering along the z axis and is not relevant to those for
the helix, whereas the other two eigenvalues and eigen-
vectors are for the helix. As a result, the sum of the three
eigenvalues do not add to zero as they do for all other
AFM structures discussed above.

G. Near Field

The value of Bnear
intα i in Eq. (6) that is seen by a given

moment ~µi at position ri in a given magnetic structure
with a given ordered moment configuration, due to the
sum of the magnetic fields from the magnetic moments
around it within the Lorentz cavity of radius R, is simply
given as

Bnear
intα i = −2Ei

µα
=

µλkα

a3
, (20)

where the factor of 2 arises because the energy per pair
is split evenly between each pair of moments, whereas
the magnetic field arises only from the neighbor of each
pair, the second equality was obtained using Eqs. (16b)
and (16d) and Bnear

intα i can be either positive or negative,
depending on the sign of λkα. If the MDI is the only
source of anisotropy present, this field must be positive
because then the ordered moment is parallel to the local
magnetic induction, which minimizes the free energy of
the moment. The quantity Bnear

intα i is needed to calculate
the total local magnetic induction at the site of a local
moment according to Eq. (8a). If Ei is expressed in cgs
units of erg and those of µ in cgs units of erg/G (= G
cm3), then Bnear

intα i has the correct cgs units of G.
Using Eq. (20), the total local field in Eq. (8b) seen by

central moment ~µi becomes

Blocal
intα i = Hα +

(
4πµα/µ

3Vspin/a3
+ λkα

)
µ

a3
, (21)

where the first term in parentheses is the Lorentz field,
where we distinguish the moment component µα in the
α direction per spin averaged over the sample and the
magnitude µ of the average moment per spin. A nonzero
value of µα only occurs in a ferromagnet or in an antifer-
romagnet in the presence of an external magnetic field.
The second term in parentheses arises from the near field.

H. Calculation and Diagonalization of the
Magnetic Dipole Interaction Tensor

We chose to carry out the sums in the expressions

for the dipole interaction tensor Ĝi in Eqs. (16c), (17a)
and (19) directly instead of by using the Ewald-Kornfeld
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technique,42 because we wanted to study the convergence
properties of the eigenvalues λkα versus the radius R of
the circle or Lorentz sphere for 2D and 3D lattices, re-

spectively. The calculations and diagonalizations of Ĝi

were carried out using standard Macintosh laptop and
desktop computers and Mathematica software. For the
1D chain with FM and Néel AFM states, the eigenvalues

and eigenvectors of Ĝi are trivially determined exactly
for the infinite chain as shown in Sec. III A. For 2D lat-
tices the sums were carried out within circles of radius
up to R/a = 1000 containing up to 1 × 107 spins (for
the kagomé lattice containing three spins per unit cell).
For the 3D lattices the sums were carried out within a
Lorentz sphere, usually up to a radius R/a = 50 contain-
ing up to 6 × 106 spins. Calculations were also done for
two AFM structures out to a sphere radius of R/a = 100
containing 1.7× 107 spins to check convergence.

For the FM spin structures in 2D, the values of Ĝi

versus 1/(R/a) were extrapolated to 1/(R/a) = 0. As

shown in Appendix B, the calculations of Ĝi for AFM
structures generally converge more rapidly with increas-
ing R/a than for FM structures. These procedures deter-
mined λkα to accuracies of <∼ ±10−6 for 2D lattices and
<∼ ±0.001 for 3D lattices, more than sufficient for our
purposes. The eigenvectors µ̂i usually converged very
quickly with increasing R/a. For the various 3D tetrag-

onal and hexagonal lattices, Ĝi was calculated for c/a
ratios from 0.5 to 3 in 0.1 increments.

Figures 17 and 18 in Appendix B show the convergence
of λkα with increasing R/a for FM and Néel AFM mo-
ment alignments along the c axis in the 2D simple square
lattice, respectively. Figures 19(a) and 19(b) show plots
for a simple tetragonal lattice with FM alignment of the
moments along the c axis for c/a = 1.5 and 3, respec-
tively. Figures 20(a) and 20(b) show analogous plots for
the simple tetragonal lattice with Néel-type AFM order-
ing where k = (12 ,

1
2 ,

1
2 ) and alignment of the moments

along the c axis for c/a = 1.5 and 3, respectively.

For the 3D FM and AFM structures, the values of λkα

were typically obtained for R/a = 1 to 50 in increments
of 1 and the last 10 or 20 values were averaged to obtain
the data in the figures in the text and Appendix C and
in the tables in the Supplementary Information.32

III. EIGENVALUES AND EIGENVECTORS
FOR MAGNETIC ORDERING ON ONE- AND

TWO-DIMENSIONAL SPIN LATTICES

A. Spin Chain

We assume that the spin chain lattice is oriented along
an axis desigated as the a axis (x axis) with spacing a
between adjacent spins, so

rji
a

= na. (22)

Ferromagnetic alignment corresponds to k = 0. This
alignment can occur either in the ferromagnetically-
ordered state or in the paramagnetic state in the pres-
ence of an applied magnetic field. The central spin is
positioned at na = 0, so na of the neighbors runs from
−∞ to ∞, excluding na = 0. Numerical diagonaliza-

tion of Ĝi in Eq. (16c) with k = 0 and |nmax
x | = 1000

(2000 neighbors of the central moment) shows that the
principal axes of the interaction tensor are parallel and
perpendicular to the a axis. The lowest energy configu-
ration with a calculated λ(0,0,0)[100] = 4.80823 is with the
ordered moments aligned along the a (chain) axis. This
makes sense because the lowest energy configuration of a
moment is when each moment points along the local field
seen by the moment, which is along the axis of the chain.
The eigenvalues for the two higher-energy orthogonal di-
rections are λ(0,0,0)[010] = λ(0,0,0)[001] = −λ(0,0,0)[100]/2.
For the present case of the 1D spin chain one can also

evaluate λ(0,0,0)[1,0,0] exactly. Equation (16c) yields the
eigenvalue

λ(0,0,0)[1,0,0] = 4
∞∑

na=1

1

n3
a

. (23)

The sum is
∑∞

nx=1 = ζ(3),43 yielding

λ(0,0,0)[1,0,0] = 4ζ(3) ≈ 4.808 228 (24)

as shown in Table I, where ζ(z) is the Riemann zeta
function with ζ(3) ≈ 1.20206. The above numerical value
of 4.80823 obtained for λ(0,0,0)[1,0,0] agrees with this exact
value to six-place accuracy. This shows that the value of
|nmax

a | = 1000 and a spin chain containing 2000 neighbors
of the central moment used in the numerical calculation
is sufficient to obtain this accuracy.
It is of interest to examine the approach to the infinite-

chain limit of λ(0,0,0)[1,0,0] on increasing |na|. For large
|na| one can replace the sum in Eq. (23) in the region
where na is large by an integral

∫
n−3
a dna ∝ −1/n2

a. Thus
we expect for na ≫ 1 that

λ(0,0,0)[1,0,0] = 4ζ(3)− A

n2
a

= 4ζ(3)

[
1− A

4ζ(3)n2
a

]
, (25)

where A is a positive constant. An exact series ex-
pansion of the sum in Eq. (23) about na = ∞ indeed
gives λ(0,0,0)[1,0,0] = 4ζ(3) − 2/n2

a + O(n−3
a ), yielding

A = 2. Equation (25) then predicts six-place accuracy
for λ(0,0,0)[1,0,0] for |na| = 1000, consistent with the above
comparison.
Here we also examine the Néel-type AFM wavevector

k = (1/2, 0, 0) r.l.u., where 1 r.l.u. = 2π/a is the re-
ciprocal lattice unit for this spin lattice. A numerical
calculation using Eq. (16c) shows that the eigenvalues of
Eq. (16d) converge to six significant figures even with a
small |na|max = 70. These calculations also show that
the most stable ordered moment direction is perpendic-
ular to the chain with

λ(1/2,0,0)[0,1,0] = λ(1/2,0,0)[0,0,1] = 1.80309 (26)
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and the unstable x-axis direction has

λ(1/2,0,0)[1,0,0] = −2λ(1/2,0,0)[0,1,0] = −3.60617. (27)

An exact calculation for the a-axis eigenvalue is ob-
tained using the AFM version of Eq. (23), yielding

λ(1/2,0,0)[1,0,0] = 4

∞∑

na=1

(−1)na

n3
a

= −3ζ(3) ≈ −3.60617,

(28a)
as listed in Table I. This value is identical to within
six places with the numerical result for λ(1/2,0,0)[1,0,0] ob-
tained above using only a 141-spin chain (including the
central spin). Thus the dipole fields seen by a central
moment converge much faster with increasing nmax

a for
the AFM structure than for FM one for the spin chain.
The two lower-energy eigenvalues are

λ(1/2,0,0)[0,1,0] = λ(1/2,0,0)[0,0,1] = −1

2
λ(1/2,0,0)[1,0,0]

=
3

2
ζ(3) ≈ 1.80309. (28b)

Comparing Eqs. (24) and (28b) shows that the eigen-
value for the FM-aligned state with the ordered/induced
moments aligned along the a axis is larger than the max-
imum AFM one, and hence the energy per spin is smaller
according to Eq. (16d) for the FM state than for the AFM
state. The FM state is thus expected to be the magnetic
ground state of the linear spin chain for purely dipolar
interactions provided the ordering is not destroyed by
quantum fluctuations.

B. Two-Dimensional Spin Lattices

For the simple square lattice, one has a = b and the
spin positions given by the first two terms in Eq. (A1a).
The normalized wavevectors are the first two terms in
Eq. (A4). The largest (positive) eigenvector λkα of

Ĝia(k) in Eq. (16c) with k = 0 for FM alignment
occurs for the a or b easy axes, with λ(0,0,0)[1,0,0] =
λ(0,0,0)[0,1,0] and λ(0,0,0)[0,0,1] = −2λ(0,0,0)[1,0,0]. Shown
in Fig. 17(a) in Appendix B is the dependence of
λ(0,0,0)[0,0,1] on the inverse radius R−1 for the c-axis
eigenvalue λ(0,0,0)[0,0,1]. According to the discussion in
Sec. III A, in 2D one should have λ(0,0,0)[0,0,1](R/a ≫
1) = λ(0,0,0)[0,0,1](a/R = 0) + A/R, in agreement with
the calculations in Fig. 17(a). Fitting the data for
0.001 ≤ a/R ≤ 0.002 gives

λ(0,0,0)[0,0,1](a/R = 0) = −9.0336220(1), (29)

A = 6.28356(9).

The deviations of the data from the fit are shown in
Fig. 17(b), where it is seen that the deviations are of
the order of 1 part in 107 for 0.001 ≤ a/R ≤ 0.0026. The
graininess of the lattice becomes more apparent at larger
values of a/R.

a

b

FIG. 1: (Color online) Honeycomb lattice. Each honeycomb
cell (not a unit cell) is bounded by solid blue lines. The hexag-
onal unit cells with translation vectors a and b are outlined
by dashed black lines. The 2D space group is p6m (No. 17)
with two spins in Wyckoff positions 2b

(
1
3
, 2
3

)
,
(
2
3
, 1
3

)
. Bipar-

tite Néel ordering of the two spins per unit cell is shown. The
filled red circles represent half the magnetic moments point-
ing in one direction and the open black circles correspond to
half the moments pointing in the opposite direction.

The eigenvalues and eigenvectors for square-lattice
AFM propagation vectors k =

(
1
2 , 0, 0

)
(stripe AFM) and(

1
2 ,

1
2 , 0

)
(Néel-type AFM) were also computed as shown

in Table I. One sees that of these and the FM propaga-
tion vector, the stripe AFM propagation vector with the
ordered moments aligned along the b axis (perpendicular
to k as shown in the last column of Table I) has the low-
est energy. Our eigenvalues λ(0,0,0)[100] and λ( 1

2
,0,0)[100]

are in agreement with, but are more precise than, those
previously reported in Ref. 44, and our λ(0,0,0)[001] and
λ(1/2,1/2,0)[001] values are in precise agreement with the
results in Ref. 45.

For the 2D simple-hexagonal (triangular) lattice the
eigenvalues and eigenvectors were calculated for the FM
state and four AFM states. From Table I, the lowest-
energy states are the FM state and the AFM state with k

= (1,0,0) (stripe-type), with the moments aligned within
the ab plane in both cases. Data for the amplitude-
modulated AFM state with k =

(
1
3 ,

1
3 , 0

)
are included

in Table I because the classical ground state of a tri-
angular lattice of spins with Heisenberg interactions is
the well-known coplanar noncollinear 120◦ state that
can be described by k =

(
1
3 ,

1
3 , 0

)
which we consider

further in Sec. VA. Our eigenvalues λ(0,0,0)[100] and
λ( 1

2
, 1
2
,0)[−1/2,−

√
3/2,0] are in agreement to seven signifi-

cant figures with those previously reported in Ref. 46.

The 2D hexagonal honeycomb lattice is a non-Bravais
spin lattice containing two spins per unit cell as shown

in Fig. 1. The eigenvalues and eigenvectors of Ĝi for
collinear magnetic ordering were calculated for this lat-
tice according to the method of Sec. II E and the results
are listed in Table I for the FM and Néel-type (Fig. 1)
AFM states, where the magnetic propagation vector for
both states is k = (0,0,0).

