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School of Physics and Astronomy, and Minnesota Supercomputing Institute,

University of Minnesota, Minneapolis, Minnesota 55455, USA

Jeffrey M. Rickman

Department of Materials Science and Engineering,

Lehigh University, Bethlehem, Pennsylvania 18015, USA

Abstract

We introduce a phenomenological theory of dislocation motion appropriate for two dimensional

lattices. A coarse grained description is proposed that involves as primitive variables local lattice

rotation and Burgers vector densities along distinguished slip systems of the lattice. We then use

symmetry considerations to propose phenomenological equations for both defect energies and their

dissipative motion. As a consequence, the model includes explicit dependences on the local state

of lattice orientation, and allows for differential defect mobilities along distinguished directions.

Defect densities and lattice rotation need to determined self consistently and we show specific

results for both square and hexagonal lattices. Within linear response, dissipative equations of

motion for the defect densities are derived which contain defect mobilities that depend nonlocally

on defect distribution.
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I. INTRODUCTION

A phenomenological model of dislocation motion in two dimensional lattices is introduced

which is based on a coarse grained Burgers vector density. We extend existing treatments

that are based on dissipative motion driven by plastic free energy minimization by intro-

ducing anisotropic mobilities along locally rotated slip systems. Local lattice rotation is self

consistently determined with the evolving Burgers vector density distribution.

Coarse grained descriptions of defected crystalline lattices are often based on Nye’s dislo-

cation density tensor1, and have been summarized in a number of excellent monographs2–5.

The general starting point is the introduction of a coarse graining volume that contains

a large number of defect lines threading it. The resulting dislocation density tensor αik

depends on the distribution of geometrically necessary dislocations in the volume, while

statistically stored dislocations (those portions of dislocation loops that do not contribute

to the dislocation density tensor) are averaged out in the coarse-graining6. In three dimen-

sions, the dislocation density tensor is αik = −εilm∂lwmk where εilm is the anti symmetric

Levi-Civita tensor, and wmk = ∂muk is the elastic distortion tensor. The dislocation density

tensor can be represented by a vector in two dimensions which we refer to as the Burgers

vector density b(r). In the r = (x, y) plane bk(r) = α3k(r) and hence can be written as

bk = εml∂lwmk where εml is the two dimensional anti symmetric tensor.

Our approach follows closely the particular description employed in equilibrium theories

of two dimensional melting7–9. In addition to the strain, the primary variables employed

to describe this two dimensional defected medium include the Burgers vector density b(r)

and the local (coarse grained) bond angle field θ(r) (also called lattice rotation). The

system is assumed to be in elastic equilibrium at all times consistent with a given defect

distribution, so that strain and bond orientation fluctuations are slaved to the instantaneous

defect density distribution. Equilibrium fluctuations in θ(r) were computed within linear

elasticity in Ref.9, and shown not to destroy long range orientational bond order in a two

dimensional crystalline lattice.

The same coarse grained description together with the methods of linear irreversible

thermodynamics have been used to obtain the equations governing dissipative motion

of the dislocation density tensor under the assumption that it is driven by free energy

minimization10–14. We extend this research here by incorporating a defect mobility that
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explicitly depends on variations in the local orientation of the slip lines in the defected

medium.

Our study is motivated by recent developments that allow quantitative characterization

of defect structures and motion at the nanoscale. For example, recent high resolution mi-

croscopy studies have enabled imaging of the displacement fields created by dislocations

with sub Angstrom resolution15. At the same time, equilibrium configurations16 and defect

motion17 have been investigated in a special realization of a two dimensional crystal: a col-

loidal lattice. This system affords convenient visualization of defect configurations and the

concomitant strain fields. In particular, optical tweezers methods have recently allowed a

very detailed analysis of the microscopic mechanisms of defect motion, including the emer-

gence of dissipative motion as the extent of the defect increases18. The nanoscale structure of

isolated defects has also been recently resolved in smectic liquid crystals with cryo-electron

microscopy19, with some surprising results concerning the structure and extent of edge dislo-

cations. Additional interest in defect motion in two dimensional systems has been spurred by

novel strain engineering methods that seek to control the electronic properties of graphene

sheets20–22.

