
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Field-induced dynamical properties of the XXZ model on a
honeycomb lattice

P. A. Maksimov and A. L. Chernyshev
Phys. Rev. B 93, 014418 — Published 13 January 2016

DOI: 10.1103/PhysRevB.93.014418

http://dx.doi.org/10.1103/PhysRevB.93.014418


Field-induced dynamical properties of the XXZ model on a honeycomb lattice

P. A. Maksimov1, ∗ and A. L. Chernyshev1

1Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
(Dated: December 28, 2015)

We present a comprehensive 1/S study of the field-induced dynamical properties of the nearest-
neighbor XXZ antiferromagnet on a honeycomb lattice using the formalism of the nonlinear spin-
wave theory developed for this model. The external magnetic field controls spin frustration in the
system and induces non-collinearity of the spin structure, which is essential for the two-magnon
decay processes. Our results include an intriguing field-evolution of the regions of the Brillouin zone
wherein decays of spin excitations are prominent, a detailed classification of the decay channels
involving magnons from both excitation branches, and a thorough analysis of the singularities in
the magnon spectra due to coupling to the two-magnon continuum, all of which are illustrated for
several field and anisotropy values. We highlight a number of features related to either the non-
Bravais nature of the lattice, or the existence of the Dirac-like points in the spectrum. In addition,
the asymptotic behavior of the decay rates near high-symmetry points is analyzed in detail. The
inelastic neutron-scattering spin-spin structure factor is obtained in the leading 1/S order and is
shown to exhibit qualitatively distinct fingerprints of the decay-induced magnon dynamics such as
quasiparticle peaks broadened by decays and strong spectral weight redistribution.

PACS numbers: 75.10.Jm, 75.30.Ds, 75.50.Ee, 78.70.Nx

I. INTRODUCTION

Quantum spin models on the honeycomb lattice attract
significant interest for several interrelated reasons. First
are the proposals of exotic spin-liquid and valence-bond
states1–6 together with a potential experimental realiza-
tion of some of them in iridium-based compounds and
other systems.7,8 Second is the possibility of inducing
various forms of magnetism in graphene structures.9,10

Third is due to a number of intriguing order by disorder
effects11,12 and unusual ordered ground states in cases
when anisotropy and frustration are involved.13–19

Historically, the honeycomb lattice was also considered
as a path to enhanced quantum fluctuations in the 2D
spin models due to the low coordination number of near-
est neighbors.20 The majority of theoretical studies of
these models are devoted to the ground-state problem
with the spectral properties receiving less attention.21

Thus, the main focus of the present work is on the role
of potentially stronger effect of quantum fluctuations in
the spectral properties of the honeycomb-lattice spin sys-
tems, the subject relevant to a number of experimental
systems that have recently become available. There is a
significant variety of materials related to this interest, in
many of which excitation spectra have been investigated
by the inelastic neutron scattering.22–27

In this work we present a consideration of the spec-
tral properties of the nearest-neighbor XXZ model on a
honeycomb lattice, in which frustration is induced by ex-
ternal magnetic field. While the ground state in this case
is a fairly trivial canted modification of the Néel state, it
can be expected that the spectral properties may become
rather involved due to the field-induced non-collinearity
of the spin structure and to the concomitant decays of
spin excitations. Such an expectation is based on the
studies of the decay-induced dynamical properties of the

square-lattice antiferromagnets in a field,28–35 in which
drastic modifications of the spectra and various forms of
singular behavior have been documented.

In the present work, we provide a similar system-
atic analysis of the decay-induced dynamics for the
honeycomb-lattice antiferromagnets. Although both the
square and the honeycomb lattices are bipartite and thus
one can expect a close similarity of the results, there are
several important differences that make the honeycomb
case significantly richer. First, the honeycomb lattice is
non-Bravais with two distinct magnon modes present. In
an anisotropic case and for any value of the field, the de-
cays of the “optical”-like mode into two magnons from
the “acoustic” branch are kinematically allowed, while in
the square lattice the field must exceed a threshold value
for that to happen.28,30 Then, for the square lattice, the
k = 0 mode is protected against decays as it is asso-
ciated with the uniform precession of the field-induced
magnetization. One of the interesting questions about
the honeycomb case is whether the k=0 “optical” mode
has a similar protection or it is allowed to decay. Second,
the honeycomb lattice is not inversion-symmetric with
respect to the lattice points. As we will demonstrate,
this feature complicates analytical aspects of the non-
linear spin-wave theory because of the complex magnon
hopping amplitudes. It is also a priori not obvious what
differences can follow from that. In addition, the Dirac-
like degeneracy points connecting magnon branches are
present in the spectra of the XXZ model at the K-points
of the Brillouin zone, modifying kinematic consideration
for the decays and for the associated singularities. Lastly,
due to a larger role of quantum fluctuations in the ground
state,20 one can also expect a significantly enhanced role
of the decays in the spectrum of the honeycomb-lattice
models compared to the square-lattice case.

We thus offer a comprehensive study of the decay-
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induced dynamical effects in the nearest-neighbor XXZ
model on a honeycomb lattice in a field using the 1/S ap-
proach. One of the achievements of the present work is
the formulation of the nonlinear spin-wave theory for the
honeycomb-lattice models. While we ignore the contribu-
tions of the higher-order 1/S terms and of the non-decay
corrections of the same order, one can still expect a qual-
itative applicability of our results even for the S = 1/2
case, similarly to the problems studied previously.30,36

Extensions of our consideration to the J1−J2 model as
well as to the other cases can also be anticipated to retain
main qualitative features of our findings. One can antici-
pate an immediate applicability of our results to realistic
materials discussed in Refs. 23–25, which exhibit ordered
ground states. We expect that applying magnetic field
will result in a redistribution of spectral weight accord-
ing to the predictions of our work. Next-nearest-neighbor
interactions23 should not affect the results significantly.

The paper is organized as follows. In Sec. II we present
the model Hamiltonian and develop the nonlinear spin-
wave formalism. In Sec. III we analyze kinematic condi-
tions that define decay regions and singularity contours
in the magnon spectra and study their field evolution. In
Sec. IV, damping is calculated in the Born approximation
for both magnon branches in different decay channels and
throughout the Brillouin zone for several representative
values of anisotropy and field. Here we also analyze the
origin of singularities in decays and present asymptotic
behaviors of the decay rate in the vicinities of the high-
symmetry points. In Sec. V, the spin-spin structure fac-
tor calculations are presented and several characteristic
features of its behavior are discussed.

II. NONLINEAR SPIN-WAVE THEORY

In this Section, we provide an exposition of the 1/S ap-
proach to the nearest-neighbor honeycomb-lattice XXZ
antiferromagnet in a field. While the linear spin-wave
theory (LSWT) treatment of the H = 0 case is well-
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antiferromagnet in a field. While the linear spin-wave
theory (LSWT) treatment of the H = 0 case is well-
known,? ? ? the role of the nonlinear, anharmonic terms
for this model, to the best of our knowledge, have
not been examined previously. Since the corresponding
derivation also includes several steps that are unfamil-
iar from the previously studied case of the square-lattice
model in a field,? we present it here in detail. We would
also like to note that the structure of the derived anhar-
monic terms bears a close similarity to the ones in the
other models on the non-Bravais lattices, such as kagome-
lattice model studied recently,? ? and we attempt to pre-
serve a generality in the respective notations.

We begin with the nearest-neighbor XXZ Hamilto-
nian on a honeycomb lattice in external field, which is
applied parallel to the z0-axis, at T = 0
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where the sum is over the nearest-neighbor bonds hiji,
J is an exchange coupling constant, 0  �  1 is the

FIG. 1: (Color online) A sketch of the canted antiferro-
magnetic spin configuration on the honeycomb lattice. The
nearest-neighbor vectors �i, lattice constant a, canting angle
✓, laboratory reference frame {x0, y0, z0}, and the field direc-
tion along the laboratory axis z0 are indicated.

easy-plane anisotropy parameter, and H is an external
magnetic field in units of gµB .

A. Spin transformation

In zero magnetic field spins align in a classical Néel
structure. In an applied field, one can expect the spins
to cant towards the field direction. Because of that, we
need to align the local spin quantization axis on each site
in the direction given by the canted spin configuration,
see Fig. ??, with the canting angle to be defined from the
energy minimization. The corresponding general trans-
formation of the spin components from the laboratory
reference frame {x0, y0, z0} to the local reference frame
{x, y, z} can be performed using two consequent rotations

S0
i = RQ,�i

· R✓ · Si , (2)

where the matrix RQ,�i
corresponds to the rotations in

the x0y0 plane

RQ,�i
=

0
@

cos'i � sin'i 0
sin'i cos'i 0

0 0 1

1
A , (3)

where 'i = Q·ri+�i with Q being the ordering wavevec-
tor of the spin configuration and �i the phase shift in-
side the unit cell. The matrix R✓ performs spin rotation
within the x0z0 towards the field

R✓ =

0
@

sin ✓ 0 cos ✓
0 1 0

� cos ✓ 0 sin ✓

1
A , (4)

where ✓ is the canting angle, see Fig. ??.
Since, by construction, all spins are oriented along

their local z axes, the classical energy can be obtained
from (??) using transformations (??) and (??)

Ecl

NJS2
=
X

�i

⇣
cos2 ✓ cos �'i + � sin2 ✓

⌘
� 2H sin ✓

JS
, (5)

where N is the number of unit cells, �'i =Q · �i+� with
�=�i��j , and �i are the nearest-neighbor vectors

�1 =

✓
0,

ap
3

◆
, �2 =

✓
�a

2
,� a

2
p

3

◆
, �3 = ��1 � �2,(6)

where a is the lattice constant.
Energy minimization in (??) yields a unique solution

Q = 0, � = �i � �j = ⇡, sin ✓ = H/Hs, (7)

where Hs = 3JS(1 + �). As is expected, the spins form
a canted Néel structure shown in Fig. ??. With these
parameters the general transformation in (??) becomes

Sx0

A(B) = ± sin ✓ Sx
A(B) ± cos ✓ Sz

A(B),

Sy0

A(B) = ±Sy
A(B), (8)

Sz0

A(B) = � cos ✓ Sx
A(B) + sin ✓ Sz

A(B),
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FIG. 1: (Color online) A sketch of the canted antiferro-
magnetic spin configuration on the honeycomb lattice. The
nearest-neighbor vectors δi, lattice constant a, canting angle
θ, laboratory reference frame {x0, y0, z0}, and the field direc-
tion along the laboratory axis z0 are indicated.

known,11,19,20 the role of the nonlinear, anharmonic
terms for this model, to the best of our knowledge, has
not been examined previously. Since the corresponding
derivation also includes several steps that are unfamil-
iar from the previously studied case of the square-lattice
model in a field,30 we present it here in detail. We would
also like to note that the structure of the derived anhar-
monic terms bears a close similarity to the ones in the
other models on the non-Bravais lattices, such as kagome-
lattice model studied recently,37,38 and we attempt to
preserve a generality in the respective notations.