Rozenbaum found that the ground state of the 2D
honeycomb lattice is noncollinear with all spins aligned
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TABLE I: One- and Two-Dimensional Spin Lattices. Eigenvalues λkα and eigenvectors µ̂ = [µx, µy , µz] in Cartesian

coordinates of the magnetic dipole interaction tensor Ĝi(k) in Eq. (16c) for various values of the magnetic wavevector k in
reciprocal lattice units (r.l.u.) with collinear magnetic moment alignments. The most positive λkα value(s) corresponds to
the lowest energy value according to Eq. (16d). The Cartesian x, y and z axes are along the a, b and c axes of orthogonal-axis
lattices, respectively. For the hexagonal lattice, the x axis is parallel to the hexagonal a axis and the y axis is perpendicular
the the a axis, rather than along the b axis. The linear chain is aligned along the a axis and the square and hexagonal lattices
are aligned in the ab plane.

k λkµ̂ µ̂ µ̂ · k̂
1D linear chain
(0, 0, 0) (FM) 4ζ(3) ≈ 4.808 228 [100]

−2ζ(3) ≈ −2.404 114 [010], [001](
1
2
, 0, 0

)
(Néel AFM) 3

2
ζ(3) ≈ 1.803 085 [010], [001] 0

−3ζ(3) ≈ −3.606 171 [100] 1
2D square lattice(

1
2
, 0, 0

)
(stripe AFM) 5.098 873 [010] 0

0.935 462 [001] 0
−6.034 335 [100] 1

(0, 0, 0) (FM) 4.516 811 [100], [010]
−9.033 622 [001](

1
2
, 1

2
, 0

)
(Néel AFM) 2.645 887 [001] 0

−1.322 943 [100], [010] 1/
√
2 ≈ 0.7071

2D simple-hexagonal (triangular) lattice

(0, 0, 0) (FM) 5.517 088 [100], [010]
−11.034 176 [001]

(1, 0, 0) 5.517 088 [100], [010] 1
−11.034 176 [001] 0

( 1
2
, 0, 0) 4.094 909 [ 1

2
,−

√
3

2
, 0] 1/2

1.839 029 [001] 0

−5.933 939 [−
√

3
2
, 1
2
, 0] −

√
3/2 ≈ −0.8660

( 1
2
, 1

2
, 0) 4.094 909 [− 1

2
,−

√
3

2
, 0] −(

√
3 + 1)/23/2 ≈ −0.9659

1.839 029 [001] 0

−5.933 939 [−
√

3
2
, 1
2
, 0] 1/

√
2 ≈ 0.7071

( 1
3
, 1

3
, 0) 2.331 796 [001] 0

−1.165 898 [100], [010] 1/
√
2 ≈ 0.7071

2D hexagonal honeycomb lattice
(0, 0, 0) (FM) 17.092 359 [100], [010]

−34.184 718 [001]

( 1
2
, 0, 0) 12.827 051 [− 1

2
,
√

3
2
, 0] −1/2

−0.090 183 [001] 0

−12.736 868 [
√

3
2
, 1
2
, 0]

√
3/2 ≈ 0.8660

(0, 0, 0) (Néel-type) 12.116 366 [001]
−6.058 183 [110], [010]

2D hexagonal kagomé lattice
(0, 0, 0) (FM) 51.321 197 [010]

11.205 800 [100]
−62.526 996 [001]

(0, 1, 0) (ferrimagnet) 40.458 644 [001] 0
−0.171 624 [100] 0
−40.287 021 [010] 1

( 2
3
, 2

3
, 0) 13.213 509 [001] 0

9.212 253 [100] 1/
√
2 ≈ 0.7071

−22.425 762 [010] 1/
√
2 ≈ 0.7071

(0, 1
2
, 0) 4.094 910 [100] 0

1.839 029 [001] 0
−5.933 939 [010] 1
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λ = 3a/4

(a)

a

b

k

λ = 31/2a/2

(b)

a

b

k

λ = 31/2a

λ

(c)

a

b

FIG. 2: Two-dimensional hexagonal kagomé lattices. The
hexagonal unit cell is shown at the lower left of each panel
oulined in heavy black lines and contains three spins. The
unit cell edges a and b are twice the length of the triangular-
lattice unit cell edge. Three magnetic structures are shown.
(a) The red, blue and open circles represent moments that are
mutually at an angle of 120◦ to each other within the ab plane,
so a given moment has no nearest neighbors with the same
orientation. The cycloid spin configuration shown has a wave
vector k =

(
2
3
, 2
3
, 0
)
r.l.u. (b) Collinear magnetic structure for

k = (0, 1, 0) r.l.u. The red circles represent moments in one di-
rection and the blue circles represent moments in the opposite
direction. Because there are twice as many red as blue circles,
this magnetic structure is a ferrimagnet (a net ferromagnet).
(c) Collinear AFM structure for k =

(
0, 1

2
, 0
)
r.l.u. The red

and blue circles have the same meanings as in (b). There are
equal numbers of red and blue circles, but the open circles
represent spins with zero ordered moment, so the magnetic
structure is an amplitude-modulated AFM.

in the ab plane,46 in contrast to the collinear FM and
AFM structures assumed in the above calculations. He
gave the ground state energy per spin as E/N =

− µ2

2a3
nn
(4.453 809), where ann = a/

√
3 is the nearest-

neighbor spin-spin distance. Converting to our notation
for N = 2 spins per unit cell according to Eqs. (16) gives
the eigenvalue λ = 33/22(4.453809) = 46.2853. This
eigenvalue is more than a factor of two larger (more sta-
ble) than the most stable collinear magnetic structure in
Table I for the 2D honeycomb lattice.
The 2D hexagonal kagomé lattice is very popular for

studying the effects of geometric frustration on the prop-
erties for AFM interactions. This lattice is a 1

4 -depleted
triangular lattice as shown in Fig. 2. The lattice is gener-
ated from the triangular lattice by removing the spin at
the origin of the unit cell, which shows that a kagomé spin
lattice is a 1

4 -depleted triangular lattice containing three
spins per hexagonal unit cell. The 2D hexagonal space
group of the kagomé lattice is p6m (No. 17), with three
spins in Wyckoff positions 3c

(
1
2 , 0

)
,
(
0, 1

2

)
,
(
1
2 ,

1
2

)
. For

the kagomé lattice the cycloid wavevector in the figure is
k =

(
2
3 ,

2
3 , 0

)
r.l.u. instead of k =

(
1
3 ,

1
3 , 0

)
r.l.u. for the

triangular lattice, due to the factor of two increase in the
a- and b-axis lattice parameters compared to the trian-
gular lattice. The magnetic structure shown in the figure
is the well-known classical 120◦ structure for nearest-
neighbor AFM Heisenberg interactions. However, the
ground state for collinear magnetic ordering arising from
only dipole interactions is seen from Table I to be a FM
structure with the moments pointing perpendicular to
the plane of the lattice. Also shown in the table are re-

sults for two AFM wavevectors directed along the b̂∗ (y)
direction.
Three other magnetic structures for the 2D kagomé

spin lattice are shown in Fig. 2. A classical 120◦ structure
expected for dominant AFM Heisenberg exchange inter-
actions with AFM propagation vector k =

(
2
3 ,

2
3 , 0

)
r.l.u.

is shown in Fig. 2(a). This moment configuration is also
expected for the triangular lattice. A net FM (ferrimag-
netic) collinear structure is shown in Fig. 2(b) with mag-
netic wavevector k = (0, 1, 0) r.l.u. There are twice as
many moments pointing one way compared to the other
way, so the net ordered FM moment is µsat/3, where µsat

is the saturation moment of each spin. An amplitude-
modulated collinear AFM structure is shown in Fig. 2(c)
with AFM propagation vector k =

(
0, 12 , 0

)
r.l.u. The red

and blue circles have the same meaning as in (b), but the
black open circles represent spins with no ordered mo-
ment. Therefore the average AFM ordered moment per
spin is 2µsat/3.
According to Table I, the lowest-energy (largest eigen-

value) collinear magnetic structure for the 2D kagomé
lattice is the FM structure with moments directed along
the y direction (vertically upwards in Fig. 2) within the
ab plane. The collinear structures shown in Figs. 2(a)–
(c) are significantly less stable. Classical Monte Carlo
simulations determined that the ground state magnetic
structure is an equal-moment noncollinear ferrimagnetic
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TABLE II: Simple Cubic Spin Lattice. Eigenvalues λkα

and eigenvectors ~µ = [µx, µy , µz] in Cartesian coordinates of

the MDI tensor Ĝi(k) in Eq. (16c) for various values of the
magnetic wavevector k in reciprocal lattice units (r.l.u.) with
collinear magnetic moment alignments. The most positive
λkα value(s) corresponds to the lowest energy value accord-
ing to Eq. (16d). Also shown are the differences between
the eigenvalues for the different eigenvectors for a give k and
spin lattice, which are proportional to the respective mag-
netic anisotropy energies and fields. The Cartesian x, y and
z axes are along the a, b and c axes of the cubic unit cell, re-
spectively. The labels A-, B-, C- and G-type for the different
wavevectors are from Ref. 47. The λkα values agree with the
f2–f7 eigenvalues in Table II of Ref. 4.

(kx, ky, kz) [µx, µy, µz] λkα

(0,0,0) (FM, B-type) [100], [010], [001] 0(
1
2
, 0, 0

)
(A-type) [100] −9.6874

[010], [001] 4.8437
[001] − [100] 14.5311(

1
2
, 1
2
, 0
)
(C-type) [100], [010] −2.6767

[001] 5.3535
[001] − [100] 8.0302(

1
2
, 1
2
, 1
2

)
(Néel- or G-type) [100], [010], [001] 0

structure with all ordered moments lying in the ab
plane.25,26 The ground state energy per spin is quoted
as E/spin = −2.38895 µ2/a3nn, where ann = a/2 and ann
is the nearest-neighbor spin-spin distance.25 In terms of

our notation, E/spin = − µ2

6a3λ which takes into account
the three spins per unit cell. Then also taking into ac-
count the relation a = 2ann, one obtains the ground-state
eigenvalue λ = 48(2.38895) = 114.670, more than a fac-
tor of two larger (more stable) than the value of ≈ 51.3
listed for λ(0,0,0)[010] for collinear FM in Table I. Thus
the classical MC simulations reveal a noncollinear ground
state that is much more stable than the most stable clas-
sical collinear FM state.
The results for the 2D spin lattices in Table I provide

very useful reference points for 3D lattices, where the 2D
results correspond to the limit c/a → ∞. Indeed, in plots
of λkα versus c/a for uniaxial 3D spin lattices below, we
include horizontal dashed lines in the plots to observe the
rate at which the 2D limits are approached with increas-
ing c/a ratio within the calculated range 0.5 ≤ c/a ≤ 3.

IV. EIGENVALUES AND EIGENVECTORS
FOR THREE-DIMENSIONAL SPIN LATTICES

A. Cubic Spin Lattices

The eigenvalues and eigenvectors of the dipolar inter-
action tensor for the cubic Bravais lattices are well-known
but are presented here in modern notation for complete-
ness and as a check on our calculation methods. Our
parameters for sc, bcc and fcc lattices are found to agree
with previous results4 and are listed in Tables II, III

TABLE III: Body-Centered Cubic Spin Lattice. Symbol
definitions are the same as in Table II. The λkα values agree
with the eigenvalues in Table IV of Ref. 4.

(kx, ky, kz) [µx, µy, µz ] λkα

(0,0,0) (FM) [100], [010], [001] 0(
1
2
, 0, 0

)
[100] −9.6874

[010], [001] 4.8437
[001] − [100] 14.5311(

1
2
, 1
2
, 0
)

[001] 5.3534
[11̄0] 7.9437
[110] −13.2971

[001] − [110] 18.6505
[001] − [11̄0] −2.5903(

1
2
, 1
2
, 1
2

)
[100], [010], [001] 0

(1,0,0) [100], [010], [001] 0

TABLE IV: Face-Centered Cubic Spin Lattice. Symbol
definitions are the same as in Table II. The designations of
the AFM type are from Ref. 49. The λkα values agree with
the eigenvalues in Table V of Ref. 4.