Our study is also motivated by fully microscopic numerical investigations of a variety

of defect mediated dynamics, including, for example, interactions among an ensemble of

dislocations23, plastic deformation or grain boundary motion24. Simple early models of plas-

tic deformation in metals that are based on the existence of Frank-Read dislocation sources

and their glide over lattice-specific slip planes have been greatly extended thanks to infor-

mation obtained through massively parallel Molecular Dynamics studies. Such atomistic

level simulations have enabled quantitative descriptions of complex situations in heavily de-

formed materials, e.g., dislocation nucleation at grain boundaries and their coupled motion25.

Although atomistic in scale, the simulations methods are largely based on dissipative (or

non-inertial) motion. This is accomplished by the introduction of suitable “thermostats”

in the simulations, or by explicitly solving an elastic boundary value problem slaved to the

instantaneous location of the defect lines26. The general assumption is that defect segment

motion occurs in a time scale that is much slower than the characteristic time of elastic

relaxation of the medium. This separation of time scales is also implicit in the model de-

scribed in this paper. The model which we describe aims at a coarse grained description

of these simulations while still retaining mesoscale information about the lattice slip planes

3



and their contribution to defect motion.

Bridging experiments at the nanoscale and related microscopic numerical studies with

macroscopic descriptions based on continuum elasticity theory has proven difficult, but do-

ing so is becoming a necessity in order to properly describe microstructural evolution in

nanostructured materials13,25,27–29. We do not attempt here a derivation of dislocation mo-

bilities from a microscopic model of a two-dimensional lattice. Rather we use symmetry

arguments to propose phenomenological equations of defect motion that depend on the

symmetry and local state of orientation of the lattice, and that allow for differential defect

motion along distinguished directions. We consider two possible types of crystalline lattices

in two dimensions: hexagonal and square. In the former case, the description is somewhat

simpler in that, to linear order, defect energies are the same as in an isotropic material.

However, the description of lattice effects near defect cores is complicated by the need to

introduce geometrically unnecessary dislocations. On the square lattice, on the other hand,

the anisotropic nature of the linear response is more complex. In both cases we obtain the

orientation dependent mobilities under several approximations. We close by presenting an

illustrative example involving the motion of two edge dislocations. We make a number of

simplifications to make the calculation analytically tractable, and show how lattice rotation

affects glide and climb motion, and how it can prevent dislocation annhilation thorough the

local distortion of the slip planes.

II. MESOSCOPIC MODELS

We consider a two dimensional crystal that contains a large number of dislocations which

are relatively close to each other, yet separated by distances much larger than the lattice

spacing so that the distribution can be effectively coarse grained. A coarse graining cell

is introduced with a net Burgers vector that is the sum of the many Burgers vectors of

the underlying crystal dislocations within the cell. As is standard (see, e.g., Refs.2,9), the

resulting Burgers vector density is approximated by a continuous vector field b(r) on this

two dimensional space (with components bi(r) = α3i(r), i = x, y and 3 denoting the di-

rection perpendicular to the plane). We first decompose the Burgers vector density into a
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combination of a finite number of discrete slip systems2,8,27,30

b(r) =
∑
s

b(s)(r)θ̂(s)(r) (1)

where s runs over the possible slip systems with Burgers vector density b(s) locally oriented

along the direction θ̂(s)(r). We assume that the unit vectors θ̂(s)(r) can be expressed as

θ̂(s)(r) = (cos(θ(r) + πs/2), sin(θ(r) + πs/2)), s = 0, 1, for a square lattice and θ̂s(r) =

(cos(θ(r) + 2πs/3), sin(θ(r) + 2πs/3)), s = 0, 1, 2, for a hexagonal lattice. The local rotation

of the coarse graining cell is θ(r) = (1/2)εijwij(r) where εij is the anti symmetric Levi-Civita

tensor, and wij the elastic distortion tensor. The lines defined by the directions θ̂(s)(r) do

not cross if there are no unbound disclinations31, which we assume throughout this paper.

In an unbounded medium, it is possible to express the elastic energy as a function of the

Burgers vector density. For an isotropic system, this energy is given by32,33

Hint = −K
2

∫
|r−r′|>a

drdr′
[
b(r) · b(r′) ln

(ρ
a

)
− b(r) · ρ̂ b(r′) · ρ̂

]
, (2)

where a is a short distance cutoff on the order of the lattice spacing, K is the two dimensional

Young’s modulus and ρ = r − r′, ρ̂ the corresponding unit vector, and ρ = ‖ρ‖. This

expression does not include a nonlocal self-energy of the dislocation distribution due to

their long ranged strain field because the total Burgers vector over the entire system is

taken to be zero, so that dislocations are created and annihilated in opposing pairs. There

is also, however, a local energy contribution associated with the nonlinear strain fields near

the core of the dislocation. This energy is assumed to be approximately independent of the

local strain field due to other sources34, and is modeled by a quadratic term in the Burgers

vector32

Hloc = Ec

∫
dr b(r) · b(r), (3)

with Ec a constant core energy. Below we will propose a slightly different core energy to

also include the energy of geometrically unnecessary dislocations (dislocation groups that

do not contribute to the local Burgers vector density).