We begin with the nearest-neighbor XXZ Hamilto-
nian on a honeycomb lattice in external field, which is
applied parallel to the z0-axis, at T = 0

Ĥ = J
∑

〈ij〉

(
Si · Sj − (1−∆)Sz0i S

z0
j

)
−H

∑

i

Sz0i , (1)

where the sum is over the nearest-neighbor bonds 〈ij〉,
J is an exchange coupling constant, 0 ≤ ∆ ≤ 1 is the
easy-plane anisotropy parameter, and H is an external
magnetic field in units of gµB .

A. Spin transformation

In zero magnetic field spins align in a classical Néel
structure. In an applied field, one can expect the spins
to cant towards the field direction. Because of that, we
need to align the local spin quantization axis on each site
in the direction given by the canted spin configuration,
see Fig. 1, with the canting angle to be defined from the
energy minimization. The corresponding general trans-
formation of the spin components from the laboratory
reference frame {x0, y0, z0} to the local reference frame
{x, y, z} can be performed using two consequent rotations

S0
i = RQ,βi ·Rθ · Si , (2)

where the matrix RQ,βi corresponds to the rotations in
the x0y0 plane

RQ,βi =




cosϕi − sinϕi 0
sinϕi cosϕi 0

0 0 1


 , (3)

where ϕi = Q·ri+βi with Q being the ordering wavevec-
tor of the spin configuration and βi the phase shift in-
side the unit cell. The matrix Rθ performs spin rotation
within the x0z0 towards the field

Rθ =




sin θ 0 cos θ
0 1 0

− cos θ 0 sin θ


 , (4)

where θ is the canting angle, see Fig. 1.
Since, by construction, all spins are oriented along

their local z axes, the classical energy can be obtained
from (1) using transformations (3) and (4)

Ecl

NJS2
=
∑

δi

(
cos2 θ cos δϕi + ∆ sin2 θ

)
− 2H sin θ

JS
, (5)
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where N is the number of unit cells, δϕi=Q · δi+β with
β=βi−βj , and δi are the nearest-neighbor vectors

δ1 =

(
0,

a√
3

)
, δ2 = −

(
a

2
,
a

2
√

3

)
, δ3 = −δ1 − δ2, (6)

where a is the lattice constant.
Energy minimization in (5) yields a unique solution

Q = 0, β = βi − βj = π, sin θ = H/Hs, (7)

where Hs = 3JS(1 + ∆). As is expected, the spins form
a canted Néel structure shown in Fig. 1. With these
parameters the general transformation in (2) becomes

Sx0

A(B) = ± sin θ SxA(B) ± cos θ SzA(B),

Sy0A(B) = ±SyA(B), (8)

Sz0A(B) = − cos θ SxA(B) + sin θ SzA(B),

where A and B are the two sublattices of the structure.
With that, one can rewrite the Hamiltonian in (1) in

the local reference frames of spins as a sum of two parts

Ĥ = Ĥeven + Ĥodd , (9)

where the classification in even/odd is done in anticipa-
tion of the spin bosonization, which is performed next.
The even part is given by

Ĥeven = J
∑

〈ij〉

( [
∆ cos2 θ − sin2 θ

]
Sxi S

x
j − Syi Syj (10)

+
[
∆ sin2 θ − cos2 θ

]
Szi S

z
j

)
−H sin θ

∑

i

Szi ,

and the odd terms are

Ĥodd = −1

2
J sin 2θ (1 + ∆)

∑

〈ij〉

(
Szi S

x
j + Sxi S

z
j

)

+H cos θ
∑

i

Sxi . (11)

The subsequent treatment of the spin Hamiltonian in-
volves a standard Holstein-Primakoff transformation on
each site,30 bosonizing spin operators via

S+
i = ai

√
2S − a†iai, Szi = S − a†iai (12)

with the subsequent expansion of the square roots in
〈a†a〉/2S, yielding the series

Ĥ = Ĥ(0) + Ĥ(1) + Ĥ(2) + Ĥ(3) + . . . , (13)

where the numbers in the superscript correspond to
the number of bosonic operators in the given term and
Ĥ(n)∝S2−n/2. The first term in (13) is the classical en-

ergy Ĥ(0) =Ecl =−3NJS2
[
1 + (∆ + 1) sin2 θ

]
, and Ĥ(1)

vanishes at the energy minimum, as usual.

B. Linear spin-wave theory

The first non-vanishing term in the expansion (13) be-
yond the classical energy is the quadratic Hamiltonian,
which is given by

Ĥ(2) = JS
∑

〈ij〉

[
a†1ia1i + a†2ja2j − λ

(
a†1ia2j + a†2ia1j

)

+ (1− λ)
(
a1ia2j + a†1ia

†
2j

) ]
, (14)

where a
(†)
1(2) are the operators on the sublattices A(B).

It is worth noting that, for this Hamiltonian, field and
anisotropy can be combined in a single parameter λ

λ = 1− 1 + ∆

2
cos2 θ or

H

Hs
=

√
∆ + 2λ− 1

1 + ∆
. (15)

At the saturation, H=Hs, λ=1 for any ∆ and at smaller
fields, 0≤H≤Hs, λ is within the range (1−∆)/2≤λ≤1.

Next, we introduce Fourier transformation

aαi =
1√
N

∑

k

eik(ri+ρα)aαk , (16)

where ri are the coordinates of the unit cell and ρα are co-
ordination vectors inside the unit cell for α=1, 2 atoms,
ρ1 =(0, 0) and ρ2 =δ1 =(0, a/

√
3). This gives

Ĥ(2) = 3JS
∑

k

[
a†1ka1k + a†2ka2k (17)

−
(
λγka

†
2ka1k − (1− λ)γka1ka2−k + H.c.

) ]
,

where γk is the complex nearest-neighbor amplitude

γk =
1

3

∑

δi

eik·δi = |γk|eiϕk , (18)

with the phase, which is antisymmetric with respect to
k→−k, ϕ−k = −ϕk, and its absolute value is given by

|γk| =
1

3

√
1 + 4 cos2 k̃x + 4 cos k̃x cos k̃y , (19)

where k̃x=kxa/2 and k̃y=kya
√

3/2.

The diagonalization of Ĥ(2) in (17) proceeds in two

steps.19,37 First is a unitary transformation from a1(2)k

to a set of their symmetric (antisymmetric) combinations

aαk =
ei(−1)αϕk/2

√
2

∑

µ

V αµcµk , (20)

where the 2× 2 matrix V̂ is

V̂ =

(
1 1
1 −1

)
. (21)
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FIG. 2: (Color online) The magnon energies, εµk, for two
branches (26) along the Γ→K→M→Γ path (left inset) for
two values of λ. Dashed lines are for λ= 0.04, solid lines for
λ= 1. Upper inset shows H vs ∆ that correspond to these
values of λ via (15). A 3D picture of the energies for λ=1 is
shown for reference (right inset). High-symmetry points are
K = (4π/3a, 0) and M =

(
π/a, π/

√
3a

)
.

We note that our phase convention in this transformation
differs from the previous works,11,19,20 where the phase
factor from γk is absorbed in the operators of one of
the boson species, while in our case the phase factor is
split symmetrically between both species. This difference
has no projections on the linear spin-wave results, but
will be important for a highly symmetric structure of the
nonlinear terms discussed in the following.

After this transformation the LSWT Hamiltonian is
block-diagonal in the new bosonic index µ = 1, 2

Ĥ(2) = 3JS
∑

k,µ

Aµkc
†
µkcµk −

Bµk
2

(
cµkcµ−k + H.c.

)
,

(22)
where Aµk and Bµk are purely real and are given by

Aµk = 1 + (−1)µλ|γk|, Bµk = (−1)µ(1− λ)|γk| . (23)

The second step of the diagonalization is a standard Bo-
golyubov transformation for individual bosonic species

cµk = uµkdµk + vµkd
†
µ−k , (24)

with the parameters of the transformation given by

2uµkvµk =
Bµk
ωµk

, u2
µk + v2

µk =
Aµk
ωµk

, (25)

where ωµk =
√
A2
µk −B2

µk. Finally, the excitation spec-

trum consists of two branches, εµk =3JSωµk, which will
be referred to as the acoustic and optical modes, see
Fig. 2,

ε1(2)k = 3JS
√

(1∓ |γk|) (1± (1− 2λ)|γk|) . (26)

Importantly, for any value of anisotropy ∆ < 1 and/or
for any field H>0, ε2k>ε1k in the entire Brillouin zone
except for the K and K′ points, which correspond to the
Dirac-like degeneracy points in the magnon spectrum. At
these points, magnon energies are 3JS independently of
∆ and H, see Fig. 2.

C. Nonlinear spin-wave theory

We note that the two-step diagonalization pro-
cedure outlined above, involving subsequent unitary
and para-unitary transformations, is closely reminis-
cent of the spin-wave approach to the kagome-lattice
antiferromagnets37,38 and, in principle, should be appli-
cable to the other non-Bravais lattices. The following
treatment of the anharmonic terms in the Hamiltonian
expansion in (13) is also similar, but requires additional
care due to complex hopping amplitude (18) and to the
phase factors in the unitary transformation (20).