(kx, ky , kz) [µx, µy , µz] λkα

(0,0,0) (FM) [100], [010], [001] 0(
1
2
, 0, 0

)
(Type-IA AFM) [100] −25.679

[010], [001] 12.8393
[001] − [100] 38.518(

1
2
, 1
2
, 0
)
(Type-IV AFM) [11̄0] 14.383

[1̄1̄0] −19.736
[001] 5.3535

[11̄0]− [1̄1̄0] 34.119
[11̄0]− [001] 9.029

(0,0,1) (Type-I AFM) [100], [010] 8.6687
[001] −17.3374

[100] − [001] 26.0061(
1
2
, 1
2
, 1
2

)
(Type-II AFM) [1̄1̄1̄] −28.9204

[21̄1̄], [01̄1] 14.4602
[21̄1̄]− [1̄1̄1̄] 43.381(

1
3
, 1
3
, 1
3

)
[1̄1̄1̄] −30.0587

[21̄1̄], [01̄1] 15.0293
[21̄1̄]]− [1̄1̄1̄] 45.0881(

1
2
, 0, 1

)
(Type-III AFM) [100] 6.3040

[010], [001] −3.1520
[100] − [010] 9.4560

and IV, respectively, for various values of k along with
the common magnetic structure designations.47 Belobrov
et al. carried out an exact calculation of the ground state
spin configuration and energy of the simple cubic lat-
tice and found degenerate noncollinear and noncoplanar
AFM ground states with energy per spin corresponding
to eigenvalue λ = 5.344,48 which is essentially the same
as our value λ(1/2,1/2,0)[001] = 5.3535 for collinear AFM

ordering with wavevector k =
(
1
2 ,

1
2 , 0

)
in Table II. The

designations of the AFM type for fcc lattices in Table IV
are from Ref. 49.
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B. Simple Tetragonal Spin Lattices

The eigenvalues and eigenvectors for FM moment
alignments [k = (0,0,0)] for simple tetragonal lattices
with c/a = 0.5–3 are shown in Fig. 21 in Appendix C
and in a table in the Supplementary Information.32 For
c/a < 1, moment alignment along the c axis is energet-
ically favorable, whereas for c/a > 1, ab-plane moment
alignment is preferred.

The eigenvalues and eigenvectors for a number of 3D
AFM structures for simple tetragonal spin lattices were
determined versus c/a. The 2D limits corresponding to
c/a → ∞ are shown as black horizontal dashed lines
in the figures. The data for k = (1/2,0,0) are plotted
in Fig. 22 in Appendix C. In this case there are three
distinct λkα values for the three eigenvectors [100], [010]
and [001] because this k breaks the fourfold rotational
symmetry about the c axis, with the easy axis switching
from [001] for c/a < 1 to [010] for c/a > 1. One sees
that the respective 2D limits in Table I are reached for
c/a >∼ 2. Similarly, data for k = (1/2,1/2,0) and (0,0,1/2)
are plotted in Fig. 23 in Appendix C and the data are
listed in the Supplementary Information.32

The eigenvalues for AFM wavevectors k = (1/2,0,1/2)
and (1/2,1/2,1/2) are plotted for the respective eigenvec-
tors versus the c/a ratio for a simple tetragonal lattice
in Figs. 3(a) and 3(b), respectively, with the numerical
listed in the Supplementary Information.32 Here again,
the respective 2D limits in Table I are reached rather
quickly with increasing c/a in Fig. 3 at c/a ∼ 2.

Shown in Fig. 4 is the bct ThCr2Si2-type crystal
structure (space group I4/mmm) of BaMn2As2 and
BaFe2As2.

34 In both compounds the transition-metal
atoms Mn and Fe form a simple tetragonal sublattice
with lattice parameters aMn/Fe = abct/

√
2 and cMn/Fe =

cbct/2, yielding cMn/Fe/aMn/Fe = (cbct/abct)/
√
2 = 2.285

for BaMn2As2 and 2.32 for BaFe2As2. BaMn2As2 has a
G-type (Néel-type) AFM structure with k =

(
1
2 ,

1
2 ,

1
2

)
in

the tetragonal lattice notation below TN = 625 K with
the Mn ordered local moments aligned along the c axis,
whereas BaFe2As2 has a stripe-type itinerant AFM struc-
ture with k =

(
1
2 , 0, 0

)
below TN = 137 K with the Fe

ordered moments aligned along the a axis of the simple-
tetragonal sublattice in Fig. 4. The ordered moment axis
for BaMn2As2 agrees with the prediction for the wavevec-
tor k =

(
1
2 ,

1
2 ,

1
2

)
in Fig. 3(b). However, as shown in

Fig. 3(a), for BaFe2As2 MDIs favor the b = [010] easy
axis for k =

(
1
2 , 0,

1
2

)
and c/a = 2.32, perpendicular to

the in-plane component kab =
(
1
2 , 0

)
of the AFM prop-

agation vector, whereas the easy axis is found to be the
a axis, parallel to kab (see Fig. 40 of Ref. 34). Therefore,
there must be another source of anisotropy in BaFe2As2
that overcomes that due to MDIs to determine the easy
axis.
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[001]

moments aligned along [010]

[100]

k = (1/2,0,1/2)

simple tetragonal

(a)

2D limits

-8
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-4

-2

0
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4

6

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

c/a

(b)

[001]

moments aligned along
       [100] or [010] 

k = (1/2,1/2,1/2)

simple or body-centered
          tetragonal

2D limits

FIG. 3: (Color online) Eigenvalues (a) λ(1/2,0,1/2) for AFM
wavevector k = (1/2,0,1/2) r.l.u. and (b) λ(1/2,1/2,1/2) for
AFM wavevector k = (1/2,1/2,1/2) r.l.u. versus the c/a ra-
tio for a simple tetragonal lattice with the moments aligned
along [010] (b axis, filled red circles), [001] (c axis, filled green
diamonds) and [100] (a axis, filled blue squares).

C. Body-Centered Tetragonal Spin Lattices

The behavior of the eigenvalue λ(0,0,0)[001] of the MDI
tensor for FM ordering with k = (0,0,0) and the ordered
moment direction along the c axis is shown versus c/a in
Fig. 5(a). A list of the numerical data is given in the Sup-
plementary Information.32 An expanded plot of the data
for 0.85 ≤ c/a ≤ 1.5 is shown in Fig. 5(b). One sees an
S-shaped oscillation in the latter range that was appar-
ently first noticed by Lo et al.19 The first zero crossing
occurs at c/a = 1, corresponding to a bcc lattice, and

the third zero crossing occurs at c/a =
√
2. This latter

c/a value for the bct lattice corresponds to an fcc lattice
within the bct lattice that is rotated by 45◦ with respect
to the bct lattice as shown in Fig. 15 of Ref. 34. The
lattice parameters are related by afcc =

√
2abct = cbct,

yielding cbct/abct =
√
2. Hence both values c/a = 0

and
√
2 correspond to cubic Bravais lattices, for which it
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 Fe
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BaMn2As2 BaFe2As2

FIG. 4: (Color online) Crystallographic structures of
body-centered tetragonal ThCr2Si2-type BaMn2As2 and
BaFe2As2.

34 The magnetic atoms Mn and Fe form simple-
tetragonal sublattices. The AFM structure of BaMn2As2
is Néel-type (G-type) with AFM propagation vector k =(
1
2
, 1
2
, 1
2

)
and with the ordered moments aligned along the

c axis, whereas the AFM structure of BaFe2As2 is stripe-
type with AFM propagation vector k =

(
1
2
, 0, 1

2

)
and with

the ordered moments aligned along the a axis of the simple-
tetragonal Fe sublattice structure (due to an orthorhombic
distortion, the a and b axes have slightly different lengths at
T ≤ TN in BaFe2As2).

is well known that λ(0,0,0) = 0 for all µ̂. We verified that
our λ(0,0,0)[001] versus c/a data in Fig. 5(b) calculated
by direct summation quantitatively agree with the cor-
responding eigenvalue data in Refs. 18–20 that were cal-
culated using the Ewald-Kornfeld method (J. P. Huang,
private communication).

The eigenvectors and eigenvalues of Ĝi were calculated
for several AFM propagation vectors. The λ(1/2,1/2,0)[001]

data for k =
(
1
2 ,

1
2 , 0

)
are plotted versus c/a in Fig. 24

in Appendix C and a listing of the numerical data is
given in the Supplementary Information.32 The eigenval-
ues for wave k =

(
1
2 , 0,

1
2

)
versus the c/a ratio with the

moments aligned in the [0, −1, 0], [−
√
1− x2, 0, x] or

[x, 0,
√
1− x2] directions are plotted in Fig. 6(a), and x

versus c/a is plotted in Fig. 6(b). The numerical data in
Fig. 6 are listed in the Supplementary Information.32

The compound GdCu2Si2 has the body-centered
tetragonal ThCr2Si2-type structure with space group
I4/mmm as shown in Fig. 7 and lattice parameters and
z-axis Si positions a = 3.922 Å, c = 9.993 Å, c/a = 2.548
and zSi = 0.368 at 24 K.50 The magnetic structure of
GdCu2Si2 is collinear, with the Gd ordered moments ori-
ented along the tetragonal b axis with an AFM propaga-
tion vector k = (12 , 0,

1
2 ) r.l.u.,

50 as shown in Fig. 7. The

ordered moment at 2 K is 7.2(4) µB/Gd,50 in agreement
with the value of 7µB/Gd obtained from the usual rela-
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(b)

bcc fcc

c/a = 2
1/2c/a = 1

FIG. 5: (Color online) (a) Dependence of the eigenvalue
λ(0,0,0)[0,0,1] on the c/a ratio for a body-centered tetragonal
lattice with a ferromagnetic (FM) alignment of the magnetic
moments along the c axis. (b) Expanded plot of the data
in (a) for 0.95 ≤ c/a ≤ 1.5. One sees that FM alignment
along the c axis is the most stable for c/a < 1, which from
Fig. 21 is also the case for the simple tetragonal lattice. For
1 < c/a <∼ 1.3 the easy axis for FM alignment is the a or

b axis, for 1.3 <∼ c/a ≤
√
2 the c axis is favored, then for

c/a >
√
2 the a or b axis is again favored. For this magnetic

structure, one has λ(0,0,0)[100] = λ(0,0,0)[010] = −λ(0,0,0)[001]/2.

tion µsat = gSµB, where here S = 7/2 and g = 2. Thus
the Gd moments in (101) planes are ferromagnetically
aligned and are oriented perpendicular to k. From Fig. 6,
dipolar interactions for k = (12 , 0,

1
2 ) and c/a = 2.548

predict that the moment alignment should be along the
b axis, in agreement with the experimental AFM struc-
ture in Fig. 7.
The eigenvalues for AFM propagation vector k =

(0,0,1) in the bct spin lattice versus the c/a ratio with
the moments aligned along the c axis or in the ab plane
are plotted in Fig. 8 and listed in the Supplementary
Information.32

The compound EuCu2Sb2 has a primitive tetragonal
CaBe2Ge2-type crystal structure (space group P4/nmm)
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FIG. 6: (Color online) Eigenvalues for wavevector k =(
1
2
, 1
2
, 0
)
r.l.u. versus the c/a ratio for a body-centered tetrag-

onal spin lattice with the moments aligned along (a) [0, 1̄, 0]
(filled red circles), [−

√
1− x2, 0, x] (filled green diamonds)

or [x, 0,
√
1− x2] (filled blue squares), where x versus c/a is

shown in (b).

containing Eu+2 ions in crystallographically-equivalent
sites forming a bct sublattice as shown in one panel of
Fig. 9.29 Like Gd+3, the Eu+2 ions have spin S = 7/2,
g = 2, angular momentum L = 0 and a saturation mo-
ment µsat = gSµB = 7 µB. The compound orders an-
tiferromagnetically below TN = 5.1 K with an A-type
structure, k = (0,0,1), and with the Eu+2 moments ori-
ented in the ab plane as shown in Fig. 9.29,30 The powder
neutron diffraction measurements30 can only determine
that the ordered moments lie in the ab plane and not
their direction within this plane.51 EuCu2Sb2 has lattice
parameters a = 4.488 Å, c = 10.778 Å and c/a = 2.401.
From Fig. 8, for this c/a value the ordering direction for
k = (0,0,1) is predicted for MDIs to be in the ab plane,
in agreement with the experimental data.

The compound MnF2 has the primitive tetragonal ru-
tile crystal structure with space group P42/mnm and
is widely considered to be the prototype for collinear

c

b

a

GdCu2Si2

Gd

Cu

Si

(101) plane

FIG. 7: (Color online) Crystal and magnetic structures of
body-centered tetragonal GdCu2Si2 with the ThCr2Si2-type
crystal structure. One crystallographic unit cell is shown.
The magnetic unit cell has dimensions 2a×b×2c and contains
four crystallographic unit cells. The collinear magnetic struc-
ture has an AFM propagation vector ( 1

2
, 0, 1

2
) r.l.u. perpen-

dicular to the (101) plane shown, with the magnetic moments
oriented along the b axis.50 Within each such (101) plane, the
Gd magnetic moments are ferromagnetically aligned.

AF ordering. The crystal and magnetic structures of
MnF2 are shown in Fig. 9. At T = 298 K, the lat-
tice parameters are a = 4.8734(2), c = 3.3099(5) Å,
c/a = 0.6792 and the general F position parameter
is u = 0.310(3).52 The Mn+2 d5 ions with expected
high-spin S = 5/2 form a bct sublattice. The Mn+2

spins order in an A-type AFM structure53 below the
Néel temperature TN = 67 K (Ref. 54) with an or-
dered moment at 5 K of 5.12(9) µB/Mn.55 The ordered
moment is in good agreement with the expected value
µsat = gSµB = 5µB/Mn for g = 2. A fit to χ(T ) mea-
surements from 200 to 300 K by the Curie-Weiss law gave
a molar Curie constant of 4.47 cm3 K/mol and a Weiss
temperature θ = −97.0 K.56 The Curie constant is close
to the value of 4.38 cm3 K/mol expected for S = 5/2 and
g = 2. From the c/a ratio and Fig. 8, the MDI favors
ordered moment alignment along the c axis, in agreement
with the easy axis observed in Fig. 9. This ordering axis
is perpendicular to the ordering axis for EuCu2Sb2 with
c/a > 1 discussed above, as expected from MDIs.