In an unbounded system, the solution of the equilibrium elasticity problem is equivalent

to obtaining the Burgers vector density distribution. This is because the incompatibility

of the plastic strain is completely balanced by an elastic strain that makes the total strain

compatible3. This allows one to express the solution for the strain field as a function only

of the Burgers vector density that acts as a source of strain4,33.

5



Dislocations and other defects play a key role in determining the evolution, properties, and

response of materials outside of thermodynamic equilibrium. While the systems under study

here are assumed to be in elastic equilibrium relative to a given defect distribution, defects

interact, and are free to move and annihilate to relieve stresses and reduce the overall energy

of the system. Such an evolution can have reversible and irreversible contributions that cor-

respond to different models of relaxation18. A number of theoretical studies in the literature

have addressed dissipative motion of an ensemble of dislocations at the mesoscale10–13,35–37.

A relaxational equation for the Burgers vector density is introduced under the assumption

that the evolution of the density is driven by plastic energy minimization. The equation is

of the general form,

∂bj
∂t

= −εlmBmjsiεsb∂l∂b
δH

δbi
, (4)

where H = Hint + Hloc, and Bmjst is a constant mobility tensor. We propose in this paper

a more accurate description of the kinetic motion of the defect distribution by considering

anisotropic mobilities along slip lines of the lattice rather than along the orientations defined

locally by the Burgers vector density as is the case in Eq. (4). Moreover, we show how to

distinguish glide and climb in two dimensional lattices that are locally rotated, as they are

in the presence of an ensemble of dislocations.

Within linear elasticity in an isotropic medium the local orientation of a two dimensional

coarse graining cell is related to the Burgers vector density through a nonlocal relation38,

θ(r) = − 1

2π

∫
dr′

b(r′) · ρ̂
ρ

. (5)

On an infinite lattice in which the Burgers vector decays sufficiently fast at infinity we can

take θ(r) = 0 at infinity39. The fact that the orientation is different at all points on the

plane implies that the local slip lines θ̂(s)(r) are also position dependent. Therefore if the

dislocation mobility is anisotropic, Eq. (4) will not adequately describe defect motion along

locally rotated slip systems.

We propose to extend Eq. (4) in two ways, both phenomenological and based on symme-

try arguments. First, in the presence of an orientation field θ(r), or lattice torsion, there is

no longer strict translational symmetry, but the composition of a translation and a rotation

due to plastic deformation. In this way, the configurational energy depends explicitly on lo-

cal orientation, as the lattice symmetries of reflection and rotation must be applied locally9.
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Second individual dislocations respond anisotropically to forcing so that the motion of an

ensemble of dislocations depends on how the local Burgers vector density is decomposed

among slip systems as shown in Eq. (1). We note that while we allow the slip system

directions to be different from one coarse graining cell to another, we neglect changes to the

relative angle between them due to deformation of the cell. Hence the local coordinate axis

system defined by the slip systems θ̂(s)(r) is, approximately, determined by a single angle

θ(r) (as explicitly shown below Eq. (1)).

III. DISLOCATION MOTION ON A SQUARE LATTICE

The symmetry of the square lattice is generated by rotations about π/2 and reflections

about the two bond axes forming the group D4. This symmetry implies that a rank two

tensor (a matrix) relating two vectors transforming under SO(2) has to be proportional to

the identity matrix. This can be checked by assuming the most general 2 × 2 matrix and

applying the transformation matrices, demanding equality of the initial and transformed

matrices. A similar analysis for the compliance matrix, a rank four tensor relating the stress

matrix to the strain matrix within linear elasticity (Hooke’s Law) uij = Sijklσkl, shows that

it can be written in general as,

Sijkl = αδijδkl + βδi(kδl)j + ∆δijkl, (6)

where α, β, and ∆ are constants related to the elastic constants of the lattice, and δijkl is

the fourth rank identity tensor. Here and below we will make use of the notation A(bc) =

1
2
(Abc + Acb) and A[bc] = 1

2
(Abc − Acb). There is an additional term allowed for a general

fourth rank tensor which is not present here because the stress is symmetric σij = σji.