Since we are interested in the decay-induced effects
in the spectrum, we need to transform cubic anharmonic
terms from the odd part of the Hamiltonian in (11). After
Holstein-Primakoff transformation (12) it gives

Ĥ(3) =
J

(3)
θ,∆

3

∑

〈ij〉

(
a†1ia

†
2ja2j + a†2ja

†
1ia1i + H.c.

)
, (27)

where we have introduced a shorthand notation

J
(3)
θ,∆ =

3

2

√
S

2
J sin 2θ (1 + ∆) . (28)

Fourier transformation (16) of the cubic term (27) yields

Ĥ(3) =
∑

−p=k+q

∑

αβ

(
Gαβq a†βqa

†
αkaα−p + H.c.

)
, (29)

where Gαβq = J
(3)
θ,∆ G̃αβq and the off-diagonal elements,

α 6=β, of the dimensionless tensor are given by

G̃αβq = |γq|ei(−1)βϕq , (30)

with the diagonal elements G̃ααq =0.
The unitary transformation (20) transforms (29) to

Ĥ(3) =
∑

−p=k+q

∑

ηνµ

(
F ηνµq,kpc

†
ηqc
†
νkcµ−p + H.c.

)
, (31)

where F ηνµq,kp =J
(3)
θ,∆ F̃ ηνµq,kp with the dimensionless vertex

F̃ ηνµq,kp =
|γq|
2
√

2

∑

α6=β
V αµV ανV βη ei(−1)βϕ̃qkp , (32)

where the total phase factor

ϕ̃qkp =
ϕq + ϕk + ϕp

2
, (33)
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is introduced for brevity. The vertex in (31) has an obvi-
ous symmetry with respect to permutations of two mo-
menta together with the boson indices

F̃ ηνµq,kp = F̃ ηµνq,pk. (34)

Using explicit expression for F̃ ηνµq,kp in (32) and for the

unitary transformation in (20), one can considerably sim-
plify individual terms of the tensor to

F̃ 111
q,kp = F̃ 122

q,kp = −F̃ 221
q,kp =

|γq|√
2

cos ϕ̃qkp,

F̃ 112
q,kp = F̃ 211

q,kp = −F̃ 222
q,kp = i

|γq|√
2

sin ϕ̃qkp. (35)

Finally, the Bogolyubov transformation (24) yields the
cubic Hamiltonian for the magnon normal modes in the
following form

Ĥ(3) =
1

3!

∑

−p=k+q

∑

ηνµ

(
Ξηνµqkpd

†
ηqd
†
νkd
†
µp + H.c.

)
(36)

+
1

2!

∑

−p=k+q

∑

ηνµ

(
Φηνµqk;pd

†
ηqd
†
νkdµ−p + H.c.

)
,(37)

where the combinatorial factors are due to symmetriza-
tion in the source (36) and decay (37) vertices

Ξηνµqkp = J
(3)
θ,∆ Ξ̃ηνµqkp , Φηνµqk;p = J

(3)
θ,∆ Φ̃ηνµqk;p (38)

with the corresponding dimensionless vertices given by

Ξ̃ηνµqkp = F̃ ηνµq,kp(uηq + vηq)(uνkvµp + vνkuµp) (39)

+ F̃ νηµk,qp(uνk + vνk)(uηqvµp + vηquµp)

+ F̃µηνp,qk(uµp + vµp)(uηqvνk + vηquνk) ,

Φ̃ηνµqk;p = F̃ ηνµq,kp(uηq + vηq)(uνkuµp + vνkvµp) (40)

+ F̃ νµηk,pq(uνk + vνk)(uηquµp + vηqvµp)

+ F̃µηνp,qk(uµp + vµp)(uηqvνk + vηquνk).

We remark here that the final form of the three-magnon
terms in (36) and (37) and the formal expressions of the
corresponding vertices in (39) and (40) are virtually iden-
tical to the same expression for the kagome-lattice case,38

with all specifics of the problems hidden in the actual

expressions for F̃µην vertices and for the Bogolyubov pa-
rameters. In the present case, summation over the indices
µ, ν, η also involves only two species of bosons instead of
three in the kagome-lattice case.

One of the key differences of the present case from
the previously studied systems is in the complex phase
factors in (18), which originate from the lack of inversion
symmetry with respect to the lattice points of the honey-
comb lattice. We point out that the symmetric distribu-
tion of these phase factors among boson operators in (20)
is responsible for the compact and purely real or purely

imaginary vertices F̃µην in (35), which also translate to

purely real or imaginary ultimate vertices in (36)-(40)
and provide a significant advantage for both numerical
evaluations of the decay rates and for analytical studies
of their asymptotic behavior.

III. KINEMATICS OF MAGNON DECAYS

In this Section, we discuss kinematic conditions for
magnon decays, i.e. energy and momentum conservation
that define whether the nonlinear, anharmonic terms in
the spin-wave Hamiltonian will lead to the broadening
in the magnon spectra. The similarities and differences
of this analysis, as compared to the previously studied
models, are highlighted.

The phenomenon of spontaneous zero-temperature de-
cays of quasiparticles has been studied for phonons in
crystals, excitations in superfluid 4He, and for various
types of bosonic excitations in quantum magnets.30,39–43

The key consideration, common to all of the studied
cases, is the determination of the conditions and ranges
of the momenta that allow an elementary two-particle
decay processes to occur. This analysis can be per-
formed independently of the actual calculation of the
decay rates, based on the results of the harmonic ap-
proximation for the excitation energies, and is simply ex-
pressed as εk = εq + εk−q condition. While one can
expect spectrum renormalization effects beyond the har-
monic theory and also contributions of the higher-order
processes to play a role, such a consideration is still im-
mensely instructive. Not only does it help to identify the
regions where decays occur already in the lowest Born
approximation and thus are likely to be the strongest
even if the higher-order processes are included, but it
also provides an information on the presence of singu-
larities in the spectrum, associated with the Van Hove
singularities in the two-particle continuum, to which the
single-particle branch is coupled.30

A distinct feature of the present consideration is in
having two branches of excitations, which makes multiple
decay channels possible, so the general decay condition
is modified to

εµk = ενq + εηk−q, (41)

where µ, ν, η = 1, 2 and we will denote a particular decay
channel as µ → {ν, η}. More specifically, since, as is
mentioned above, ε2k > ε1k for any ∆ < 1 at any value
of the field, out of nominally six potential decay channels
there are only three that can be kinematically allowed in
the XXZ honeycomb-lattice model in a field, one for the
lower branch, 1→ {1, 1}, and two for the upper branch,
2→ {1, 1} and 2→ {2, 1}.

Another, more subtle distinction of the present case
is in the existence of the Dirac-like degeneracy points
between the two branches of excitations at the K and K′

points of the Brillouin zone, which are also fixed at the
energy 3JS, independently of the value of the field or
anisotropy.
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FIG. 3: (Color online) The H vs ∆ diagram, showing the
range of fields for each ∆ where different channels of decays
are allowed. Upper boundary is the saturation field Hs =
3JS(1 + ∆). The spontaneous magnon decays in the lower
branch are allowed between Hs and H∗1→{1,1} lines (43), while
decays in the 2→ {2, 1} channel are allowed between Hs and
H∗2→{2,1} line, both indicated by vertical arrows. Decays in
the 2 → {1, 1} channel are possible for any Hs > H > 0 and
1 ≥ ∆ ≥ 0; see text.

A. Lower branch decays

The decay channel for the lower branch, 1 → {1, 1},
bears a lot of similarity to the square-lattice case, al-
though there are also some important differences. The
main similarity is in the existence of a “critical” (thresh-
old) value of the field H∗1→{1,1} at which decays become

kinematically allowed. This boundary is related to the
change of the curvature of the long-wavelength part of
the spectrum vs field, which is also similar to the consid-
eration given by Pitaevskii39 to the phonon-like excita-
tions in 4He. Considering the low-energy magnons and
expanding ε1k in (26) near the Γ point gives

ε1k ≈ 3JS|k|
√

1− λ
6

(
1 + |k|2 5λ− 3

96(1− λ)

)
, (42)

where |k| is in units of inverse lattice spacing 1/a. A long-
wavelength excitation becomes unstable towards sponta-
neous decays when the second term in the bracket is posi-
tive, corresponding to the positive, i.e. upward curvature
of the spectrum. As is obvious from (42), in our case this
happens for λ > 0.6. Using the implicit relation between
the field and anisotropy via (15), a simple algebra yields

H∗1→{1,1} = Hs

√
1 + 5∆

5(1 + ∆)
. (43)

Thus, the 1 → {1, 1} decays are allowed in the range
of fields H∗1→{1,1} < H < Hs, shown in Fig. 3 vs ∆.

We note that at the saturation field, Hs, the decays
are still kinematically allowed, but the fully saturated,
ferromagnetic-like state forbids a direct coupling of the

0.69
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�
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K

M0

0.68

FIG. 4: (Color online) The field-evolution of the decay regions
(shaded) for the 1→{1, 1} decay channel in the first Brillouin
zone for ∆ = 0.5. The numbers correspond to H/Hs. Decay
threshold condition is λ = 0.6 (see text). For different ∆, the
fields will change according to a relation in (15).

single-magnon and the two-magnon sectors, thus forbid-
ding the decays.30

The next steps in the kinematic analysis are the stud-
ies of the extent of the region in the Brillouin zone
where decays are allowed for a given field and of the
evolution of such a region vs field. These studies are
based on a simple observation that the region where de-
cays in a given channel are allowed must be separated
from the region where such decays are forbidden by a
decay threshold boundary,30 which, in turn, must cor-
respond to a crossing of the single-particle excitation
branch with the minimum of the two-particle contin-
uum, e.g. E2(k,q) = ε1q + ε1k−q for the considered
1→{1, 1} channel. Thus, the search for the decay thresh-
old boundaries generally reduces to the search for the
extrema of the two-particle continuum, determined from
∇qE2(k,q) = 0, which is satisfied when the two de-
cay products have equal velocities, vq = vk−q, where
vq = ∇qεq. This equation must be solved together with
the energy conservation condition (41). In fact, such a
search yields more than just decay threshold boundaries,
as it also provides contours (in 2D) along which the sin-
gle particle branch meets the other Van Hove singulari-
ties of the two-magnon continuum, such as saddle points,
which, generally, lead to singularities in the decay rate,
see Ref. 30 and the next Section.