D. Simple Hexagonal (Triangular) and Honeycomb
Spin Lattices

The eigenvalues and eigenvectors of the MDI tensor Ĝi

for stacked simple hexagonal lattices were calculated ver-
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FIG. 8: (Color online) Eigenvalues for wavevector k =
(0,0,1) r.l.u. versus the c/a ratio for a bct spin lattice with the
moments aligned along [001] (c axis, filled green diamonds) or
[100] or [010] (a or b axis, filled blue squares). The 2D limits
for the square lattice for c/a → ∞ are shown as horizontal
black dashed lines.
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F

FIG. 9: (Color online) Crystallographic and AFM A-type
structure with k = (0,0,1) and µ̂ = [100] of EuCu2Sb2 with
c/a = 2.401 (Refs. 29, 30) and MnF2 with c/a = 0.6793
and µ̂ = [001].52–55 Each compound contains a body-centered
tetagonal sublattice of magnetic ions, but with c/a < 1 and
c/a > 1, respectively, which is the crossover point between
[001] and [100]- or [010]-axis ordering, respectively.

sus c/a from 0.5 to 3 for FM alignment (k = 0) and AFM
wavevectors k = (1,0,0),

(
1
2 ,

1
2 , 0

)
,
(
1
3 ,

1
3 ,

1
3

)
,
(
1
3 ,

1
3 , 0

)
and(

1
3 ,

1
3 ,

1
2

)
, and are plotted in Figs. 25, 26 and 27 in Ap-

pendix C and the numerical data are listed in the Sup-
plementary Information.32 In contrast to the AFM cases,
for the FM alignment the approach of the eignevalues to
the asymptotic 2D ones with increasing c/a is very slow
as seen from comparison of the plots for FM alignments
in Fig. 25(a) with the AFM ones, which reach their 2D
values by c/a ∼ 2.

The eigenvalues and eigenvectors of Ĝi for the hon-
eycomb spin lattice in Fig. 1 calculated versus c/a from
0.5 to 3 for k = (0,0,0) (FM alignment) and AFM prop-
agation vectors k =

(
1
2 , 0, 0

)
,
(
0, 0, 12

)
(Néel-type in all

directions), (0,0,0) r.l.u. (Néel-type in ab plane and FM
alignment along c axis) and

(
0, 0, 12

)
(FM alignment in-

traplane and AFM alignment interplane) are plotted in
Figs. 28, 29 and 30 in Appendix C, respectively, and are
listed in the Supplementary Information.32 Similar to the
behavior of the eigenvalues for the simple hexagonal spin
lattice, for FM alignment in the honeycomb lattice the
approach of the eigenvalues to their 2D limits with in-
creasing c/a is very slow compared to behaviors for the
AFM moment alignments. For the Néel AFM alignments
both just in the ab plane and also along the c axis, the
approach with increasing c/a to the infinite c/a limits is
very fast, being essentially complete by c/a ∼ 1.5.

V. EIGENVALUES AND EIGENVECTORS FOR
NONCOLLINEAR ANTIFERROMAGNETS

The relationship between the ordered/induced central
moment ~µi and another moment ~µj at position rji with
respect to ~µi in a collinear magnetic structure was given
in Eq. (14). In noncollinear AFMs one must specify the
directions of each of the moments in a crystal in order
to calculate the net dipolar interaction of a given central
moment ~µi with its neighbors inside the Lorentz sphere.
There are two generic cases. In the first, one can define a
nonzero AFM propagation vector k such that moments in
a plane perpendicular to k are ferromagnetically aligned
and all change their directions from plane to plane along
k. In the second, the spin lattice is a non-Bravais lattice
and the magnetic and chemical unit cells are the same,
where the AFM propagation vector is k = (0,0,0) for such
cases. We consider the first type of AFM ordering in the
2D triangular lattice in the following section and then
the second type of ordering in GdB4 and the Shastry-
Sutherland lattice.

A. 2D Triangular Lattice Antiferromagnets

It is well known that the classical ground state of a
triangular lattice AFM interacting by isotropic Heisen-
berg exchange is the coplanar noncollinear 120◦ struc-
ture, where each of the six neigbors of a given moment
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120˚ Cycloidal Ordering

kd = 2π/3

FIG. 10: (Color online) Coplanar noncollinear magnetic unit
cell of classical 120◦ ordering on the 2D simple hexagonal (tri-
angular) spin lattice for cycloidal AFM ordering with a com-
mensurate wavelength of 3a/2. The hexagonal lattice transla-

tion vectors a and b (a = b) and the direction k̂ of the cycloid
wavevector k are indicated. The long-dashed line is the out-
line of the hexagonal unit cell containing one spin and the
solid line is the outline of the magnetic unit cell containing
nine spins (nine unit cells). The AFM propagation vector is
k =

(
1
3
, 1
3

)
r.l.u. The quantity d is the distance between lines

of ferromagnetically-aligned magnetic moments along the cy-
cloid axis (k̂) direction. The rotation angle of the magnetic

moments between adjacent lattice lines in the k̂ direction is
φji = kd = 2π

3
rad.

is at a 120◦ angle with the given moment, as shown in
the cycloidal AFM structure shown in Fig. 10 where the
2D AFM propagation vector is k =

(
1
3 ,

1
3

)
r.l.u. In the

absence of anisotropy, the energy of the spin lattice in
Fig. 10 is invariant on rotating each spin by the same
angle, thus retaining the 120◦ angles between adjacent
moments. Here we examine whether the MDI can de-
termine how the moments are oriented with respect to
the hexagonal unit cell axes for the AFM structure in
Fig. 10, or indeed whether the MDI alone can stabilize
this magnetic structure.
The approach we use is to first calculate the eigen-

values of the MDI tensor Ĝi for noncollinear moments
and variable k = (x, x) r.l.u. and see whether the max-
imum eigenvalue is obtained for x = 1/3. If so, then
we are done. If not, we conclude that exchange interac-
tions alone determine k =

(
1
3 ,

1
3

)
r.l.u. and then calculate

for this k what the moment orientations should be with
respect to the crystal axes as predicted by the MDI.

The MDI tensor Ĝi was calculated using Eq. (19).
Shown in Fig. 11 are plots of the two eigenvalues λ(x,x)

versus x with k = (x, x) r.l.u. for the two eigenvectors
µ̂i1 and µ̂i2 shown in the figure for the orientation of
central moment ~µi at the origin of the Cartesian coor-
dinate system (the third eigenvalue is for FM ordering
along the c axis as discussed in Sec. II F and is not rele-
vant here). From Fig. 11, there is no maximum in λ(x,x)

at x = 1/3 corresponding to the 120◦ noncollinear struc-
ture. Instead, the MDI favors k = (1/2, 1/2) r.l.u. Set-
ting x = 1/3, we obtain λ(1/3,1/3) = −1.1659 for the two
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x

μ
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1/2
/2]μ

i1
 = [3

1/2
/2, −1/2]

k = (x,x) r.l.u.

2D triangular lattice

FIG. 11: (Color online) Variation in the eigenvalues λ(x,x)

versus x in the AFM propagation vector k = (x, x) r.l.u. for
the two eigenvectors ~µi1 and ~µi2 of the MDI tensor for the ori-
entation of a representative moment ~µi. The first eigenvector
is in the hexagonal b direction and the second is in the b∗

direction, which is rotated clockwise by 90◦ from the first (see
Fig. 16 in Appendix A). The two curves cross at x = 1/3 and
x = 2/3. For x = 1/3 the eigenvectors are calculated as [100]
(along the a axis) and [010] (perpendicular to the a axis).

degenerate eigenvectors µ̂i = [100] or [010]. The AFM
structure in Fig. 11 corresponds to µ̂i = [010].
Interestingly, the eigenvalue λ(1/3,1/3) = −1.1659 is

identical to the value in Table I obtained for collinear

amplitude-modulated AFM ordering on the triangular
lattice with k =

(
1
3 ,

1
3

)
r.l.u. with the same two eigen-

vectors. This shows that the net energy of interaction of
a moment with the magnetic fields of the other moments
inside the Lorentz sphere only depends on the projections
of those moments on the eigenvector axis.
The fact that λ(1/3,1/3) is negative, whereas the eigen-

value for collinear amplitude-modulated ordering along
the easy c axis for k =

(
1
3 ,

1
3

)
in Table I is positive, sug-

gests that the MDI might tend to cant the moments in
the classical 120◦ coplanar structure out of the ab plane
and also introduce an amplitude modulation of the or-
dered moments.

B. GdB4 and Shastry-Sutherland Antiferromagnets

The AFM structure for GdB4 shown in Fig. 12
was deduced from neutron diffraction measurements.57

The configuration of the exchange interactions J1 and
J2 shown in the figure is an example of a so-called
Shastry-Sutherland Heisenberg exchange model in two
dimensions.58 In GdB4, this AFM structure is stacked
along the c axis with FM alignments between nearest-
neighbor layers and a corresponding FM interlayer inter-
action Jc that is not included in the Shastry-Sutherland
model.
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FIG. 12: (Color online) Four crystallographic and magnetic
unit cells of the Gd sublattice of the tetragonal GdB4 com-
pound in the ab plane.31 The Gd ordered moments all lie in
the ab-plane in [110] and equivalent directions.57 Also shown
are the 2D in-plane Shastry-Sutherland58 exchange interac-
tions J1 and J2 between nearest- and next-nearest-neighbor
Gd spins, respectively. The four Gd spins in the lower-left
unit cell are numbered clockwise as shown. The spin in-
teractions are topologically the same as in the undistorted
Shastry-Sutherland square lattice model in which the GdB4

squares are not tilted with respect to the a and b axes. Ad-
jacent stacked layers along the c axis are ferromagnetically
aligned with ferromagnetic (negative) nearest-neighbor ex-
change interaction Jc (not shown). Since the chemical and
magnetic unit cell are the same, the AFM propagation vector
is k = (0,0,0).

Here we assume that the AFM structure is known,
along with the relative orientations of each of the ordered
moments in a unit cell. For noncollinear AFMs, Eq. (14)
cannot be used and instead one must express each ~µk in a
magnetic = crystallographic unit cell in terms of the cen-
tral moment ~µi around which the dipolar sum within the
Lorentz sphere is calculated. Thus we use the method
described in Sec. II E to obtain the orientation (eigen-
vector) of ~µi with respect to the Cartesian coordinate
system, together with the associated eigenvalue.

GdB4 has a primitive-tetragonal crystal struc-
ture with space group P4/mbm.57 The Gd atoms
occupy the Wyckoff 4g positions (1)

(
1
2 − x, x, 0

)
,

(2)
(
1− x, 1

2 − 1, 0
)
, (3)

(
1
2 + x, 1 − x, 0

)
and

(4)
(
x, 1

2 + x, 0
)

with x = 0.31746(2). Thus from
Eq. (A1a) the absolute positions of the atoms within the

unit cell normalized to the a-axis lattice parameter are

r1

a
=

(
na +

1

2
− x, nb + x, nc

c

a

)
, (30a)

r2

a
=

(
na + 1− x, nb +

1

2
− x, nc

c

a

)
, (30b)

r3

a
=

(
na +

1

2
+ x, nb + 1− x, nc

c

a

)
, (30c)

r4

a
=

(
na + x, nb +

1

2
+ x, nc

c

a

)
, (30d)

where na, nb and nc are positive or negative integers or
zero. Taking the central moment ~µi to be at position r1
with na = nb = nc = 0, one obtains the rki = rk − ri as

r1i

a
=

(
na, nb, nc

c

a

)
, (31a)

r2i

a
=

(
na +

1

2
, nb +

1

2
− 2x, nc

c

a

)
, (31b)

r3i

a
=

(
na + 2x, nb + 1− 2x, nc

c

a

)
, (31c)

r4i

a
=

(
na −

1

2
+ 2x, nb +

1

2
, nc

c

a

)
. (31d)

The 3 × 3 rotation matrices Rk for the four numbered
moments in the lower-left unit cell in Fig. 12 are

R1 = 1, (32a)

R2 = yx− xy, (32b)

R3 = −1, (32c)

R4 = xy − yx, (32d)

where xy and yx are 3× 3 diadics.
The sums in Eq. (17a) were calculated out to a Lorentz

sphere radius R/a = 50 for 3D GdB4. Then diagonaliz-

ing Ĝi gave the eigenvectors and corresponding eigenval-
ues listed in Table V. Recalling that the largest positive
eigenvalue corresponds to the minimum energy according
to Eq. (16a), the data in Table V show that the MDI fa-
vors moment alignment along the c axis, contrary to the
experimental result in Fig. 12 which gives the alignment
of the k = 0 spin as the [1, 1̄, 0] direction, correspond-
ing to the second-highest λkα. The highly unstable [110]
direction for central moment #1 corresponds to all mag-
netic moments in Fig. 12 rotating clockwise by 90◦ and
hence all moments in each Gd4 square pointing towards
the center of the square. The RKKY interaction between
Gd spins and/or a high-order crystalline electric field ef-
fect evidently give an anisotropic exchange interaction
that is responsible for the observed ordered moment di-
rections.
Calculations were also carried out for x = 1/4, which

corresponds to untilted Gd4 squares in Fig. 12, as shown
in Table V. One sees significant differences in the
eigenvalues compared to the results for the observed
x = 0.31746. In particular, the Gd ordered moments
are now predicted to have the experimental ordered-
moment directions. We also carried out calculations for
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TABLE V: GdB4 and Shastry-Sutherland Lattice.
Eigenvectors [µx, µy , µz] for central spin ~µi and eigenvalues
λkα for the three-dimensional Gd sublattice in GdB4 and for
the 2D Shastry-Sutherland model. For both cases, the ex-
perimental 90◦ angles between adjacent spins was assumed
with the order φ = φ0, φ0 + 90◦, φ0 + 100◦ and φ0 + 270◦

on going clockwise around a Gd square as shown in Fig. 12,
but with the value of φ0 undetermined for the moment in the
lower left corner of each square. The experimental x value
and c/a ratio for GdB4 are 0.31746 and 0.56797, respectively.
In the two-dimensional Shastry-Sutherland model, x = 1/4
and c/a = ∞. The symbol 1̄ means −1.