In the case of hexagonal symmetry addressed in Sec. IV, invariance under rotations of

π/3 and reflections about the three independent bond orientations, and again within linear

elasticity, leads to the same decomposition (6), but with ∆ = 0. Note that in this case,

and within linear distortions, the compliance matrix has the same decomposition as in an

isotropic system. In this latter case, the system is invariant under arbitrary rotations and

reflections.

An approximate expression for the energy of a distorted and rotated lattice can be ob-

tained by applying the tensorial decomposition above in the local coordinates of each rotated

7



coarse graining cell (it is still the case that the stress is symmetric on its indices in these

coordinates). Introduce a local coordinate system with unit vectors x̂′ and ŷ′ that are re-

lated to laboratory coordinates x and y by a rotation about θ(r): x̂′ = (cos θ, sin θ)T and

ŷ′ = (− sin θ, cos θ)T . We use in what follows upper indices for tensors expressed in lo-

cal coordinates and lower indices for tensors in the laboratory frame. Then, for example,

σab = Ra
.i[θ(r)]R

b
.j[θ(r)]σij, where we have introduced the rotation matrix

Ra
.i[θ] =

 cos θ − sin θ

sin θ cos θ

 . (7)

By reason of symmetry, we have

uij = αδijσkk + βσij + ∆(δix
′
δjx

′
σx

′x′ + δiy
′
δjy

′
σy

′y′) (8)

in local coordinates. Equation (8) transformed to the laboratory frame reads,

uij = αδijσkk + βσij + ∆hijkl(θ(r))σkl. (9)

with

hxxxx = hyyyy = cos4 θ + sin4 θ, hxxyy =
1

2
sin2 2θ,

hxxxy = −hxyyy =
1

4
sin 4θ, (10)

where the other components of the tensor function hklmn come from that fact that it does

not depend on the order of its indices (a general result for this symmetry). We also have

used the notation σkk = Tr(σij).

The elastic energy can now be calculated as follows: Since ∂jσij = 0 and σij = σji an

Airy stress function χ(r) is introduced such that

σij = εikεjl∂k∂lχ. (11)

When there are no free disclinations, it is possible to express the Airy stress function in

terms of Burgers vector density33. Apply εikεjl∂k∂l to Eq. (9) and substitute the definition

(11) to find,

εikεjl∂k∂luij = α′∇4χ+ ∆εikεjl∂k∂lD̂ijχ, (12)

where we have introduced α′ = α + β, and the differential operator

D̂ij[θ] = hijkl(θ)εkmεln∂m∂n. (13)
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The left hand side of Eq. (12) is, by definition, εikεjl∂k∂luij = εij∂ibj. This definition,

together with Eqs. (12) and (13), is the solution of the equilibrium elastic problem that

gives χ(r) as a function distribution of the Burgers vector density b(r) and rotation θ(r)

that still remains to be determined.

Once the solution χ(r) is determined, the energy of the configuration Hint = 1
2

∫
d2ruijσij

can be found by substituting Eq. (9) for the strain, and the definition of the Airy function,

Eq. (11), for the stress. We find,

Hint =
1

2

∫
d2rχ(r)

[
α′∇4 + ∆εikεjl∂k∂lD̂ij

]
χ(r), (14)

Equation (12) cannot be solved explicitly for the Airy function, and hence we cannot

express the energy (14) explicitly as a function of the Burgers vector density, unlike the

isotropic case of ∆ = 0 (in this latter case, the differential equation (12) is solved by using a

Green’s function method, see Nelson in his seminal paper32, leading to Eq. (2) for the energy

of interaction). Furthermore, the energy depends on the rotation θ through the dependence

of the differential operator D̂ij, Eq. (13). Obtaining such a relation is the subject of the

next subsection.

Before proceeding, we note that it is possible to find a closed form of the energy if rotation

is neglected, and one starts from the general form of Hooke’s law for a square lattice, Eq.