Some of the typical solutions for the decay threshold
boundary are:30 (i) emission of two magnons with equal
momenta, q = 1

2 (k + Gi), where Gi is a reciprocal lattice
vector, which gives an implicit solution for the contour
in the form ε1k = 2ε1(k+Gi)/2, and (ii) emission of an
acoustic magnon, q → 0, which means that the velocity
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of the decaying magnon is equal to the velocity of the
Goldstone mode |vk| = v0.

In the considered case of the 1→ {1, 1} channel, the
boundary of the decay region is determined by an emis-
sion of magnons with equal momenta, case (i) above, for
any value of the field. The field-evolution of the decay
threshold boundary is shown in Fig. 4 for ∆ = 0.5. Decay
region nucleates at the Γ point at the field slightly exceed-
ing H ≈ 0.68Hs and grows quickly with the increasing
field. At about H ≈ 0.87Hs there are no regions left in
the Brillouin zone where magnons are stable. Since our
analysis is based on the the harmonic spectrum, which
depends on ∆ and H via a single parameter λ (15), a
similar field-evolution of the decay region boundary is
expected for all other values of ∆.

We note the differences of these results from the case
of the square-lattice antiferromagnet.28–30 In the square-
lattice case, the decay boundary at H & 0.8Hs is par-
tially determined by the emission of the acoustic magnon,
case (ii) above. Another important difference is that
while in the present case the Brillouin zone is fully taken
over by the decays at H < Hs, in the square-lattice case
the decay region reaches all corners of the Brillouin zone
only asymptotically at H → Hs. This difference origi-
nates in the structure of the high-energy portion of the
lower-branch spectrum that has Dirac-like K-points at
fixed energy, see Fig. 2, which are not true extrema, but
have a cone-like dispersion in their vicinity.

B. Upper branch decays

In the considered case of the honeycomb lattice we
have two branches of excitations. While magnons from
the lower, acoustic branch are only able to decay into
themselves, the upper-branch optical magnons have two
channels of decay that should be analyzed separately.

1. 2→ {2, 1} decay channel

First of the two is the decay of the optical magnon into
the optical and acoustic ones, denoted as the 2→ {2, 1}
decay channel. Similarly to the acoustic branch decays
discussed above, the kinematic conditions for this channel
are met only above a threshold field value, see Fig. 3. By
inspection, the first type of the decay processes encoun-
tered by the optical branch upon the field increase is the
emission of the Goldstone mode of the acoustic branch,
similar to the case (ii) of the previous consideration.

The first instance when such a decay is possible is when
the velocity of the optical magnon anywhere in the Bril-
louin zone exceeds the velocity of the |q| → 0 mode

of the acoustic branch: |v2k| ≥ v1 = 3JS
√

(1− λ)/6.
Näıvely, this condition should be first met when the slope
of the Dirac-like cone for the upper branch at the K-point
matches the slope of the Goldstone mode, see Fig. 2 for
guidance. However, the Dirac cone has an anomalous
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FIG. 5: (Color online) The field-evolution of the decay re-
gions (shaded) for the 2 → {2, 1} decay channel for ∆ = 0,
numbers are H/Hs. Decays nucleate at H ' 0.63Hs (λ =
0.707) in the vicinity of the K-points and grow with increas-
ing field with the decay-free regions disappearing at H → Hs.
A peculiar shape of the decay boundaries at larger fields hints
at several types of the decay thresholds controlling them; see
text. For different ∆, the fields change according to (15).

dispersion, in which the linear term is followed by the
|k|2-term with the varying convexity, depending on the
azimuthal angle as ∼ cos 3ϕ. Because of that, matching
of the velocities first occurs at a finite distance from the
K-points and at particular angles. Our Figure 5 demon-
strates this feature for a representative value of ∆ = 0,
for which the threshold field is about H∗2→{2,1} = 0.63Hs.

A somewhat tedious but straightforward expansion of
the energies in (26) for small |k| near the K-point in the
K → Γ direction, keeping terms up to |k|3, followed by
the maximization of the velocity |v2k| yields an implicit
equation for the threshold value of λ∗

λ

2
+

1

12

(
(3λ− 1− λ2)2

1− 2λ+ 3λ2

)
=

√
1− λ

2
, (44)

with an approximate solution λ∗≈ 0.707. To obtain the
threshold field vs ∆ one needs to resolve (15), which

yields H∗2→{2,1}/Hs =
√

(∆ + 2λ∗ − 1)/(1 + ∆). Ver-

ifying this approximate answer (44) for ∆ = 0 gives
H∗2→{2,1}≈0.64Hs, close to the numerical value in Figs. 5

and 3. A location of the velocity maximum that corre-
sponds to the nucleation point of decays in this channel
can also be found from the same approach to be at

|k∗| = 2√
3

(
3λ− 1− λ2

1− 2λ+ 3λ2

) ∣∣∣
λ∗
≈ 0.158|K|, (45)

which also compares favorably with the numerical result
|k∗|≈0.23|K| in Fig. 5.
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FIG. 6: (Color online) The decay region for the 2 → {2, 1}
channel (shaded) for ∆=0 and H/Hs=0.72. [Same holds for
any H and ∆ satisfying λ = 0.76 via (15)]. Lines are contours
for the different types of thresholds. In the Γ to M direction,
the second and the third contours correspond to the emission
of the Goldstone magnon from acoustic branch. The closest
contour around the Γ point is a generic threshold boundary
for the emission of two finite-energy magnons with different
energies but same velocities. Contours enclosing the K-points
are thresholds for the Dirac-mode emission; see text.

There are two notable features of the field-evolution of
the decay regions shown in Fig. 5. First, unlike in the
1 → {1, 1} channel, the decay-free regions of the Bril-
loiun zone are eliminated completely only at the satura-
tion field H → Hs. Second, the evolution of the decay
threshold boundaries is far more intriguing. Upon in-
crease of the field, only part of the decay boundaries is
defined by the Goldstone emission, as can be seen in the
more peculiar shapes of the boundaries. This is analyzed
in more detail in Fig. 6 for ∆ = 0 and H = 0.72Hs, which
shows a union of three types of boundaries.

First type contains two contours that are identified
with the original case of the Goldstone mode emission.
These are the second and the third contours to cross
if traversing from the Γ to M point. The second type
is the first contour that surrounds the Γ-point. It is a
generic threshold boundary for the emission of two finite-
energy magnons with different energies but same veloc-
ities, which cannot be simplified to typical cases (i) or
(ii) considered above. The last type consists of a set
of contours having elongated shapes that are enclosing
the K-points. It corresponds to a different type of a so-
lution for the two-magnon continuum energy minimum,
which has not been discussed previously. Instead of a
Goldstone-mode emission, one can have a Dirac-mode
emission in the presence of Dirac-like cones in the spec-
trum, i.e. when one of the decay products is a particle
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FIG. 7: (Color online) The field-evolution of the decay regions
of 2→{1, 1} channel (shaded) for ∆=0, numbers are H/Hs.
The decay-free regions nucleate at H ' 0.82Hs (λ = 0.81) in
the vicinity of Γ point and grow with increasing field. How-
ever, even at H=Hs there are finite decay regions around K
points. For different ∆, the fields change according to (15).

at one of the K-points

ε2k = ε2K + ε1k−K , (46)

where v2K = v1k−K, as before. Aside from serving as a
decay threshold boundary for a part of the k-space near
the K-points around the M→K direction in Fig. 6, these
Dirac-emission threshold contours correspond to strong
singularities in the decay rate discussed in the next Sec-
tion. This is contrary to the Goldstone-emission con-
tours, which are associated with the vanishing density of
states and correspond only to weak singularities.30,36

2. 2→ {1, 1} decay channel

The last decay channel is distinct from the previously
studied ones in that there are always regions of the Bril-
louin zone where decays are kinematically allowed for any
∆ and H except for ∆ = 1 and H = 0 point where
magnon bands are degenerate. Otherwise, decays from
the upper branch to the lower branch are always possible.
This is true for all the momenta in the Brillouin zone for
λ . 0.81. However, at λ & 0.81, which corresponds to
large field values, there are decay-free regions of the Bril-
louin zone. That is, the situation is somewhat inverse to
the previously discussed channels, because instead of the
nucleation of the decay regions upon increase of the field
we have the nucleation of the decay-free regions. With in-
creasing field the decay-free regions grow, although even
for H → Hs they occupy only part of the Brillouin zone,
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FIG. 8: (Color online) The decay region of the 2 → {1, 1}
channel (shaded) and associated threshold contours for ∆ = 0
and H/Hs = 0.86. [Same holds for any H and ∆ satisfying
λ = 0.86 via (15)]. Contours enclosing K points correspond to
decays into magnons with equal momenta, case (i). Contours,
which contain the boundaries for the decay-free regions (not
shaded), correspond to the Dirac-mode emission (47).

see Fig. 7 where the evolution of the decay-free regions
vs H is shown for ∆ = 0.

Still, the corresponding decay boundaries require the
same threshold analysis. One can show that the decay
boundary is defined by the minimum of the two-magnon
continuum that corresponds to an emission of a Dirac-
mode from the acoustic branch at the K-point

ε2k = ε1K + ε1k−K, (47)

which is, actually, the same process as in (46) because
of the Dirac-point degeneracy of the magnon branches,
ε1K = ε2K = 3JS.

In Fig. 8, we show two different threshold contours for
the 2 → {1, 1} decay channel at a representative ∆ = 0
and H = 0.86Hs. Both contours should be associated
with the Van Hove singularities in the two-magnon con-
tinuum. The first set of contours, parts of which serve as
the boundaries for the decay-free regions (not shaded),
correspond to the Dirac-mode emission (47). The other
contours, enclosing the K-points, correspond to decays
with an emission of magnons with equal momenta, case
(i) discussed above.