System x [µx, µy , µz] λkα

3D GdB4 0.31746 [001] 27.945
(actual) [11̄0] 20.112

[110] −48.055
[001] − [11̄0] 7.883
[001] − [110] 76.000

1/4 [11̄0] 40.013
[001] 26.833
[110] −66.845

[11̄0]− [001] 13.180
[11̄0]− [110] 106.858

2D Shastry- 1/4 [11̄0] 40.790 982
Sutherland [001] 7.483 697

[1̄1̄0] −48.274 678
[11̄0]− [001] 33.307 285
[11̄0]− [1̄1̄0] 89.065 660

the Shastry-Sutherland 2D lattice and the results are
shown in Table V, where the favored ordered moment di-
rection for Gd1 is found to be the same as for x = 1/4 and
c/a = 0.56797, the observed c/a ratio for GdB4. Thus
the ground-state ordering direction predicted by the MDI
is sensitive to the tilting angle of the Gd4 squares.

VI. MAGNETIC ORDERING TEMPERATURE
DUE TO MAGNETIC DIPOLE INTERACTIONS

The molecular field theory (MFT) calculations in this
and the following sections closely follow the development
of the author detailed in Ref. 11. Therefore in this and
the following sections only an outline of the calculations
associated with the MDI is given.
In this section, an AFM ordering (Néel) tempera-

ture arising from dipolar interactions only is denoted by
TNA and a FM ordering (Curie) temperature by TCA,
where the subscript A refers to the quantity being the
contribution from an anisotropic magnetic interaction.
Similarly, a Néel temperature arising from Heisenberg
exchange interactions only is denoted by TNJ and a
Curie temperature by TCJ . We use the Weiss MFT
to calculate these transition temperatures where we as-
sume that the spins are identical and crystallographi-
cally equivalent and we only treat equal-moment (not
amplitude-modulated) magnetic structures on Bravais
lattices. Within MFT, the contributions of the dipolar

and exchange interactions to the actual ordering temper-
atures TN and TC, respectively, are additive:

TN = TNA + TNJ , TC = TCA + TCJ . (33)

The magnetic ordering temperature TmJ (m = N, C)
for both AFMs and FMs due to exchange interactions is
given by the same expression11

TmJ = −S(S + 1)

3kB

∑

j

Jij cosφji, (34)

where φji is the angle between magnetic moments j and i
in the ordered state and φji = φj − φi = 0 for a ferro-
magnet. We define the reduced ordered and/or applied
magnetic field-induced average moment µ̄ for a spin S as

µ̄ ≡ µ

µsat
=

µ

gSµB
, (35)

where µsat = gSµB is the saturation moment of the spin.
Using Eq. (34), one can write the exchange field seen by
a representative moment i in zero applied field H as

Hexchi =
TmJ

C1
µ0 =

3kBTmJ

gµB(S + 1)
µ̄0, (36)

where the subscript 0 in µ̄0 signifies H = 0 and this
expression applies to the ordered state.
The magnetic ordering temperature and the Weiss

temperature in the Curie-Weiss law are determined
within MFT by criterion that µ̄0 → 0 for T → T−

m .
For magnetic dipole ordering, the near-field contribution
to that local magnetic induction is given by Eq. (20).
The magnetic moment µ in that equation is defined here
as either the ordered moment in a magnetic structure
in H = 0 (µ0) and/or an average moment induced by
Hα > 0 (µ). Using Eq. (35), Eq. (20) associated with
MDIs becomes

Bnear
intα i =

gµBSµ̄λkα

a3
. (37)

A. Antiferromagnetic Ordering (Néel)
Temperature

Here we calculate TNA in H = 0 within MFT for a
specified AFM wavevector k and ordered moment axis µ̂
in the presence of MDIs but in the absence of exchange
interactions. The standard MFT prediction is obtained
from11,31,59

µ̄0 = BS

(
gµBB

local
intα

kBT

)
, (38)

where we have dropped the subscript i because all mo-
ments are crystallographically equivalent in H = 0, the
subscript 0 in µ̄0 signifies that H = 0 as above, BS(y) is
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the Brillouin function for spin S given by our unconven-
tional expression

BS(y) =
1

2S

{
(2S + 1) coth

[
(2S + 1)

y

2

]
− coth

(y
2

)}
.

(39)
There is no demagnetizing field for an AFM in H = 0 be-
cause there is no net magnetization, so for AFM ordering
in H = 0 the local field is just the near field. Inserting
Bnear

intα i from Eq. (37) into (38) gives

µ̄0 = BS(y0), (40a)

where

y0 =
g2Sµ2

Bµ̄0λkα

a3kBT
. (40b)

Then one obtains for a given k and easy axis α the Néel
temperature11

TNAα =
g2S(S + 1)µ2

Bλkα

3a3kB
. (41)

The relevant ordering axis α and hence TNAα is the one
with the largest eigenvalue λkα for the given AFM struc-
ture.
The single-spin Curie constant C1 for spin S is given

by38

C1 =
g2S(S + 1)µ2

B

3kB
, (42)

so Eq. (41) can be written more succinctly as

TNAα =
C1λkα

a3
. (43a)

Thus one can also write

λkα

a3
=

TNAα

C1
=

3kBTNAα

g2S(S + 1)µ2
B

. (43b)

Then for H = 0 and T ≤ TNA one can write the near
field in Eq. (37) in the direction of each ordered moment
as

Bnear
intα =

3kBTNAαµ̄0

g(S + 1)µB
. (44a)

The exchange field seen by each moment in its ordering
direction due to Heisenberg exchange interactions for ei-
ther FM or AFM ordering can be written in the same
form as11

Hexch =
3kBTmJ µ̄0

g(S + 1)µB
, (44b)

where TmJ is the contribution of Heisenberg exchange
interactions to either a FM Curie temperature TCJ or
an AFM Néel temperature TNJ . Using Eq. (33), in the

case of AFM ordering the sum of the two local fields in
Eqs. (44) can be written

Blocal
α =

3kB(TNJ + TNAα)µ̄0

g(S + 1)µB
=

3kBTNµ̄0

g(S + 1)µB
, (45)

where TN is the Néel temperature in the presence of both
exchange and MDIs.
Because different sources of local fields are additive in

their contributions to the observed TN within MFT, if
both exchange and dipolar interactions are present TNA

is the contribution of dipolar interactions to TN, which is
usually but not always a small fraction of TN.
Quantum fluctuations generally increase as the dimen-

sionality of a spin lattice decreases. These quantum fluc-
tuations can prevent long-range magnetic ordering from
occurring. Corruccini and White found from spin-wave
calculations that AFM order cannot occur at finite tem-
perature on the 2D square spin lattice due to dipolar
interactions alone.13 MFT does not take into account
such quantum fluctuations associated with reduced di-
mensionality and hence predicts that AFM ordering can
occur in one-, two- and three-dimensional spin lattices.

B. Ferromagnetic Ordering (Curie) Temperature

As is well-known, whether or not a particular sample
exhibits FM ordering driven by the MDI depends on the
shape of the sample via the demagnetizing field as well
as the competition with AFM states. This competition
is evident from Eq. (8a) which for Hα = 0 becomes

Blocal
intαi =

gµBS

a3

[
λ0α +

4π

Vspin/a3

(
1

3
−Ndα

)]
µ̄, (46)

where a is the a-axis lattice parameter of the unit cell,
Vspin is the volume per spin, λ0α refers to the FM state,
the magnetic moment per unit volume is µα/Vspin =
gµBSµ̄/Vspin in the FM state and we used Eqs. (35)
and (37). Then following the same development in the
previous section gives the Curie temperature

TCAα =
g2S(S + 1)µ2

B

3kBa3

[
λ0α +

4π

Vspin/a3

(
1

3
−Ndα

)]

=
C1

a3

[
λ0α +

4π

Vspin/a3

(
1

3
−Ndα

)]
(FM), (47)

where C1 was defined in Eq. (42). The system will choose
the easy axis α with the largest value of λ0α. For a cubic
Bravais lattice λ0α = 0, so there is no preferred easy axis
for FM ordering according to the present treatment.
Using Eq. (47) one can write the local field in Eq. (46)

for FM moment alignments as

Blocal
intαi =

3kBTCAα

gµB(S + 1)
µ̄. (48)
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If Heisenberg exchange interactions are present, one adds
the local exchange field in Eq. (44b) to the dipolar con-
tribution in Eq. (48) to obtain

Blocal
intαi =

3kBTCα

gµB(S + 1)
µ̄. (49)

where TCα = TCAα + TCJα according to Eq. (33).
Comparing Eqs. (45) and (49) one sees that the same

form of the local field in the direction of each ordered
moment is obtained for both FM and AFM structures in
the ordered states and one can therefore write the local
magnetic induction seen by each moment in general for
either FM or AFM ordering and dipolar and/or Heisen-
berg interactions as

Blocal
intαi =

3kBTmα

gµB(S + 1)
µ̄, (50)

where Tmα is the Curie or Néel temperature for the
collinear ordering axis α.

VII. COMPETITION BETWEEN
FERROMAGNETIC AND

ANTIFERROMAGNETIC ORDERING

One can have a crossover between FM and AFM or-
dering depending on the value of the demagnetizing fac-
tor Ndα and the possible AFM eigenvalues λkα and FM
eigenvalues λ0α. The value of Ndα depends on the shape
of the sample. For FM ordering, the field direction with
the smallest value of Ndα gives the lowest free energy and
hence is the FM ordering direction provided that the cal-
culated TCAα > 0 and that competing AFM states have
a lower calculated TNAα > 0.
To examine this competition, we define the dimension-

less reduced AFM and FM ordering temperatures ob-
tained from Eqs. (43a) and (47), respectively, as

TNAαa
3

C1
= λkα (AFM), (51a)

TCAαa
3

C1
= λ0α +

4π

Vspin/a3

(
1

3
−Ndα

)
(FM).

(51b)

As an example, we consider the competition between
FM and AFM ordering due to dipolar interactions on sc,
bcc and fcc Bravais lattices, which have λ0α = 0 and
Vspin/a

3 = 1, 1/2 and 1/4, respectively. The reduced
Curie temperature in Eq. (51b) is plotted versus Ndα for
sc, bcc and fcc Bravais spin lattices in Figs. 13(a), 13(b)
and 13(c), respectively. Using Eq. (51a) and the data in
Tables II, III and IV, AFM λkα values are plotted for the
most stable (positive) λkα value for each k as horizontal
lines for the sc, bcc and fcc lattices in Figs. 13(a), 13(b)
and 13(c), respectively. One sees from Fig. 13 that for
the magnetic structures considered, the ground state of
the sc lattice is AFM-ordered with k =

(
1
2 ,

1
2 , 0

)
r.l.u.
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FIG. 13: (Color online) Reduced magnetic ordering temper-
ature Tmaga

3/C1 versus the demagnetizing factor Ndα with
0 ≤ Ndα ≤ 1 for pure magnetic dipolar ordering in (a) sim-
ple cubic, (b) body-centered cubic and (c) face-centered cubic
Bravais spin lattices as predicted for ferromagnetic (FM) and
antiferromagnetic (AFM) ordering by MFT via Eqs. (51). An
ordering wavevector is labeled as (m1,m2,m3) r.l.u. and the
ordered moment axis as [µx, µy, µz] in Cartesian coordinates.
Values of Tmag < 0 are unphysical. For the fcc lattice, the
most stable AFM wavevector shown is k = (1/3,1/3,1/3) r.l.u.
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and ordering axis µ̂ = [001] for all values of Ndα, the
bcc lattice is unstable to FM ordering only for Ndα ≈ 0
and the fcc lattice for Ndα

<∼ 0.03. These inferences are
consistent with early results.4 A sample with the shape
of a long thin needle with the magnetization directed
along the axis of the needle has a demagnetizing factor
Ndα ≈ 0.