(8), written in laboratory frame coordinates (the linear elasticity regime, see, e.g.,40). Since

D̂ij(θ = 0) = [δixδjxεxlεxk + δiyδjyεylεyk] ∂l∂kχ =
[
δixδjx∂

2
y + δiyδjy∂

2
x

]
χ, (15)

Eq. (14) reduces to

Hint =
1

2

∫
d2rχ(r)

[
(α′ + ∆)∇4 − 2∆∂2x∂

2
y

]
χ(r). (16)

After Fourier transformation, substitution of Eq. (12) into Eq. (16) leads to an explicitly

form of the energy in terms of the Burgers vector density

Hint =
1

2

∫
d2q

(2π)2
|iεijqibj|2

(α′ + ∆)q4 − 2∆q2xq
2
y

=
1

2

∫
d2q

(2π)2
(q2δij − qiqj)

(α′ + ∆)q4 − 2∆q2xq
2
y

bi(q)bj(−q). (17)

This extends the isotropic result of ∆ = 0 to the square lattice.

A. Lattice rotation field

We next determine the nonlocal relationship between the local rotation of a coarse grain-

ing cell and the Burgers vector distribution to generalize Eq. (5) to a square lattice. The
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local rotation θ(r), relative to an undistorted reference lattice with θ = 0, is related the

distortion tensor wij. The symmetric and anti symmetric parts of the distortion tensor are

identified as the strain and orientation tensors respectively3

wij = uij + θ(r)εij. (18)

By recalling the definition of the Burgers vector density in terms of the distortion tensor

bk = εij∂jwik, and substituting the decomposition of the distortion tensor, Eq. (18), one has

bk = εij∂j (θεik + uik) = ∂kθ + εij∂juik. (19)

Thus up to a constant, θ is specified by ∂kθ = bk − εij∂juik.

The divergence of second term in the r.h.s. of Eq. (19) can be calculated with the help

of Eqs. (11) and (13),

∂kεij∂juik = α (εij∂j∂i)σll + βεij∂j (∂kσik) + ∆εij∂k∂jD̂ikχ = ∆εij∂k∂jD̂ikχ, (20)

where we have used the anti symmetry of εij and the condition of elastic equilibrium ∂kσik =

0. Thus the divergence of Eq. (19) is given by,

∇2θ = ∂kbk + ∆εij∂k∂jD̂ikχ.

To solve for θ we introduce the Green’s function of the two dimensional Laplacian operator

and find,

θ(r) =
1

2π

∫
|r−r′|>a

dr′ ln

(
|r− r′|
a

)
∂′kBk(θ, r′) = − 1

2π

∫
|r−r′|>a

dr′
rk − r′k
|r− r′|2

Bk[θ, r′], (21)

where

Bk[θ, r′] = bk(r
′) + ∆εij∂

′
jD̂ik(θ(r′))χ(r′), (22)

which reduces to the Burgers vector density of an isotropic system when ∆ = 0.

Equations (12), (21), and (22), now constitute a closed set of equations for the elasto-

statics of a square lattice in terms of θ and b. Equation (21), however, is only an implicit

equation for θ(r). As pointed out by Kröner3, to obtain a relation between b and θ one

must solve the problem of elastic equilibrium everywhere in order to relate the stress σij to

the Burger’s vector density b.
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A simpler form follows if θ is everywhere small so that it can be approximated by a

constant in the right-hand side of Eq. (21). Then

θ(r) = − 1

2π

∫
|r−r′|>a

dr′

|r− r′|2
[(rk − r′k)bk(r′) + ∆(x− x′)(y − y′) (σxx(r

′)− σyy(r′))] , (23)

where a is a short distance cutoff on the order of the lattice spacing and we have dropped

some boundary terms. This reduces to Eq. (5) in the isotropic limit ∆ = 0.

B. Dynamics

We extend next the kinetic equation (4). We decompose the Burgers vector density into

a finite number of slip systems b(r) =
∑

s b
(s)(r)θ̂(s)(r), each defined by its own density

b(s) oriented along the direction θ̂(s)(r). On the square lattice we simply have b(s) = bs and

θ̂(s) = θ̂s, the variables along the locally rotated coordinate system.

Since the Burger’s vector is a pseudo-vector (it is even under a parity transformation,

whereas a vector is odd under parity) the natural Burgers vector flux is a pseudo-tensor

Φi
k, which represents the flux along the k-direction of dislocations along the i-direction. For

simplicity, we limit our analysis here to the case in which the Burgers vector densities are

separately conserved36

∂bi(r)

∂t
= −∂kΦi

k. (24)

Explicitly, the assumption is that dislocations can only be created or destroyed by pair

annihilation and creation on each slip system. This requirement also guarantees that the

energy integral is finite for an infinite system. As stated earlier, we require that the bond

directions are well defined, which implies the absence of free disclinations31.