IV. MAGNON DECAYS

The most important qualitative differences of the spec-
tral properties of the noncollinear magnets vs their
collinear counterparts occur due to anharmonic cubic
coupling terms in the spin Hamiltonians of the type (37)

that may induce magnon decays.30 Concomitant to the
decays are the singularities in the spectrum that nec-
essarily occur due to Van Hove singularities within the
two-magnon continua via the coupling of the latter to the
single-particle branch mediated by the same cubic terms.

In addition to the purely kinematic analysis provided
in Sec. III above, which has identified decay thresholds
and regions for all the decay channels relevant to our
model, we now analyze the actual magnon decay rate.
The goal is to identify the field regimes when decays
are particularly strong, find asymptotic behavior of the
damping in the proximity of the high-symmetry points,
and search for unusual features due to singularities, alto-
gether providing a guidance for experimental fingerprint-
ing of decay-induced spectral features.

Using standard diagrammatic rules with the decay ver-
tices in (37) we obtain the decay rate in the lowest Born
approximation in the µ→{η, ν} channel as given by

Γ
µ→{η,ν}
k =

π

2

∑

q

∣∣∣Φηνµq,k−q;k

∣∣∣
2

δ(εµk − εηq − ενk−q).(48)

As discussed in Sec. III, there are three relevant decay
channels for the XXZ model on the honeycomb lattice
in a field. For the two of them, µ→ {1, 1} with µ = 1 or
2, the decay rate can be written replacing vertices and
energies by their dimensionless counterparts as

Γ
µ→{1,1}
k = Γθ,∆

∑

q

∣∣∣Φ̃11µ
q,k−q;k

∣∣∣
2

× δ (ωµk − ω1q − ω1k−q) , (49)

where we have introduced an auxiliary constant

Γθ,∆ =
π

6JS

∣∣∣J (3)
θ,∆

∣∣∣
2

=
3π

16
J (1 + ∆)

2
sin2 2θ . (50)

The decay rate in the 2 → {2, 1} channel has an addi-
tional factor of two because of the permutation of the
acoustic and optical decay products

Γ
2→{2,1}
k = 2Γθ,∆

∑

q

∣∣∣Φ̃122
q,k−q;k

∣∣∣
2

× δ (ω2k − ω2q − ω1k−q) . (51)

It is worth to note that since spin canting is induced by
external magnetic field, the field is crucial to the phe-
nomenon of magnon decays in the studied system. This
is clear from the explicit form of Γθ,∆ in (50), which van-
ishes at θ = 0, see also Fig. 1. Another vanishing point is
θ = π/2, which corresponds to the saturation field. Thus,
in both limits decay vertex is zero and while magnon de-
cays may be kinematically allowed per our discussion in
Sec. III above, the absence of a coupling between single-
and two-magnon sectors renders decays impossible.



10

0 0.25 0.5 0.75 1

k⇤
3

�

M

M0

kb

K
kb

K0

k⇤
1

k⇤
2

0

0.5

1

1.5

ε k 
/ 2

JS

k

J-J2
J-J2-∆
J-J2-Dz
J-Dz
J-Dz  (2,3) 

X YΓ

J2 /J = 0.03
Dz /J = 0.06
∆ = 0.885

Γ

Γ K

M

(a) (b)

�k/J

�

H 6JS

3JS

k⇤
1

k⇤
2

k⇤
3

kb kb

K M� �
k

k⇤
1

k⇤
1 � 0.03

k⇤
1 + 0.03

�

K0

M

K

M0

(c)

0

0.04

0.08

0.12

0.16

0.2

0.24

FIG. 9: (Color online) Γ
1→{1,1}
k vs k calculated using (49) for ∆=0.5 and H=0.98Hs, (a) along the Γ→K→M→Γ path, and

(b) intensity plot across the Brillouin zone. Right inset in (a) shows the chosen {∆, H} point in the diagram Fig. 3. Arrows
indicate singularities discussed in text. (c) Decay contours in the q-space for a magnon at k∗1−0.03 (dashed-dotted), k∗1 (solid),
and k∗1 + 0.03 (dashed) [see (a,b) for k∗1 ]. The decay contours undergo a topological transition upon crossing k∗1 ; see text.

A. Decays of the lower branch magnons

As mentioned in Sec. III, decays of magnons in the
acoustic branch are only into the products that belong to
the same species and the field evolution of these decays
bears a significant similarity to the case of the square-
lattice antiferromagnet considered before.30 Our Fig. 9(a)

shows Γ
1→{1,1}
k vs k along the Γ→ K→M→ Γ cut of

the Brillouin zone for a representative H = 0.98Hs and
∆=0.5. Here and in the following, the numerical Monte
Carlo integration method was used in (49) and (51) with
108-109 integration points in the full Brillouin zone with
an artificial broadening of the δ-function ε = 5×10−4.
As discussed above, the field must exceed H∗1→{1,1} for

decays to become kinematically allowed. One similarity
with the square-lattice case is the asymptotic behavior

of Γk in the long-wavelength limit: Γ
1→{1,1}
k ∝ |k|3 near

the Γ point in agreement with a general hydrodynamic
expectations,30 see also discussion of Fig. 13(a).

The magnon decay rate in Figs. 9(a,b) exhibits a num-
ber of singularities, which can be traced back to the
discussion of the threshold contours in Sec. III. First
type of singularities is the step-function-like behavior at
the points denoted as kb. They correspond to the decay
threshold boundaries due to decays into pairs of magnons
with equal momenta, which are associated with the min-
ima in the two-magnon continuum, hence the step-like
Van Hove singularities in 2D. A more detailed analysis of

the field-evolution of Γ
1→{1,1}
k is offered in Fig. 10, which

shows that, initially, i.e. at smaller fields, these types of
singularities are the only ones present in the structure of

Γ
1→{1,1}
k , but, upon the field increase, the contours from

the neighboring Brillouin zones overlap and precipitate
new types of singularities, see also Fig. 4. However, the
threshold boundaries from different Brillouin zones retain
their step-like character, see Figs. 9(a) and 10(b,c).

The second type of singularities in Figs. 9(a,b) and
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FIG. 10: (Color online) The field-evolution of Γ
1→{1,1}
k vs k

along the Γ → K → M → Γ path (left), and intensity plot
(right) for ∆ = 0. (a) H = 0.56Hs, (b) H = 0.72Hs, and (c)
H=0.78Hs, see also Fig. 4. Threshold-boundary singularities
persist for all fields, while saddle-point singularities appear
upon the overlap of the decay regions; see text.

10(b,c) that are characteristic to magnon decay phenom-
ena, are the logarithmic singularities denoted as k∗i in
Fig. 9, which are associated with the saddle points in
the two-magnon continuum.30,36 These singularities ap-
pear in the single-magnon spectrum along the contours
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FIG. 11: (Color online) The decay rate of the optical branch for ∆=0 and H=0.84Hs [see upper inset in (a)] obtained from (49)

and (51), (a) along the Γ→K→M→Γ path and the 2D intensity maps of the (b) Γ
2→{1,1}
k and (c) Γ

2→{2,1}
k channels. In (a),

the upper and the lower shaded areas are contributions of the 2→ {1, 1} and 2→ {2, 1} channels, respectively. Arrows indicate
representative singularities, contours in (b) and (c) are the thresholds of the decay into magnons with the same momenta
(dotted) and to the emission of a Dirac-like magnon (dashed); see Sec. III B, Figs. 6 and 8, and discussion in text.

in k-space that are the intersects of the surfaces of these
saddle points with εk surface of the magnon branch.

An interesting characteristics of these singularities is
that they correspond to topological transitions in a dif-
ferent set of contours, the so-called decay contours, a set
of q-points at which the decay products are created. An
example of such a transition is shown in Fig. 9(c) for
the same set of parameters as in Fig. 9(a,b). It shows
three sets of contours, upon the approach to, at, and
upon the crossing of the k∗1 point, see Fig. 9(a). As was
discussed previously, such topological transitions are not
only common, but in some cases can be shown to neces-
sarily exist based on the analysis of the structure of the
q-space manifold for the decay products.30,36

The following remark concerns all channels of decay
analyzed in this work. Our consideration of Γk is limited
to the 1/S effects, which corresponds to the one-loop
Born approximation. The divergent singularities are reg-
ularized by the higher-order processes, such as cascade-
type decays, yielding the finite lifetime in the decay prod-
ucts that cuts off singularities. Another type of regular-
ization in the case when decay products remain stable are
of a more complicated nature, see Refs. 30,36 for a discus-
sion. However, we note that although the divergences in
Γk are regularized, the characteristic magnitude and the
overall shapes of Γk vs k can be expected to remain the
same as was demonstrated previously by implementing
different self-consistency schemes.28–30,36

B. Decays of the upper branch magnons

We proceed with the analysis of the decays in the upper
branch of spin excitations. As discussed in Sec. III B,
there are two potential decay channels for the optical
branch, into two lower branch magnons, 2→ {1, 1}, and
into one optical magnon with an emission of acoustic one,
2 → {2, 1}. While the former is kinematically allowed

for any ∆ < 1 or H > 0, for the latter channel there is a
threshold field H∗2→{2,1}, see Fig. 3.

In Fig. 11 we present an example of the decay rate
profiles obtained using (49) and (51) along the Γ→K→
M→Γ cut in the k-space and as the 2D intensity maps,
similar to the presentation in Fig. 9. The representa-
tive values of H = 0.84Hs and ∆ = 0 are chosen so that
both channels of the optical mode decay are active. In
Fig. 11(a), the total decay rate, i.e. the sum of the con-
tributions of the two channels, is shown and the contri-
butions of individual channels are indicated by different
shadings, with the lower shaded area corresponding to
the 2 → {2, 1} channel and the upper one to the con-
tribution of the 2 → {1, 1} channel. In Figs. 11(b) and

(c), the individual 2D intensity maps of the Γ
2→{1,1}
k and

Γ
2→{2,1}
k are shown across the Brillouin zone. The three

panels of Fig. 11 demonstrate that the two decay chan-
nels typically dominate different regions of the k-space,
with the 2→ {1, 1} decays most pronounced in the wider
area around Brillouin zone boundary, where it can reach
substantial values in excess of Γk & 0.5J depending on
the field regime, see also Fig. 12.