VIII. PROPERTIES OF THE
MAGNETICALLY-ORDERED STATE

A. Ordered Moment and Magnetic Heat Capacity

For either an AFM or FM with Heisenberg and/or
MDIs, Eq. (50) gives the same form of the local magnetic
induction seen by each spin in its ordering direction for
T ≤ Tm. Using Eq. (50), the behavior of µ̄ versus t is the
same as for pure Heisenberg interactions and is shown for
several values of the spin S in Fig. 10 of Ref. 59.
The magnetic energy per spin is given by

Emagi = −1

2
µiB

local
i , (52a)

where the factor of 1/2 derives from the fact that Blocal
i

is attributed to the neighbors of µi whereas the energy
is equally shared by pairs of interacting spins. Inserting
Blocal

i from Eq. (50) into (52a) for a mole of spins with
N = NA where NA is Avogadro’s number, one obtains

Emag = − 3RS

2(S + 1)
Tmµ̄

2
0, (52b)

where R = NAkB is the molar gas constant. Then the
magnetic heat capacityCmag per mole of spins is obtained
as11,59

Cmag

R
= −3Sµ̄0(t)

S + 1

dµ̄0(t)

dt
, (52c)

where t = T/Tmag and the reduced ordered moment ver-
sus temperature µ̄0(t) in H = 0 is obtained as described
in Ref. 11. This equation is identical to that obtained for
pure Heisenberg interactions, where plots of Cmag/R ver-
sus t for several values of S are shown in Fig. 11 of Ref. 59.
For quantum spins, Cmag decreases exponentially to zero
for t → 0, whereas for classical spins Cmag/R → 1 for
t → 0.

B. Dipolar Anisotropy of Uniaxial
Antiferromagnets in the Ordered State

Here we calculate the dipolar anisotropy of the
free energy between equal-moment orthogonal principal
collinear magnetic ordering axes denoted as the α and β
axes. We consider collinear AFMs with noncubic spin lat-
tices containing identical crystallographically-equivalent

spins. The lowest-order expression for the anisotropy free
energy per spin Fi is given by the usual expression

Fi = K1 sin
2 θ, (53)

where θ is defined as the angle between the ordered mo-
ment axis and the α axis. We derive an expression for
K1 associated with the anisotropic MDI in terms of the

eigenvalues and eigenvectors of the MDI tensor Ĝkα.
The orientation of a representative T -dependent or-

dered moment ~µi in the α-β plane in H = 0 with
µ0 = |~µi| is

~µi = µ0(cos θ α̂+ sin θ β̂), (54)

where µ0 is the T -dependent ordered moment in H = 0
and θ = 0 corresponds to ~µi parallel to the α axis. The
corresponding T -dependent internal local field is

Blocal
int i = Blocal

intα i cos θ α̂+Blocal
intβ i sin θ β̂. (55)

where the expression for Blocal
intα i is given in Eq. (8a) with

Hα = 0. The differential dFi of the magnetic free energy
of the moment is

dFi = −1

2
~µi · dBlocal

int i , (56)

where the factor of 1/2 is present because Blocal
int i arises

from the neighboring moments of ~µi whereas the free
energy per moment is equally shared between each pair
of moments. Inserting Eqs. (54) and (55) into (56) gives

dFi =
µ0

2
(Blocal

intα i −Blocal
intβ i) sin θ cos θ dθ. (57)

Integrating dFi from θ = 0 to θ yields

Fi =
µ0

4
(Blocal

intα i −Blocal
intβ i) sin

2 θ. (58)

This expression for Fi applies to moments along the
collinear ordering axis with angles of either ±θ to the
α axis because the sine function is squared. Comparing
Eq. (58) with (53) gives the anisotropy parameter K1 as

K1 =
µ0

4
(Blocal

intα i −Blocal
intβ i). (59)

For an antiferromagnet in the ordered state, one has
Blocal

intα i = Bnear
intα i. Inserting Bnear

intα i in Eq. (20) into (59)
gives

K1 =
µ2
0

4a3
(λkα − λkβ). (60)

From Eqs. (53) and (60) one obtains

Fi =

{
0 (θ = 0)
µ2
0(T )
4a3 (λkα − λkβ) (θ = π/2)

. (61)

Therefore if λkα − λkβ > 0, the minimum free energy
occurs if the moments are aligned along the α axis (θ = 0)
and hence the easy axis is the α axis, whereas if λkα −
λkβ < 0, the β axis (θ = π/2) is favored for the ordering
axis over the α axis. These results are consistent with
expectation because one expects a moment ~µi to line up
along the axis with the largest value of Bnear

int i in Eq. (20),
i.e., with largest value of λk.
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C. Perpendicular Magnetic Susceptibility of
Collinear Antiferromagnets in the Ordered State

The Heisenberg exchange Hamiltonian has no intrinsic
magnetic anisotropy to determine the directions of the
ordered moments in the ordered state with respect to
the spin-lattice axes. In this paper the only source of
magnetic anisotropy is the MDI, and in this section we
only consider collinear magnetic ordering. The easy axis

is the eigenvector of the interaction tensor Ĝi(k) that
corresponds to the largest eigenvalue for the given AFM
propagation vector.

The single-spin magnetic susceptibility χ is rigorously
defined as χ = limH→0 µ(H)/H where µ is the thermal-
average moment of a spin in the direction of H that is
induced by H. Here we take the easy axis to be the x axis
and the applied infinitesimal field to be along a z axis,
perpendicular to the x axis. The magnitude of each or-
dered moment in zero field is µ0, which is T -dependent
as shown in Ref. 59. In the presence of the perpendicu-
lar field, the magnitude of the moment does not change
in the AFM phase4,11 and the induced moment acquires
a component along the z axis. Including the applied in-
finitesimal perpendicular field and both the exchange and
dipolar fields and setting the net torque on a represen-
tative moment equal to zero following the procedure of
Ref. 11 yields the perpendicular susceptibility

χ⊥ =
C1

(TNJ + TNAx − TCAz)− θpJ
. (62)

The T -dependent ordered moment µ0 canceled out, so
χ⊥ is independent of T for T ≤ TN, as also obtained for
pure Heisenberg spin interactions.11

Several special cases occur for Eq. (62). If exchange
interactions are negligible, the pure magnetic dipole pre-
diction is obtained by setting TNJ = θpJ = 0, yielding

χ⊥ =
C1

TNAx − TCAz
(63a)

=
a3

λkx − λ0z − 4π
3Vspin/a3

. (63b)

For cubic Bravais spin lattices for which λ0α = 0 for all α,
Eq. (63b) gives

χ⊥ =
a3

λkx − 4π
3Vspin/a3

. (64)

This result agrees, e.g., with χ⊥ obtained from the equa-
tion between Eqs. (29) and (30) in Ref. 4 which includes
in the denominator of Eq. (64) the ground state eigen-
value λkx = λ(1/2,1/2,0)[001] = 5.351 (f5 in their nota-
tion) for the simple-cubic dipolar AFM, in good agree-
ment with our value of 5.3535 in Table II.

When dipolar interactions are negligible, Eq. (62) gives
for the pure Heisenberg exchange model

χ⊥ =
C1

TNJ − θpJ
(T ≤ TNJ), (65a)

in agreement with Ref. 11. In the paramagnetic state at
T ≥ TNJ , the isotropic susceptibility per spin is given by
the Curie-Weiss law11

χ =
C1

T − θpJ
(T ≥ TNJ). (65b)

Comparing Eqs. (65a) and (65b) gives

χ⊥ = χ(TNJ) (T ≤ TNJ). (65c)

D. Perpendicular Critical Field

As the perpendicular field is increased from zero at
T < TN, the induced perpendicular moment µ⊥ increases
as

µ⊥ = χ⊥H, (66)

where χ⊥ is given by Eq. (62). When µ⊥ reaches the or-
dered moment µ0(T ), the induced moments become par-
allel to H and the system enters the paramagnetic state
in a second-order transition.4,11 Setting µ⊥ = µ0 with
increasing H , the critical field Hc at which this happens
is defined by µ0 = χ⊥Hc, yielding

Hc(T ) =
µ0(T )

χ⊥
. (67)

Thus one obtains

Hc(T )

Hc(0)
=

µ0(T )

µ0(0)
=

µ0(T )

µsat
= µ̄0(T ), (68)

where µ̄0 is plotted versus t ≡ T/TN in Ref. 59. Since
within MFT µ0(T ) depends on the spin S of the moment,

so does Hc(T )
Hc(0)

. Near t = 1, one obtains

Hc(T )

Hc(0)
∝

√
1− t (t → 1−). (69)

Previous classical calculations (not utilizing the Weiss
MFT and hence not the Brillouin function for quantum
spins) yielded the behavior in Eq. (69) for the whole
temperature range 0 ≤ t ≤ 1, with the proportional-
ity replaced by an equality.40 In that case, expanding the
right-hand side of Eq. (69) in a Taylor series about t = 0

gives the linear dependence Hc(T )
Hc(0)

= 1− t
2 (t ≪ 1) instead

of the exponential approach to unity for t → 0 obtained
for quantum spins.
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IX. CURIE-WEISS LAW IN PARAMAGNETIC
STATE

In the paramagnetic (PM) state above the Néel or
Curie temperature, all moments are aligned in the direc-
tion α of the magnetic field Hα applied along a principal
axis of the spin lattice [the magnetic propagation vector
is k = (0, 0, 0) ≡ 0]. For Heisenberg exchange interac-
tions, the exchange field in the PM state is isotropic and
given by11,31

Hexch =
3kBθpJ

gµB(S + 1)
µ̄, (70)

where µ̄ is the normalized moment induced by Hα and

θpJ = −S(S + 1)

3kB

∑

j

Jij (71)

is the contribution to the Weiss temperature in the Curie-
Weiss law due to Heisenberg exchange interactions. Then
adding Hexch and Hα to the local dipolar field for Hα = 0
in Eq. (46) gives the total local field seen by each moment
as

Blocal
intαi = Hα +

3kBθpJ
gµB(S + 1)

µ̄ (72)

+
gµBS

a3

(
λ0α +

4π

3Vspin/a3

)
µ̄,

where we assume that the demagnetizing field has been
corrected for in experimental data and hence the demag-
netizing factor Ndα does not appear in this expression.
To include it, replace the multiplicative factor 1

3 in the

last term by 1
3 −Ndα.

Analogous to Eq. (38) for Hα = 0, in the present case
one has

µ̄ = BS

(
gµBB

local
intα i

kBT

)
. (73)

Inserting Blocal
intα i from Eq. (72) into (73), Taylor expand-

ing the Brillouin function BS(y) to first order in y, solving
for µ̄ and using Eq. (35) gives the Curie-Weiss law

χα =
C1

T − θpα
, (74a)

θpα = θpJ + θpAα, (74b)

where the single-spin Curie constant C1 is given in
Eq. (42), θpJ is given in Eq. (71) and the magnetic dipole
contribution θpAα to the Weiss temperature is

θpAα =
C1

a3

(
λ0α +

4π

3Vspin/a3

)
. (74c)

A comparison of Eq. (74c) with (47) shows that the
contributions of dipolar interactions to the Weiss tem-
perature and the Curie temperature of a ferromagnet are
the same, i.e.,

θpAα = TCAα, (74d)

which is the same result as obtained from MFT for a
system of local moments exhibiting a FM transition and
interacting by Heisenberg exchange only.11

On the other hand, a comparison of Eqs. (43a) and
(74c) shows that in general the contribution of dipolar
interactions to the Weiss temperature for AFMs is not
equal to the negative of the dipolar Néel temperature in
Eq. (43a), as is also found in general for local-moment
Heisenberg AFMs.11 Thus the ratio f = θp/TC for a FM
within MFT is

f = 1 (FM), (75a)

whereas in general for an AFM it is

fα =
θpα
TNα

=
θpAα + θpJ
TNAα + TNJ

< 1 (AFM). (75b)

X. ANISOTROPIC MAGNETIC
SUSCEPTIBILITY OF A SPHERICAL SAMPLE
OF A PURE DIPOLAR ANTIFERROMAGNET

In the following, we assume that the sample is in the
shape of a sphere, which cancels the Lorentz field within
the Lorentz cavity according to Eq. (8a) and hence ame-
liorates the competition of FM with AFM ordering.

A. Paramagnetic State

For a dipolar AFM at T > TNAx, the Curie-Weiss law
in Eq. (74a) becomes

χα =
C1

T − θpAα
(T > TNAx), (76)

where θpAα is given by setting the second term in
Eq. (74c) to zero for a spherical sample, yielding

θpAα =
C1λ0α

a3
. (77)

This would be zero for a cubic Bravais spin lattice be-
cause in that case λ0α = 0 for all α. The Néel tempera-
ture in Eq. (43a) for the easy x axis as

TNAx =
C1λkx

a3
(78)

and we define the ratio fAα as

fAα =
θpAα

TNAx
=

λ0α

λkx
, (79)

where the subscript A in fAα signifies that the value of f
arises only from the anisotropic MDI and α can be any
of the principal axes x, y or z.
Using Eqs. (78) and (79), the Curie-Weiss law (76) for

a single spin can be written in dimensionless form as

χα TNAx

C1
=

1

tA − fAα
(tA > 1), (80a)
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where the reduced temperature tA is defined as

tA =
T

TNAx
. (80b)

Note that Eq. (80a) is a law of corresponding states for
all quantum spins S, since S only appears in C1.
The reduced PM susceptibility at TNAx from the Curie-

Weiss law (80a) is then

χα(tA = 1+)TNAx

C1
=

1

1− fAα
(tA = 1+). (81)

From Eqs. (80a) and (81) one obtains

χα(tA)

χα(tA = 1+)
=

1− fAα

tA − fAα
(tA > 1), (82)

which yields the identity

χα(tA = 1+)

χα(tA = 1+)
= 1, (83)

as required.