Thermodynamic forces leading to defect motion arise from δH
δbi(r)

, the change in energy for

a dislocation along slip plane direction i to be placed at r. Therefore its partial derivative

∂k
δH
δbi(r)

represents the local difference in energy for dislocation placement, and is thus the

thermodynamic force. The total energy H is quadratic in bi so that the resulting thermo-

dynamic force will be linear in bi, although nonlocal. Since bi is pseudo-scalar, we find that

the thermodynamic force is a pseudo-scalar. In linear response, forces and fluxes are linearly

related as,

Φi
k(r) = −Di

kj(r) ∂j
δH

δbi(r)
. (25)
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This expression is nonlocal because the thermodynamic force is a nonlocal functional of the

dislocation densities. Of course, this is only the case in the slow temporal scale of dislocation

segment motion, and is a consequence of the assumption that the system is at all times in

elastic equilibrium. We now distinguish glide and climb motion and decompose Di
kj along

the direction θ̂i(r) and transverse to it

Di
kj = Dgθ

i
kθ
i
j +Dc

(
δkj − θikθij

)
, (26)

where Dg is identified as the mobility for glide motion, and Dc for climb. For a square

lattice, we write

θ̂l(r) =

 cos[θ(r) + lπ
2
]

sin[θ(r) + lπ
2
]

 , (27)

where l = 0 defines x′ and l = 1, y′. A similar decomposition of the dislocation mobility

into climb and glide components was given in the study of elastic instabilities of thin films36,

and for the motion of isolated dislocations8,41.

By combining Eqs. (24), (25), and (26) we obtain the phenomenological equation of

motion for the Burgers vector densities,

∂bi(r)

∂t
=
[
∂k(Dg −Dc)θ

i
kθ
i
j∂j +Dc∇2

] δH

δbi(r)
. (28)

This dynamical equation along with Eqs. (12), (14), (21), and (22) completely specify

our anisotropic model on the square lattice. This, and the corresponding expression for a

hexagonal lattice to be given below, are the central results of this paper.

Prior work has not considered lattice rotation effects on dislocation motion. We briefly

show that Eq. (28) reduces to simpler expressions, already in the literature, when rotation is

uniform. This simpler description allows for a more direct comparison with isotropic theories

in which the laboratory coordinate system is the natural choice. We begin by writing

∂tbk = ∂t
∑
i

θ̂ikb
i =

∑
i

θ̂ik∂tb
i, (29)

Then inserting Eq. (28), we find

∂tbk =
∑
i

θ̂ik∂nD
i
nm∂m

δH

δbi
. (30)
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We also have the relation δH
δbi

= θ̂il
δH
δbl

, which follows from the chain rule. Then we can write

the response explicitly in terms of the Burgers vector density alone,

∂tbk =
∑
i

θ̂ikD
i
nmθ̂

i
l

{
∂n∂m

δH

δbl

}
, (31)

which explicitly separates the current originating from the excess energy associated with

dislocations and a mobility coefficient that depends on local orientation. Substitute Eq.

(26) into Eq. (31) and evaluate the sums over the orientation directions∑
i

θikθ
i
l = δkl,

∑
i

θikθ
i
lθ
i
mθ

i
n = hklmn(θ), (32)

where the rank four tensor h is defined in Eq. (10), so that Eq. (31) reduces to

∂tbk = K [(Dg −Dc)hkmnl +Dcδmnδkl] ∂n∂m
δH

δbl
. (33)

Just taking the rotation angle to be zero, the equations of motion reduce to40

∂tbx(q, t) = −
[
Dgq

2
x +Dcq

2
y

] qy [qybx(q)− qxby(q)]

(α′ + ∆)q4 − 2∆q2xq
2
y

∂tby(q, t) = −
[
Dgq

2
y +Dcq

2
x

] −qx [qybx(q)− qxby(q)]

(α′ + ∆)q4 − 2∆q2xq
2
y

.