Similarly to the acoustic branch decays, the decay
rates in Figs. 11 and 12 exhibit a number of singular-
ities, which, upon a closer look, can be affiliated with
the threshold contours discussed in Sec. III B. Consider
first the 2 → {2, 1} channel, the lower shaded area in
Fig. 11(a) and intensity plot in Fig. 11(c). The jump-
like singularities at k1 and k8 are associated with the
crossings of the decay boundary near the Γ point, see
Fig. 6, which correspond to a generic type of decays.
The boundary at k4 is due to emission of the Goldstone
mode, see Sec. III B and Fig. 6, and is clearly not associ-
ated with any significant singularity, in agreement with
earlier studies.36 The three other points, k2, k6, and k7,
are all associated with the same threshold contour, to
the decays with an emission of a Dirac-like magnon at
the K point [dashed line in Fig. 11(c)]. However, the
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FIG. 12: (Color online) The field-evolution of the decay rate
in the optical branch of magnons for ∆ = 0.5. Main panels
show Γk vs k along the Γ → K → M → Γ path with con-
tributions of different channels shown by different shadings

[Γ
2→{1,1}
k and Γ

2→{2,1}
k are upper and lower in (b)], and insets

are the intensity maps for individual channels. (a) H=0.56Hs
and (b) H = 0.84Hs. Field in (a) is below H∗2→{2,1} so that
only 2→ {1, 1} channel is active. In (b), left and right insets
are for 2→ {1, 1} and 2→ {2, 1} channels, respectively. Note
different scales in the intensity plots.

k2 point is at the true decay region boundary, while k6

and k7 are inside the decay region and thus correspond
to the saddle point in the two-magnon continuum, hence
the logarithmic singularities for the latter.

The same k6 and k7 points in Fig. 11(b) are associated
with an identical contour for the 2 → {1, 1} channel,
but serve as the decay region boundaries, see also Fig. 8
for guidance. The k2 point for the 2 → {1, 1} decay
channel is, in turn, associated with the saddle point in
the continuum and thus a logarithmic singularity, but it
nearly coexists with another logarithmic singularity at
k3, which, together with the weaker singularity at k5, is
associated with the threshold of decays into two identical
magnons [dotted contours in Fig. 11(b), see also Fig. 8].
Lastly, the kink at the K point in Figs. 11(a) and 12(b) is
related to the cone-like structure in the energy spectrum
at this point, see Fig. 2, and is not associated with any
singularity. The provided detailed analysis of singulari-

ties demonstrates, once again, the useful insights offered
by the kinematic consideration of Sec. III, as it allows to
identify contours of singularities and study their intricate
transformations throughout the Brillouin zone.

While the asymptotic behavior of the decay rates at
the Γ and K points is discussed below in some detail,
here we highlight a few of its features. First, although it
is virtually impossible to see on the scale of Fig. 11(a),
the decay rate in the 2 → {1, 1} channel is non-zero in
the vicinity of the Γ point and obeys Γk ∝ |k|2 law, see
also Fig. 12 for a better representation of this regime and
Fig. 13(b) for the asymptotic analysis. As is also clear
from the kinematic consideration in Sec. III B, the decays
in the 2→ {2, 1} channel are not allowed near the Γ point
for |k| . k1 in Fig. 11(a). One can observe in the same
Figure that the decay rate in the 2→ {2, 1} channel also
vanishes at the K point. The following analysis demon-
strates that it obeys a similar law Γk ∝ |k−K|2, albeit
for different reason, see Fig. 14(b), while the 2 → {1, 1}
channel yields a finite Γ

2→{1,1}
K at this field. As one can

see in Fig. 12, Γ
2→{1,1}
k experiences a change of its asymp-

totic behavior at the K point vs field from the ∝ |k−K|2
behavior for the lower fields, same as in the 2 → {2, 1}
channel, to the constant value at higher fields. The tran-
sition happen as the decay boundaries in the 1→ {1, 1}
channel pass through the K point, see Fig. 4, and allow
for the decays of the K-magnon to the lower states. This
happens at λ ≈ 0.69, which, for the choice of ∆ = 0.5 in
Fig. 12, corresponds to the field H ≈ 0.76Hs.

Fig. 12 offers some additional details on the field evo-
lution of decays in the optical branch of magnons that
are highlighted for a representative ∆ = 0.5. As is men-
tioned above, the effect of decays in the 2→ {1, 1} chan-
nel is typically maximal in the wide area around Bril-
louin zone boundary, while decays in the 2 → {2, 1}
channel, at the fields above the corresponding thresh-
old field H∗2→{2,1}, are typically clustered along singu-

larity lines in a broad area towards the zone center, see
Fig. 11(c) and the right inset in Fig. 12(b). Such charac-
teristic features do not only represent rather spectacular
shapes, but can also serve as important fingerprints for
an experimental identification of the decay-induced phe-
nomena in the spectra of quantum magnets. Another
important note concerns the magnitude of the spectrum
broadening due to magnon decays. Even with singular-
ities regularized by the higher-order processes, as dis-
cussed above,28–30,36 the values of magnon decay rate in
Figs. 12(b) and 10 reach very substantial values, Γk ∼ J ,
possibly as a consequence of enhanced quantum fluctua-
tions in the honeycomb-lattice antiferromagnets.

C. Long-wavelength decays

The long-wavelength asymptotic behavior of magnon
damping provides a useful characterization of the de-
cay phenomena. It is expected to exhibit universal k-
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FIG. 13: (Color online) The decay rates in the vicinity of Γ
point for (a) 1→{1, 1} and (b) 2→{1, 1} decay channels for a
representative set of ∆=0.5 and H=0.84Hs. Horizontal axes
are chosen to emphasize the asymptotic power laws. Dots are
results of numerical integration in (49) and dashed lines are
the fits with the corresponding power laws.

dependencies and is well within the perturbative regime,
allowing for explicit analytical evaluations. In the con-
sidered case of the honeycomb lattice, the vicinities of
the two high-symmetry points, Γ and K, are of interest.

1. k→ Γ

The decays of the acoustic branch, 1 → {1, 1} chan-
nel, occur in the proximity of the Brillouin zone center
only above H∗1→{1,1} when magnon dispersion has a pos-

itive curvature, ε1k = c|k|+α|k|3, α>0. This scenario is
common to Bose gases, phonon part of the spectrum of
4He,39 and some other non-collinear magnets considered
previously.28,30,34 Kinematically, in this common setting,
decays of the long-wavelength excitations are into a pair
of other excitations that belong to an elongated decay
contour along the initial momentum, see Ref. 30. Com-
bined with a standard “hydrodynamic” scaling form of
the decay vertex, Φ111

q,k−q;k ∝
√
|q||k− q||k|, a straight-

forward algebra leads to the resultant decay rate in 2D

Γ
1→{1,1}
|k|→0 ∝ |k|3, which is identical to the asymptotic

behavior of the decay rate in the square-lattice anti-
ferromagnets in a field.28,29 This result is illustrated in
Fig. 13(a) where we show the decay rate calculated nu-
merically using (49) for a representative set of parameters
together with the power-law fit. The horizontal axis is
chosen as ∝ k3 to make the power-law dependence ex-
plicit. One can see that the asymptotic result works very
well up to |k| ≈ 0.4π.

The long-wavelength behavior of the optical mode de-
cays is more intriguing. Formally, according to our
kinematic considerations in Sec. III B, there is always
a finite two-magnon density of states in the acoustic
branch for the optical magnon to decay into using the
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FIG. 14: (Color online) Same as Fig. 13 for the vicinity of K
point. (a) 2→ {1, 1} decay channel for ∆ = 0, H = 0.56Hs,
and (b) 2→{2, 1} channel for ∆=0.5, H=0.84Hs.

2 → {1, 1} channel, even at the Γ point itself. Since
none of the energies of excitations involved in a decay
process of the gapped mode are necessarily small, one
would naively expect the corresponding decay rate to be

finite: Γ
2→{1,1}
|k|→0 ∝ const. However, one can show that

the corresponding decay vertex vanishes at |k| → 0 due
to the phase factors (33), yielding instead

Γ
2→{1,1}
|k|→0 ∝ sin2

(
ϕk + ϕq + ϕk−q

2

)
∝ |k|2, (52)

A parallel can be drawn with the square-lattice case,28,30

where the gapped mode at k = 0 is associated with the
uniform precession mode and thus can be rationalized
as being protected from decays. In the current case, no
direct association with the precession mode exists, yet the
vertex vanishes at |k| → 0, implying a selection rule. The
decay at k = 0 is forbidden instead because the upper
mode is comprised of an antisymmetric combination of
the original spin-flips (20), and should not be able to
decay into a symmetric combination of the lower-branch
modes.

Fig. 13(b) demonstrates the validity of the asymptotic
behavior in (52) with the decay rate calculated numeri-
cally using (49) and its parabolic fit, the horizontal axis
is ∝ k2 for clarity. Approximation can be seen as valid
for |k| . 0.25π.

2. k→ K

As one can see from representative plots in Fig. 2, since
the two branches are degenerate at the K point, then in
its vicinity there is always a possibility for an optical
magnon to emit a q ≈ 0 acoustic magnon and drop onto
the lower branch, a decay within the 2→ {1, 1} channel.
Below the field that correspond to λ ≈ 0.69 via the re-
lation in (15), it is the only type of the decay near the
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K point which is kinematically allowed. For larger fields,
λ & 0.69, the curvature of the acoustic branch is bent up
significantly so that the decays into two magnons with
half-momenta of the K point become possible. This tran-
sition corresponds to the “frontline” of the decay region
in Fig. 4 passing through the K point. Thus, in larger
fields, the momenta involved in a typical decay from the
K point are not small and lead to a finite decay rate in
the 2 → {1, 1} channel, a transition highlighted in the
discussion of Fig. 12 above.

At yet somewhat higher fields, which correspond to
λ=
√

3−1≈0.73, the velocity of the Dirac-like excitation
at the K point exceeds the sound velocity of the Gold-
stone mode, making the decay in the 2→{2, 1} channel
possible, in which a decaying magnon from the optical
branch remains in the same branch but sheds a, now
slower, q→0 magnon. Curiously, this corresponds to the
fields somewhat higher than the threshold field H∗2→{2,1}
discussed in Sec. III B, as the current consideration re-
quires decay regions in Fig. 5 to extend to the K point.