B. Perpendicular Susceptibility in the
AFM-Ordered State

In the AFM state at T < TNA of a strictly dipolar
AFM, one sets TNJ = θpJ = 0 and for spherical samples
Eqs. (63) yield

χ⊥(T ≤ TNAx) =
a3

λkx − λ0z
(84a)

=
C1

TNAx − TCAz
, (84b)

where, as above, the x axis is the easy axis for the
collinear AFM ordering, TNAx is the associated Néel tem-
perature and the z axis is perpendicular to the x axis, i.e.,
χ⊥ = χz. One can write Eq. (84b) in dimensionless form
as

χ⊥TNAx

C1
=

1

1− rz
(tA < 1, z ⊥ x), (85a)

where according to Eq. (43a) and Eq. (47) modified for
a spherical sample one has

rz =
TCAz

TNAx
=

λ0z

λkx
. (85b)

The collinear easy axis is defined above to be the x axis
and in this expression the z axis is required to be an axis
perpendicular to the x axis.
Using Eqs. (81) and (85a) one obtains

χ⊥(tA < 1)

χα(tA = 1+)
=

1− fAα

1− rz
. (86)

Comparing Eqs. (83) and (86), one sees that in general
the hard-axis χz is continuous on cooling below TNAx,
where χ⊥ = χz below TNAx. If λ0α = 0 for all α as in
cubic Bravais lattices, χ⊥ is obtained for all axes below
TNAx.

C. Parallel Susceptibility in the AFM-Ordered
State

When an infinitesimal field H = H î is applied in the
positive x direction along the collinear AFM ordering
easy axis at a temperature 0 < T < TNAx, an ordered
moment initially pointing parallel (antiparallel) to H in-
creases (decreases) slightly in magnitude, where the vec-

torial change d~µ = dµî is the same for both moments.
Therefore in this section we only consider the change
in the x-axis component of a representative moment ~µi

pointing towards the positive x axis due to the applied
field.
Following Ref. 11 we obtain the dimensionless equation

χ‖TNAx

C1
=

1

τ∗(tA)− fAx
, (87a)

where tA is defined in Eq. (80b) and

τ∗(tA) =
(S + 1)tA
3B′

S(y0)
, fAx =

θpAx

TNAx
=

λ0x

λkx
. (87b)

µ0(T ) is obtained by numerically solving

µ0 = gµBSBS(y0), (88a)

where

y0 =
gµB

kBT

µ0λkx

a3
. (88b)

Here BS(y) is the Brillouin function and B′
S(y0) ≡

[dBS(y)/dy]|y=y0
, both given in Ref. 11. Note that

the parallel susceptibility in the dimensionless form in
Eq. (87a) still depends on S since the Brillouin function
on the right-hand side does. This contrasts with the di-
mensionless forms of the Curie-Weiss and perpendicular
susceptibilities above for dipolar interactions that do not
depend on S.
Useful limits are

τ∗(tA → 0) = ∞, τ∗(tA → 1) = 1, (89)

yielding

χ‖TNAx

C1
= 0 (tA → 0), (90a)

χ‖TNAx

C1
=

1

1− fAx
(tA → 1−). (90b)

The latter χ‖ expression is identical with

χx TNAx

C1
=

1

1− fAx
(tA = 1+) (91)

obtained from Eq. (81) for the Curie-Weiss law at tA =
1+ for the field applied along the x axis. Thus χ‖ = χx

for tA < 1 joins continuously with χx for tA > 1.
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TABLE VI: Eigenvalues λ and eigenvectors µ̂ = [µa, µb, µc] of the dipolar interaction tensor for simple-tetragonal spin lattices
with c/a = 0.8 and 1.2 and wavevectors (m1, m2,m3) r.l.u. The data were taken from tables in the Supplementary Information.32

The largest eigenvalue for k = 0 is labeled as λ0α. For k =
(
1
2
, 1
2
, 0
)
r.l.u. the maximum eigenvector is denoted as λkx and the

value for the perpendicular direction as λkz. For each k, the values of fA and rz are listed as defined in Eqs. (79) and (85b),
respectively. According to Eqs. (80a) and (85a), the parameter fAα is relevant for the PM T range and rz is relevant for the
AFM-ordered T range. In the table, the assignments of the x and z Cartesian axes to the c and a crystal axes, respectively,
are shown in the subscripts to the parameters.

c/a k (r.l.u.) [100] [001] fA rz
0.8 (0,0,0) λ0z,a = −1.9691 λ0x,c = 3.9382 fAx,c = 0.4104, fAz,a = −0.2052(

1
2
, 1
2
, 0
)

λkz,a = −4.7977 λkx,c = 9.5955 rz,a = −0.2052
1.2 (0,0,0) λ0z,a = 0.9364 λ0x,c = −1.8728 fAx,c = −0.5010, fAz,a = 0.2505(

1
2
, 1
2
, 0
)

λkz,a = −1.8691 λkx,c = 3.7381 rz,a = 0.2505

D. Example

As an example, we consider the simple tetragonal Bra-
vais spin lattice with c/a = 0.8, 1.0 and 1.2 and AFM
propagation vector k =

(
1
2 ,

1
2 , 0

)
r.l.u. for temperatures

both above and below the Néel temperature. Recall that
for fAα, the x and α axes are the easy principal axis
for AFM ordering and any of the three principal axes,
respectively, whereas for rz , the z axis must be an axis
perpendicular to the x axis. In a real material, one must
identify x, z and α with the appropriate crystal axes.
The eigenvalues and eigenvectors of the dipolar in-

teraction tensor taken from tables in the Supplemen-
tary Information32 are shown in Table VI along with
the respective values of fA and rz defined in Eqs. (79)
and (85b). One sees that the AFM state is stable against
the FM state below TNAx for both c/a values, but that
the anisotropy in the PM state at T > TNA changes sign
between the two c/a values.

Using the data in Table VI, Eq. (86) yields χ⊥(tA)
χa(tA=1+) =

1 for the easy a axis for both c/a = 0.8 and 1.2. For the
simple cubic lattice with c/a = 1, one has λ0α = fA =
rα = θpaα = 0 for all α. Therefore χ(T ) follows a Curie
law for tA ≥ 1. Also, there is no restoring force for keep-
ing the easy axis parallel to the field, so the magnetiza-
tion flops to the perpendicular orientation whenever this
is attempted. Thus only χ⊥(T ) = χ(TNAx) is measured
for tA ≤ 1.

Shown in Fig. 14 are plots of χ(tA)TNAx

C1
versus tA for

c/a = 0.8, 1.0 and 1.2 illustrating the progression of the
anisotropy in χ as c/a traverses the simple cubic value
of unity. To our knowledge no theoretically-predicted
behaviors such as in Figs. 14(a) and 14(c) have appeared
before in the literature.

XI. ANISOTROPY OF MAGNETIC
SUSCEPTIBILITY OF A HEISENBERG

PARAMAGNET DUE TO MAGNETIC DIPOLE
INTERACTIONS

In this section we assume that demagnetizing fields
have been corrected for in experimental data and hence

the demagnetizing factor Ndα does not appear.
In the paramagnetic state above TN, according to

Eq. (74c) the anisotropy in χ can only arise from a dif-
ference in the dipolar Weiss temperatures along different
principal axis directions α and β, given by Eq. (74c) as

θpAα − θpAβ =
C1

a3
(λ0α − λ0β). (92)

For cubic Bravais lattices, one has no dipolar anisotropy
in the PM state because λ0α = 0 for all α. Here we follow
the approach of Keffer.60

For two susceptibilities χα and χβ measured along the
α and β principal axes, one has the identity

1

χβ
− 1

χα
=

χα − χβ

χαχβ
, (93a)

or

χα − χβ = χαχβ

(
1

χβ
− 1

χα

)
. (93b)

Using Eqs. (74), Eq. (93b) yields

χα − χβ =
χαχβ

C1
(θpα − θpβ). (94)

If the dipolar anisotropy in θ is small compared to
the measured Weiss temperature θp, one can define
the geometric-mean susceptibility χ =

√
χαχβ and use

Eq. (92) to obtain

χα − χβ =
χ2

a3
(λ0α − λ0β). (95)

Here the Curie-Weiss χ’s are per spin and a is the a-
axis lattice parameter for the particular Bravais spin lat-
tice considered. The susceptibility difference per mole of
spins is obtained by multiplying each χ on the left side
of Eq. (95) and one χ on the right by Avogadro’s number
NA and Eq. (95) yields the molar susceptibility difference

χMα(T )− χMβ(T ) =
χ2
M(T )

NAa3
(λ0α − λ0β). (96)

Here we apply Eq. (96) to the primitive-tetragonal
rutile-structure collinear antiferromagnet MnF2 with
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FIG. 14: (Color online) Anisotropy of the magnetic suscepti-
bilities χa and χc due to MDIs versus reduced temperature
tA = T/TNAx for a simple tetragonal spin lattice with (a)
c/a = 0.8, (b) 1.0 (simple cubic lattice) and (c) c/a = 1.2.
The AFM propagation vector in the ordered AFM state at
tA < 1 is k =

(
1
2
, 1
2
, 0
)
r.l.u. and the easy axis is the c axis

[001] for both c/a = 0.8 and 1.2. The data were plotted us-
ing Eqs. (80) (Curie-Weiss law) for tA ≥ 1, and (85) (χ⊥)
and (87) (χ‖) for tA ≤ 1.
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FIG. 15: (Color online) (a) Magnetic susceptibility χ ver-
sus temperature T of tetragonal MnF2 crystals for applied
fields along the c axis (χc) and in the ab plane (χab).

62,63

(b) Anisotropy χc−χab versus T (filled blue squares).64 Note
the factor of 100 difference between the two ordinate scales
in (a) and (b). The solid curve is the MFT prediction for
magnetic anisotropy arising from magnetic dipole interactions
obtained using Eq. (96).

TN = 69 K, which is often considered a prototype for
collinear AFM ordering. This compound contains a bct
sublattice of Mn+2 cations with spin S = 5/2 and an
expected g = 2 and orders into a A-type AFM structure
with AFM wavevector k = (0,0,1) as shown in Fig. 9.
The lattice parameters are52,61

a = 4.8734(5) Å, c = 3.3103(10) Å,
c

a
= 0.6793(3).

(97)
For the given c/a ratio and FM k = 0 we find λ0[001] =
4.3219 and λ0[100],[010] = −2.1609 yielding

λ0[001] − λ0[100] = 6.4828, (98)

whereas for the ordering wavevector k = (0,0,1) r.l.u.
we obtain λ(001)[001] = 13.8639 and λ(001)[100],[010] =
−6.9319, with λ(001)[001] − λ(001)[100],[010] = 20.7958.
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These values show that the [001] moment direction is
energetically favored by the MDI both above and below
TN, in agreement with experiment as follows.
The anisotropic χ(T ) of MnF2 crystals is shown in

Fig. 15(a).62,63 Above TN, χ is found to be nearly
isotropic. Below TN, the data are a textbook example
of the anisotropy expected for collinear AFM ordering,
where in this case the easy axis is the c axis. According
to MFT, χ⊥ = χab for T ≤ TN should be independent of
T , which is well satisfied. On the other hand, χ‖ = χc

should go to zero as T → 0, as also observed. We ob-
tained a fairly good fit to χ‖(T ≤ TN) using our MFT

with no adjustable parameters.31 The fit function used
was similar to the equation we obtained for χ‖(T ) for
the pure dipole AFM in Eqs. (87) and Fig. 14.
The anisotropy ∆χ(T ) ≡ χc(T )−χab(T ) was measured

with a torque magnetometer and the results are shown
in Fig. 15(b).64 The ∆χ data measured with the torque
magnetometer64 for T < TN agree with the anisotropy
calculated from the direct measurements62,63 in Fig. 15.
For T >∼ TN, a comparison of the data in Figs. 15(a)
and 15(b) shows that |∆χ|/χ ∼ 0.1% for T > TN. From
Eq. (96), the anisotropy of χ is predicted to be

∆χM(T ) =
χ2
M(T )

NAa3
(λ0[001] − λ0[100]). (99)

Using the values of a and λ0[001] − λ0[100] in Eqs. (97)
and (98), respectively, and the χM(T ) data in Fig. 15(a),
∆χM(T ) was calculated from Eq. (99) and the result
is shown as the solid red curve in Fig. 15(b) (see also
Ref. 60). The calculation is in excellent agreement with
the data for T >∼ 150 K, suggesting that the MDI is re-
sponsible for the χ anisotropy in this T range, or at least
reinforces this anisotropy. However, the data are increas-
ingly suppressed to lower values below 130 K, which likely
result from the onset of dynamic short-range collinear
AFM correlations along the c axis with a correlation
length that eventually diverges at TN = 69 K, where
from Fig. 15(a), ∆χM grows to become large and even
more negative below that temperature.