IV. DISLOCATION MOTION ON A HEXAGONAL LATTICE

The fact that the linear elastic response of a hexagonal lattice is isotropic makes the

evaluation of the elastic energy in Eq. (14) much simpler because any dependence on lattice

orientation vanishes at this order in the strain. On the other hand, on a two dimensional

hexagonal lattice there are three independent slip planes along which individual Burgers

vectors can be oriented. As was the case for the square lattice, the Burgers vector distribution

can be written as b(r) =
∑

s b
(s)(r)θ̂(s)(r) with8

θ̂(s)(r) =

 cos[2πs
3

+ θ(r)]

sin[2πs
3

+ θ(r)]

 s = 0, 1, 2. (34)

Unlike the case of a square lattice, a two dimensional hexagonal lattice has three separate

slip systems, and hence three separate Burgers vector densities. This implies that the two

dimensional Burgers vector density has to be decomposed along three independent projec-

tions, not two. To solve this difficulty, we propose to introduce a new coarse grained field
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(0)

(1)(2)

FIG. 1. An illustration of the two decompositions used (color online). The Burger’s vector is shown

in blue and its projections onto the nearest glide planes are in red. The green vectors represent the

triplet density. The dislocation densities are the sum of the corresponding projection (red) and the

triplet density (green). The case shown is when the dislocation density b(2) vanishes and b(1) does

not receive a projection. θ̂(0) is shown vertical for convenience, but its orientation with respect to

x̂ is given by θ.

that captures dislocation configurations not describable by the Burgers vector density. For

instance, a dislocation triplet within a single coarse graining cell, one in each of the positive

θ̂(s)(r) directions, has zero Burgers vector. These dislocations are considered geometrically

unnecessary since they do not contribute to the elastic energy, but they can be considered

to contribute to the local anisotropic response. We therefore define the triplet density field

t(r) as

b(s) = t+ Proj(s)(b), (35)

with

Proj(s)(b) =

∣∣∣∣θ̂(s)i (
δij −

1√
3
εij

)
bj

∣∣∣∣× sgn
(
θ̂(s) · b

)
Θ

[
‖θ̂(s) · b‖ − 1

2

]
, (36)

being the local projection of the Burgers vector density onto the nearest two directions θ̂(s).

This term can almost be written as a tensor; the sign function arises from the fact that our

14



choice of non orthogonal axes depends on the angle of b, and the step function Θ ensures

that one axis does not receive a projection from b. This can also be written directly in

terms of the absolute angle ω(α) between θ̂(s) and b,

Proj(s)(b) = ‖b‖
∣∣∣∣ 2√

3
cos
(
ω(s) − π

6

)∣∣∣∣× sgn(cosω(s))Θ

[
| cos(ω(s))| − 1

2

]
. (37)

A positive triplet has an equal Burgers vector in each of the positive θ̂(s) directions. Note

that t is odd under rotations about π/3, and hence also under reflections.

While it is simple to write down the Burgers vector density given the Burgers density

components along the slip systems, the inverse problem requires the determination of the

geometrically unnecessary density t. For simplicity, our assumption here is that all of the

geometrically unnecessary dislocation content is in t. Therefore, the decomposition of the

coarse-grained b onto the two nearest lattice directions θ̂(s) is minimal in the following sense:

If b is parallel or anti parallel to one of the slip planes θ̂(s), the lowest energy configuration

is assumed to be the one that only has dislocations pointing along this axis: b(s) = ‖b‖ with

b(r 6=s) = 0. Otherwise, we project b onto the two (of six) closest non-orthogonal directions

along which a Burgers vector can point. Then the remaining dislocation densities must

form a zero-vector configuration. This choice of decomposition is motivated because it is

the one that minimizes a local defect energy associated with a core energy that depends on

the number of dislocations rather than the magnitude of the Burgers vector.

We consider only three separate signed densities, and opposite pairs within the same

coarse graining cell are assumed to annihilate; the only remaining coarse-grained configura-

tions of geometrically unnecessary defects are dislocation triplets. We could, on the other

hand, consider six separate dislocation densities on the three slip systems. This may be

a more accurate description for large coarse graining cells. Here we may consider smaller

coarse graining cells so that opposite dislocations in the same cell would be unstable to

annihilation energetically. However, this ignores the fact that opposite dislocations on dif-

ferent glide planes can form a stable dislocation pattern that has no vector component and

corresponds to a vacancy defect. We do not consider this complication here and only add

more variables as are necessary to introduce a dependence of the response on the local bond

orientation.

In summary, we choose the three densities b(s)(r) to be our primitive variables. The lattice

orientation field θ(r) and the Burgers vector density b(r) can be obtained by simultaneously
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solving Eqs. (1), (5), and (34). From them the triplet density t(r) can be obtained. We

note that the three Burgers vector densities and the triplet dislocation density at every

point in space contain all of the information of the defected lattice configuration that we are

considering.