In both cases, 2→ {1, 1} channel for λ < 0.69 and 2→
{2, 1} channel for λ > 0.73, the asymptotic behavior near
the K point is related to the emission of the Goldstone
q→ 0 magnon. Because of that, the corresponding decay
vertices carry the same smallness in q

Φ112
q,k−q;k ∝ Φ122

q,k−q;k ∝
√
|q|. (53)

In either of the cases, there is no strong restriction on the
angle and thus the 2D density of states also contributes
one power of k−K to the resultant decay rate, yielding

Γ
2→{1,1}
k ∝ Γ

2→{2,1}
k ∝ |k−K|2. (54)

This asymptotic behavior is illustrated in Figs. 14(a)
and (b), with the decay rates in the two channels cal-
culated using (49) and (51), respectively, and compared
to parabolic fits, with the horizontal axis proportional to
|k −K|2 for clarity. This asymptotic approximation for
the 2 → {1, 1} channel is valid in a somewhat narrower
range, |k −K| . 0.1π, because of significant nonlineari-
ties in the upper branch spectrum.

V. DYNAMICAL STRUCTURE FACTOR

Using decay rates discussed above, in this Section
we calculate the dynamical structure factor S(q, ω) and
magnon spectral function A(q, ω) in the leading 1/S or-
der. We show that magnon decay processes lead to a
broadening of quasiparticle peaks and to a redistribution
of spectral weight. These results should be directly rel-
evant to the prospective neutron scattering experiments
in the honeycomb-lattice materials in external field.

Previously, a detailed consideration of the structure
factor in noncollinear antiferromagnets was given for the
cases of the square-lattice antiferromagnet in a field29,31

and for the triangular-lattice antiferromagnet.44 More

recently, the leading-order, 1/S analysis of the struc-
ture factor was provided for the anisotropic kagome-
lattice models.38 Our current consideration is similar
to the square-lattice case,31 but the main difference is
in the non-Bravais nature of the honeycomb lattice,
which makes it close to the kagome-lattice case in several
aspects.38 Similarly to the latter, we restrict ourselves
to the leading 1/S order of the spin-wave theory, thus
implying applicability of our results to S & 1 systems.

A. S(q, ω) in 1/S, kinematic formfactors

We begin with the structure factor for the the non-
Bravais lattices, which corresponds to the correlation
function of the unit cell magnetizations19

Sα0β0(q, ω) = − 1

π
Im

∫ ∞

−∞
dt eiωt Gα0β0(q, t) , (55)

where the time-ordered, T = 0 spin Green’s function is

Gα0β0(q, t) = −i
〈
TMα0

q (t)Mβ0

−q(0)
〉
, (56)

and the Fourier transform of the α0-component of the
magnetization

Mα0
q =

∑

i,α

Sα0
i,α e

iq(ri+ρα) , (57)

involves the sum of the spin components in a unit cell,
where α numerates the atoms and ρα are the coordina-
tion vectors, see (16). The α0 and β0 indices correspond
to the laboratory reference frame {x0, y0, z0} in Fig. 1.

Since the inelastic neutron-scattering cross section is
proportional to a linear combination of the diagonal com-
ponents of the correlation function in (55) and since the
spins in our consideration form a coplanar structure in
the (x0, z0) plane, it is convenient to separate the struc-
ture factor into the in-plane and the out-of-plane parts

S‖ = Sx0x0 + Sz0z0 , S⊥ = Sy0y0 , (58)

where we have also assumed equal contribution of all
three components.

Let us consider Sz0z0 as an example. Using (8) and
(12), in the leading 1/S order

Mz0
q (t) ≈ cos θ

√
S

2

∑

α

(
aαq(t) + a†α−q(t)

)
, (59)

which, after straightforward algebra with the unitary
(20) and Bogolyubov (24) transformations, yields

Sz0z0(q, ω) =
S

4
cos2 θ

∑

µ

Aµ(q, ω) F̃z0z0µq (60)

where we have introduced magnon spectral function
Aµ(q, ω) = − 1

π ImGµ(q, ω) of the µ = 1, 2 branch and
the auxiliary function is

F̃z0z0µq = (uµq + vµq)
2
∑

αα′

V µαV µα
′
eϕqσ

y

αα′ , (61)
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FIG. 15: (Color online) The kinematic formfactors for ∆=0,
H = 0.48Hs across several Brillouin zones. The formfactors
for the in-plane S‖(q, ω): (a) lower branch F‖1q, (b) upper

branch F‖2q. The formfactors for the out-of-plane S⊥(q, ω):

(c) lower branch F⊥1q, (d) upper branch F⊥2q.

with σy being the Pauli matrix, see Sec. II for the rest
of the notations. Using the simplicity of the matrix V̂ in
(21), Eq. (61) can be simplified, finally leading to

Sz0z0(q, ω) = S cos2 θ
[
(u1q + v1q)

2
cos2 ϕq

2
A1(q, ω)

+ (u2q + v2q)
2

sin2 ϕq

2
A2(q, ω)

]
. (62)

Calculating Sx0x0 and Sy0y0 in a similar fashion gives the
in-plane and out-of-plane structure factors

S‖(q, ω) = S
(
F‖1qA1(q, ω) + F‖2qA2(q, ω)

)
, (63)

S⊥(q, ω) = S
(
F⊥1qA1(q, ω) + F⊥2qA2(q, ω)

)
, (64)

where we introduced kinematic formfactors

F‖1q =
(

sin2 θ sin2 ϕq

2
+ cos2 θ cos2 ϕq

2

)
(u1q + v1q)

2
,

F‖2q =
(

sin2 θ cos2 ϕq

2
+ cos2 θ sin2 ϕq

2

)
(u2q + v2q)

2
,

F⊥1q = sin2 ϕq

2
(u1q − v1q)

2
, (65)

F⊥1q = cos2 ϕq

2
(u2q − v2q)

2
.

As in the case of the more standard Bravais-lattice
considerations, the kinematic formfactors serve as mod-
ulators of intensity of the magnon spectral functions in
q-space. The difference here is in the q-modulation be-
tween different Brillouin zones, as in the non-Bravais lat-
tices the kinematic formfactors are typically suppressed
in one while are maximal in the other Brillouin zones,
the property demonstrated in Fig. 15 for representa-
tive anisotropy and field values. This effect is similar

in spirit to the Bragg peak extinction for the elastic
scattering in non-Bravais lattices and was recently dis-
cussed for the kagome-lattice models.38 Because of this q-
modulation, prospective neutron-scattering experiments
should be able to separate contributions of different exci-
tation branches by selecting component of the structure
factor in a specific Brillouin zone.

B. Spectral functions Aµ(q, ω) and S(q, ω)

In the non-interacting limit, or at S � 1, the spectral
function is a δ-function at ω = εµq for any given q. To
demonstrate the effects induced by magnon interaction,
we use a simplified form of the Green’s function

G−1
µ (q, ω) = ω − εµq + iΓµq , (66)

with the magnon self-energy taken on-shell and approxi-
mated by its imaginary part, Σµ(q, εµq) ≈ −iΓµq, where
Γµq is the decay rate of the µ-magnon (48) in all possible
decay channels. Such a simplification neglects the higher-
order 1/S contributions, the O(S0) contributions of the
same order from the so-called quartic terms, and the real
part of the self-energy. However, it keeps the most im-
portant qualitatively new effect of the cubic anharmonic-
ities in the spectrum,—broadening due to magnon de-
cays. Thus, our approach is close in spirit to the one in
Ref. 29, albeit without the self-consistency in the decay
rate [called iSCBA scheme in Ref. 29]. It is, therefore, ex-
pected to be applicable to the S & 1 systems, but can also
be instructive for the S = 1/2 case. The same approxi-
mation has been used recently for the theoretical analysis
of the spectral properties of the S = 5/2 kagome-lattice
system, Fe-jarosite.38

Since the ω-dependence is neglected in the self-energy
in (66), the spectral function Aµ(q, ω) takes the form of
a simple Lorentzian for any q, which is obviously a sim-
plification too. Nevertheless, the offered consideration
is still immensely instructive as our results are expected
to be quantitative with respect to the variation of the
magnitude of the broadening effect in the q-space, iden-
tifying regions with stronger and weaker decays, and of
the spectral weight redistribution. However, our analysis
will only be qualitative regarding the subtler ω-structures
in the spectrum, such as the ones studied in a related
problem of the spectral properties of the square-lattice
antiferromagnet in a field.31

Here we offer two representative examples of the spec-
tral functions Aµ(q, ω) of both magnon bands for a
prospective S = 1 honeycomb-lattice XXZ antiferro-
magnet, see Fig. 16, which shows the intensity plots of
Aµ(q, ω) in the ω − q plane for µ = 1 and 2 along the
usual Γ→K→M→Γ path in the Brillouin zone. Γ1q and
Γ2q, which correspond to half-width at half-maximum of
the spectral peaks, are also shown for reference by the
solid lines in the lower and upper parts of the graphs, re-
spectively. The upper cutoff in intensity is 5/J , which
translates into the minimal line broadening of 0.064J
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FIG. 16: (Color online) The intensity map of the spectral functions Aµ(q, ω) in units of J−1 from the Green’s function in
(66) for S= 1 and (a) ∆ = 0 and H= 0.48Hs, (b) ∆ = 0.5 and H= 0.84Hs. A small value of δ= 2.5 · 10−3J was added to Γq.
Broadening of the lower and upper branches, Γ1q and Γ2q, are shown by solid lines in the lower and upper parts of the graphs,
respectively. Upper cutoff of intensity is 5/J , which corresponds to a minimum broadening 0.064J . See text for discussion.

that should be easily resolvable by the modern neutron-
scattering experiments for appropriate values of J .