XII. SUMMARY

A detailed summary of the paper is given in the Ab-
stract to the paper. Here we provide a few additional
comments.
The eigenvalues and eigenvectors of the MDI tensor

were determined for specified magnetic wavevectors and
spin lattices. The eigenvalues give the energy of a spin in
the magnetic fields of the local moments inside a Lorentz
sphere of radius R in units of the a-axis lattice param-
eter a. For 3D lattices, R/a = 50 was usually used,
for a 2D circle R/a ≤ 1000 and for a spin chain with
R/a = ∞ the eigenvalues were determined exactly. The
eigenvectors are the three orthogonal principal axis di-
rections for collinear magnetic ordering. For uniaxial

3D spin lattices, these were calculated for c/a = 0.5
to 3 and the results presented in figures in the main
text and Appendix B and in tables in the Supplemen-
tary Information.32 We also calculated the eigenvalues
and eigenvectors for noncollinear AFM structures includ-
ing the 2D 120◦ triangular lattice and for the 2D and
3D coplanar noncollinear Shastry-Sutherland lattice and
GdB4 magnetic structure. We compared the ordering-
direction predictions with data for some Mn+2, (S =
5/2), Gd+3 and Eu+2, (S = 7/2) compounds and found
good agreement. Disagreement occurred for the itiner-
ant AFM BaFe2As2 and for the coplanar noncollinear
AFM GdB4, which indicates that a stronger anisotropy
source must be present in these compounds that defeats
the preferences of the MDI.
A significant contribution of this paper was to ap-

ply our formulation of the Weiss molecular field theory
(MFT)11,31 to predict many properties of the ordered
and paramagnetic states arising from MDIs. These in-
clude the magnetic ordering temperature Tm, the ordered
moment, the magnetic heat capacity, and for antiferro-
magnets the perpendicular critical field, the anisotropic
magnetic susceptibility versus temperature for both T ≤
TN, and the parameters of the Curie-Weiss law for the
anisotropic susceptibility for both FMs and AFMs at
T ≥ Tm. Within MFT, the contributions of different
molecular field sources to these properties are additive.
This means that the same theory can be used to treat
purely magnetic dipole magnets or spin systems contain-
ing both exchange and dipole interactions. We recently
used the theory to separate the magnetic dipole and ex-
change contributions to the properties of the bct com-
pound EuCu2Sb2 with c/a = 2.4 and TN = 5.1 K, which
then allowed estimates of the Eu–Eu exchange interac-
tions to be made.29
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Appendix A: Direct and Reciprocal Lattices

1. Orthogonal Bravais Lattices

In a Bravais spin lattice each spin position is a point of
inversion symmetry with respect to the other spins. For
orthogonal lattices which include as special cases the lin-
ear chain, the simple square lattice, face-centered square
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lattice, the simple, body-centered and face-centered cu-
bic, simple tetragonal and body-centered tetragonal (bct)
lattices, the unit cell origins are at

rji

a
= naâ+

b

a
nbb̂+

c

a
ncĉ, (A1a)

where na, nb and nc are positive or negative integers
or 0. For all spin lattices, we normalize all spin positions
and interspin distances by the a-axis lattice parameter a.
For body-centered spin lattices one also has atoms at the
body centers

r

a
=

(
na +

1

2

)
â+

(
nb +

1

2

)
b̂+

c

a

(
nc +

1

2

)
ĉ, (A1b)

where c/a = 1 for the bcc lattice. The central magnetic
moment ~µi is placed at ri = 0 and hence the sum over
neighbors ~µj at positions rj = rji in Eq. (16c) excludes
the set (na, nb, nc) = (0, 0, 0) in Eq. (A1a). With our

formulation, Ĝi(k) does not explicitly contain the lattice
parameters a or c, and for tetragonal Bravais lattices just
the dimensionless c/a ratio appears as in Eqs. (A1).
The reciprocal-lattice vectors in reciprocal-lattice units

are

k = m1a
∗ +m2b

∗ +m3c
∗, (A2)

where the mi satisfy 0 ≤ mi ≤ 1 and the reciprocal-
lattice translation vectors are

a∗ =
2π

a
â, b∗ =

2π

a
b̂, c∗ =

2π

c
ĉ, (A3)

and a, b and c are the corresponding direct-lattice trans-
lation vectors. We normalize k by 1/a, yielding

ka = 2π
(
m1â+m2b̂+

1

c/a
m3ĉ

)
. (A4)

Using Eqs. (A4) and (A1a), for the unit cell origins one
has

k · rji = 2π(m1na +m2nb +m3nc) (A5a)

and for the body-center positions

k·rji = 2π

[
m1

(
na+

1

2

)
+m2

(
nb +

1

2

)
+m3

(
nc +

1

2

)]
,

(A5b)
where the c/a ratio has canceled out of both expressions.
The sum in Eq. (16c) gives an “extinction condition”

for the contribution to the sum in Eq. (16c) of the body-
centered spins in the bcc lattice in Eq. (A5b), where the
contribution is zero if k·rji is an odd multiple of π/2 rad.
This extinction occurs, for example, for AFM wavevec-
tors

k =

(
1

2
, 0, 0

)
,

(
0, 0,

1

2

)
,

(
1

2
,
1

2
,
1

2

)
. (A6)
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FIG. 16: In-plane hexagonal lattice translation unit vectors
â and b̂ of the direct lattice and â∗ and b̂∗ of the reciprocal
lattice, respectively.

For such cases, according to Eq. (15) which assumes a
collinear magnetic structure, the spins at the body cen-
ters of the unit cells have zero ordered moment and they
make no contribution to the dipolar interaction tensor in
Eq. (16c). The interaction tensor is then the same as for
a simple tetragonal lattice of moments with the same c/a
ratio and k value.
For the fcc lattice the lattice points are at the positions

in Eq. (A1a) and at

r

a
=

(
na +

1

2

)
â+

(
nb +

1

2

)
b̂+ 0, (A7)

r

a
=

(
na +

1

2

)
â+ 0 +

(
nc +

1

2

)
ĉ, (A8)

r

a
= 0 +

(
nb +

1

2

)
b̂+

(
nc +

1

2

)
ĉ, (A9)

with corresponding changes to the expressions for k · rji.

2. Simple Hexagonal (Triangular) Bravais Lattice

The normalized vectors rji for the simple hexagonal
lattice with a = b are given by

rji

a
= naâ+ nbb̂+

c

a
ncĉ, (A10)

where here the b axis is at an angle of 120◦ with respect
to the positive x axis as shown in Fig. 16 and the ni

are again positive or negative integers or zero. In two
dimensions one sets nc = 0. In Cartesian coordinates the
translation unit vectors are

â = î, b̂ = −1

2
î+

√
3

2
ĵ, ĉ = k̂. (A11)

A magnetic ordering wavevector k is written in terms
of the respective simple hexagonal reciprocal lattice vec-
tors as

k = m1a
∗ +m2b

∗ +m3c
∗, (A12a)

where the mi are chosen to satisfy 0 ≤ mi ≤ 1 and the
reciprocal lattice translation vectors are given by

a∗ =
2π

a

(
î+

1√
3
ĵ

)
, b∗ =

4π

a
√
3
ĵ, c∗ =

2π

c
k̂,

(A12b)
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|a∗| = |b∗| = 4π√
3a

≡ 1 a, b-axis r.l.u., (A12c)

|c∗| =
2π

c
≡ 1 c-axis r.l.u. (A12d)

In terms of â∗ and b̂∗, the direct lattice unit vectors are

â =
1√
3
(2â∗ − b̂∗), b̂ =

1√
3
(2b̂∗ − â∗), ĉ = ĉ∗.

(A13)
The expression for k · rji is the same as in Eq. (A5a).
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Appendix B: Figures Showing the Approach to the
Large-Radius Asymptotic Eigenvalues for Magnetic

Ordering on 2D and 3D Spin Lattices
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FIG. 17: (a) Eigenvalue λ(0,0,0)[0,0,1] for ferromagnetic spin
alignment along the c axis versus the inverse of the circle
radius R around the central moment in units of the square
lattice parameter a for the 2D simple square lattice. The
a and b-axis eigenvalues are each equal to −λ(0,0,0)[0,0,1]/2.
(b) Deviation of the data from the fit. The “noise” is due to
the discrete nature of the lattice, not to numerical inaccuracy.
The lines in (b) are guides to the eye.
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FIG. 18: (a) Eigenvalue λ(1/2,1/2,0)[0,0,1] for the Néel-type
AFM moment alignment along the c axis versus the circle
radius R around the central moment in units of the square
lattice parameter a for the 2D simple square lattice. The a-
and b-axis eigenvalues are each equal to −λ(1/2,1/2,0)[0,0,1]/2.
(b) Deviation of the data from the fit. The “noise” is due to
the discrete nature of the lattice, not to numerical inaccuracy.
The lines in (b) are guides to the eye.
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inverse radius (R/a)−1 of the Lorentz sphere for ferromagnetic
moment alignments [k = (0,0,0)] along the c axis in 3D simple
tetragonal spin lattices with (a) c/a = 1.5 and (b) c/a = 3.
The lines are guides to the eye.
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lattice limit λ(1/2,1/2,0)[0,0,1] = 2.645 887 in Table I, as shown
in Fig. 3(b).
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Appendix C: Figures Showing Dipolar Eigenvectors
and Eigenvalues versus the c/a Ratio for Tetragonal
and Hexagonal Bravais Spin Lattices and for the

Honeycomb Lattice
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FIG. 21: (Color online) Dependence of the eigenvalue
λ(0,0,0)[0,0,1] on the c/a ratio for a simple tetragonal lattice
with a ferromagnetic (FM) alignment of the magnetic mo-
ments along the c axis. From the figure, one sees that FM
alignment along the c axis is the most stable for c/a < 1, but
for c/a > 1 FM alignment along the a or b axis is energetically
favorable.
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FIG. 22: (Color online) Eigenvalues for wavevector k =
(1/2,0,0) r.l.u. versus the c/a ratio for a simple tetragonal or
body-centered tetragonal lattice with the moments aligned
along [010] (b axis, filled red circles), [001] (c axis, filled green
diamonds) or [100] (a axis, filled blue squares). The 2D limits
for c/a → ∞ are shown as horizontal dashed lines.
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FIG. 23: (Color online) Eigenvalues (a) λ(1/2,1/2,0) for AFM
wavevector k = (1/2,1/2,0) r.l.u. and (b) λ(0,0,1/2) for AFM
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FIG. 24: (Color online) Eigenvalues for wavevector k =
(1/2,1/2,0) r.l.u. versus the c/a ratio for a body-centered
tetragonal spin lattice with the moments aligned along
[1, −1, 0] (filled red circles), [001] (c axis, filled green dia-
monds) or (b) [110] (filled blue squares).
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FIG. 25: (Color online) Eigenvalues for wavevectors (a) k = 0
(ferromagnetic) or (1,0,0) and (b) k = (1/2,1/2,0) r.l.u. versus
the c/a ratio for a simple hexagonal (stacked triangular) spin
lattice with the moments aligned along the indicated princi-
pal axes. The two-dimensional (2D) limits of the respective
eigenvalues for c/a → ∞ are shown by horizontal dashed lines.
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FIG. 26: (Color online) Eigenvalues for wavevectors (a) k =
(1/3,1/3,1/3) and (b) k = (1/2,1/2,1/2) r.l.u. versus the c/a
ratio for a simple hexagonal (stacked triangular) spin lattice
with the moments aligned along the indicated principal axes.
The two-dimensional (2D) limits of the respective eigenvalues
for c/a → ∞ are shown by horizontal dashed lines.
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FIG. 27: (Color online) Eigenvalues for wavevectors (a) k =
(1/3,1/3,1/3) and (b) k = (1/2,1/2,1/2) r.l.u. versus the c/a
ratio for a simple hexagonal (stacked triangular) spin lattice
with the moments aligned along the indicated principal axes.
The two-dimensional (2D) limits of the respective eigenvalues
for c/a → ∞ are shown by horizontal dashed lines.
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FIG. 28: (Color online) Eigenvalues for propagations vectors
(a) k = (0,0,0) (FM) and (b) k = (1/2,0,0) r.l.u. versus the c/a
ratio for a honeycomb spin lattice with the moments aligned
along the indicated principal axes. The two-dimensional (2D)
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-15

-10

-5

0

5

10

15

20

25

0.0 0.5 1.0 1.5 2.0 2.5 3.0

c/a

[100], [010]

moments aligned along [001]

k = (0,0,1/2)  (Néel-type AFM)

honeycomb lattice

2D limits

(a)

-15

-10

-5

0

5

10

15

20

25

0.0 0.5 1.0 1.5 2.0 2.5 3.0

c/a

[100], [010]

moments aligned along [001]

         k = (0,0,0)
(Néel-type in ab plane)

2D limits

(b)

FIG. 29: (Color online) Eigenvalues for AFM propagation
vectors (a) k = (0,0,1/2) (Néel-type in all directions) and (b)
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spin lattice with the moments aligned along the indicated
principal axes. The two-dimensional (2D) limits of the re-
spective eigenvalues for c/a → ∞ are shown by horizontal
dashed lines.
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