First choice of parameters, ∆ = 0 and H = 0.48Hs,
in Fig. 16(a) corresponds to the field larger than the
threshold field in the 1→{1, 1} decay channel, i.e. above
H∗1→{1,1} when the lower branch magnon dispersion has

a positive curvature, but below the threshold in the
2 → {2, 1} channel, H∗2→{2,1}, see Fig. 3 and Sec. III.

Thus the decay processes in both magnon branches are
only into pairs of magnons in the lower, acoustic branch,
i.e. µ→{1, 1}. One can see in Fig. 16(a) that there is
a clear decay boundary in the broadening of the lower
branch, with the acoustic magnons still sharply defined
for large q toward the Brillouin zone boundary, see also
Fig. 4. At the same time, the quasiparticle peaks in the
upper branch are broadened for any q except the Γ and K
points, see Sec. IV. The overall magnitude of the broad-
ening can be described as moderate, Γq . 0.2J − 0.3J
for most q values, which is still well within the range
of detectability by the modern neutron-scattering exper-
iments. As is discussed in Sec. IV, the divergent singular-
ities in Γµq, which result into vanishing spectral weight at
select q points in Fig. 16(a), are going to be regularized
by the higher-order decay processes.

The effects of decays are much more dramatic in
Fig. 16(b), which corresponds to the same choice of
S = 1, but the anisotropy and the field are ∆ = 0.5
and H= 0.84Hs. For this value of ∆, the chosen field is
above both of the threshold fieldsH∗1→{1,1} andH∗2→{2,1},
see Fig. 3 and Sec. III. Fig. 16(b) shows clear and
rather spectacular termination-point-like transitions in
both acoustic and optical branches. In the latter, the
thresholds near the Γ point are related to the decay re-
gion threshold for the 2→{2, 1} channel, see discussion of
Figs. 11 and 12 and Fig. 5. The difference from the previ-

ously studied models30 is that such an abrupt transition
can happen within the decay region, i.e. for a part of
the magnon spectrum which already has a finite lifetime.
This is because of the multiple decay channels having
different kinematic constraints on the decays.

The intensity plot also shows other features, such as
partial recovery of the upper branch around the M point
where decays become more modest and the “watershed”-
like wipeout of both branches in the proximity of the K
point. Perhaps the most remarkable feature of the spec-
trum in Fig. 16(b) is the perfectly well-defined portion
of the lower branch magnon in the stretch of q values
around the M point, which is surrounded by the regions
that appear to be free from any quasiparticle-like excita-
tions because of strong overdamping, see also Fig. 10.

Overall, the magnitude of broadening in Fig. 16(b) is
rather significant, even assuming all the singularities to
be regularized, reaching Γq ∼ 0.5J − 1.0J for a wide
range of q and for both magnon branches. This leads
to strong suppression of the quasiparticle peaks despite
the somewhat elevated value of the spin, S = 1, and can
possibly be related to enhanced quantum fluctuations in
the honeycomb-lattice antiferromagnets as discussed in
Sec. IV. Although our consideration is partially quali-
tative, one can expect that the massive spectral weight
redistribution and significant suppression of the quasipar-
ticle peaks together with the rather peculiar distribution
of strongly and weakly affected regions in the q-space will
survive a more rigorous treatment of the problem.33

A different view on the unusual spectral features of the
XXZ honeycomb-lattice antiferromagnet in a field can
be gained via the constant-energy cuts of the S(q, ω),
the approach often used in the modern inelastic neutron-
scattering experiments. In Fig. 17 we show several ex-
amples of them for S = 1 and the same parameters as in
Fig. 16. Fig. 17 shows separately the intensity maps of
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FIG. 17: (Color online) The intensity maps of the constant-energy cuts of the in-plane and out-of-plane structure factors,

S‖(q, ω) and S⊥(q, ω), (63) and (64), for S = 1 and (a) ∆ = 0 and H = 0.48Hs, (b) ∆ = 0.5 and H = 0.84Hs, same as in
Fig. 16. Values of constant energies are as indicated in the graph. Modulation of intensities between Brillouin zones is due to
kinematic formactors; see Fig. 15 and text.

the in-plane and the out-of-plane structure-factor com-
ponents, S‖(q, ω) and S⊥(q, ω) given by (63) and (64),
for two representative energies and in the window of the
q-space, which offers a partial view of several neighboring
Brillouin zones.

The set in Fig. 17(a) demonstrates the ω-cuts for the
same ∆ and H as in Fig. 16(a) for ω = 2J and ω = 4J .
At the lower energy, one can observe circular cuts of the
cone-like magnon dispersion, modulated in intensity by
the kinematic formfactors from Fig. 15 discussed above,
with little deviation from the picture expected from the
sharp, well-defined quasiparticle excitations. For the
higher energy cut, such deviations become more appar-
ent, with the broadening exhibiting an intriguing modu-
lation along the similar circular cuts. This is in accord
with Fig. 16(a) which showed only moderate damping
primarily in the optical branch of magnons.

A very strong deviation from sharp quasiparticle con-
tours, characterized by intense broadening and massive
redistribution of the spectral weight into different regions
of the q-space, together with the non-trivial character of
such redistribution, can be observed for both energies in
the set in Fig. 17(b) that uses the same parameters as in
Fig. 16(b). This is also in agreement with the exposition
in Fig. 16(b), which indicated much stronger broadening.
In both cases in Fig. 17, the intensity is strongly modu-
lated between Brillouin zones due to kinematic formfac-
tors. For the lower-energy cuts of the lower branch, both
the in-plane and the out-of-plane structure factors are en-

hanced in the second and third Brillouin zones, while for
the cut at higher energy, which concerns the optical part
of the spectrum, the structure factors are enhanced in
the first Brillouin zone and are suppressed in the second
and third Brillouin zones.

Altogether, the constant-ω cuts of S(q, ω) in Fig. 17 to-
gether with intensity maps of Aµ(q, ω) in Fig. 16 provide
a distinct and detailed representation of the strong decay-
induced quantum effects in the dynamical response of
the honeycomb-lattice antiferromagnet in a field, which
take their origin in the anharmonic magnon couplings.
These results are general and should apply to various
honeycomb-based systems and we expect future experi-
ments in applied magnetic field on such materials to con-
firm our findings.

VI. CONCLUSIONS

To summarize, we have developed a formalism of
the nonlinear spin-wave theory for the nearest-neighbor
honeycomb-lattice XXZ model in a field and have pro-
vided a comprehensive study of the dynamical effects
that are induced by the two-magnon decay processes in
its spectrum at zero temperature. We have given a de-
tailed analysis of important and distinct features that
make decays of spin excitations in the honeycomb-lattice
antiferromagnets significantly richer than in the previ-
ously studied cases, such as non-Bravais nature of the
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system and the Dirac-like points in the spectrum.
In particular, the decays of the optical mode into two

acoustic ones are allowed for any non-zero field, while the
other decay channels, such as acoustic into two acous-
tic or optical into a mix of optical and acoustic, re-
quire threshold fields to be exceeded. A separate degree
of complication is added by the Dirac-like degeneracy
points connecting magnon branches that contribute to
the intriguing field-evolution of the decay regions in the
q space, which has been studied in detail in the present
work together with the concomitant singularities origi-
nating from the coupling to the two-magnon continuum.
We have illustrated our findings by the maps of the field-
dependent decay regions, singularity contours, and decay
rates in all the channels for several representative values
of anisotropy and field. We have also provided a meticu-
lous analysis of the singularities in decay rates and have
studied asymptotic behavior of the latter in the vicinities
of the high-symmetry points.

Lastly, we have derived analytical expressions for the
inelastic neutron-scattering spin-spin structure factor in
the leading 1/S order and have demonstrated its qual-
itatively distinct features that take their origin in the
decay-induced magnon dynamics. In passing, we have
shown that the kinematic formfactors can modulate ob-
served signal in different Brillouin zones owing to the non-

Bravais nature of the system, thus offering a clear separa-
tion of the contribution from different modes. The main
effects of the decays are in the clear and dramatic broad-
ening of the quasiparticle peaks and in the strong spectral
weight redistribution. These findings are illustrated by
the intensity maps of the magnon spectral functions and
by constant-energy cuts of the dynamical structure factor
for representative values of the field and anisotropy.

We expect a qualitative applicability of our results
to the other related models and anticipate the future
neutron-scattering studies to contribute to a further
progress in this area.
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8 Y. Sizyuk, C. Price, P. Wölfle, and N. B. Perkins, Phys.
Rev. B 90, 155126 (2014).

9 B. Uchoa, V. N. Kotov, N. M. R. Peres, and A. H. Castro
Neto, Phys. Rev. Lett. 101, 026805 (2008).

10 Z. Wang, C. Tang, R. Sachs, Y. Barlas, and J. Shi, Phys.
Rev. Lett. 114, 016603 (2015).

11 A. Mulder, R. Ganesh, L. Capriotti, and A. Paramekanti,
Phys. Rev. B 81, 214419 (2010); R. Ganesh, D. N. Sheng,
Y.-J. Kim, and A. Paramekanti, Phys. Rev. B 83, 144414
(2011).

12 E. Rastelli, A. Tassi, and L. Reatto, Physica B 97, 1
(1979).

13 C. N. Varney, K. Sun, V. Galitski, and M. Rigol, Phys.
Rev. Lett. 107, 077201 (2011).

14 Z. Zhu, D. A. Huse, and S. R. White, Phys. Rev. Lett.
111, 257201 (2013).

15 S.-S. Gong, D. N. Sheng, O. I. Motrunich, and M. P. A.
Fisher, Phys. Rev. B 88, 165138 (2013).

16 R. F. Bishop, P. H. Y. Li, D. J. J. Farnell, and C. E.
Campbell, J. Phys.: Condens. Matter 24, 236002 (2012);
P. H. Y. Li, R. F. Bishop, and C. E. Campbell, Phys. Rev.
B 89, 220408 (2014).

17 J. Oitmaa and R. R. P. Singh, Phys. Rev. B 84, 094424
(2011).

18 H. D. Rosales, D. C. Cabra, C. A. Lamas, P. Pujol, and
M. E. Zhitomirsky, Phys. Rev. B 87, 104402 (2013).
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32 O. F. Syljůasen, Phys. Rev. B 78, 180413 (2008).
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