The equilibrium linear elasticity of the hexagonal system is simple: decompositions of

rank two and rank four tensors are the same as for isotropic systems. We can therefore

use known results for isotropic systems: Given the two dimensional Young modulus K, the

elastic energy of a configuration of defects is well described by the long ranged transverse

interaction of Eq. (2)33. The energy depends only on the Burgers vector density r, and not

on the make-up of that defect density in terms of dislocations densities b(s)(r) in the three

different slip directions.

In terms of the core energy, we proceed by analogy with Eq. (3), and introduce a local

contribution to the energy from defect cores of the form

Hloc =
Ec
2

∫
dr
∑
s

b(s)(r)b(s)(r). (38)

The energy Ec is the approximate local energy cost due to lattice distortion to have a

dislocation pair along a given direction. Note that this expression allows both geometrically

necessary and unnecessary dislocations. The above form is different than Eq. (3), although

the two definitions coincide on the square lattice. Equation (38) predicts that the core

energy of a dislocation triplet is 3
2
Ec. The ratio of 3/2 between triplets and pairs is in good

agreement with experiments on two-dimensional colloids16 where the energies of dislocation

pairs and triplets were measured for various configurations, each of which create a vacancy

defect.

It is our expectation, however, that as the coarse graining cell size increases, the core

energy Eq. (38) would simply reduce to the core energy in Eq. (3). In fact, the local driving

force arising from the core energy satisfies the relation∑
s

θ̂(s)(r)
δHloc

δb(s)(r)
∝ b(r), (39)

in agreement with the result that follows from the standard form of the core energy in Eq.

(2). Hence the degree of anisotropy in the core energy of a hexagonal lattice is expected be

a function of the coarse graining size, with the limiting behavior being that of an isotropic

system.
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A. Dynamics

The equation of conservation of Burgers vector is still Eq. (24), but the linear response

assumption relating forces and fluxes is given by

Φ
(s)
k (r) = −2

3
D

(s)
kj (r) ∂j

δH

δb(s)(r)
. (40)

The constant factor of 2/3 corrects for the fact that the sum of the projections onto three

linearly dependent axes over represents a vector by the factor γ in
∑

s θ
(s)
k θ

(s)
l = γδkl, which

is 3/2 for the hexagonal lattice (Eq. (45)).

The energy in terms of the Burgers vector densities is the same as in an isotropic system.

Inserting Eq. (1) into Eq. (2), we have

Hint = −K
2

∫
drdr′

∑
s,r

[
θ̂(s)(r) · θ̂(r)(r′) ln

(ρ
a

)
−
(
θ̂(s)(r) · ρ̂

)(
θ̂(r)(r′) · ρ̂

)]
b(s)(r)b(r)(r′),

(41)

so that the functional derivatives are

δHint

δb(s)(r)
= −K

∫
dr′
∑
r

[
θ̂(s)(r) · θ̂(r)(r′) ln

(ρ
a

)
−
(
θ̂(s)(r) · ρ̂

)(
θ̂(r)(r′) · ρ̂

)]
b(r)(r′) (42)

or,
δHint

δb(s)(r)
= −K

∫
dr′

[
θ
(s)
k (r) ln

(ρ
a

)
−
(
θ̂(s)(r) · ρ̂

)
ρk

]
bk(r

′). (43)

We now assume that the mobility in Eq. (40) can be decomposed along the local slip planes

into glide and climb components as in Eq. (26). The resulting equation of motion for a

hexagonal lattice is also

∂b(s)(r)

∂t
=

2

3

[
(Dg −Dc)∂k

(
θ
(s)
k (r)θ

(s)
l (r)

)
∂l +Dc∇2

] δHint

δb(s)(r)
. (44)

The orientations θ̂(s) follow from Eq. (5) and (34).

If we consider again the limiting case in which the orientation is taken to be uniform,

Hint and the kinetic equation only depend on the Burgers vector density not on the separate

components along the slip systems. This can be shown by multiplying Eq. (44) by θ
(s)
k and

summing over s. For rank two and four tensors the corresponding sums are isotropic tensors

due to the hexagonal lattice symmetry,∑
s

θ
(s)
k θ

(s)
l θ(s)m θ(s)n =

3

8
[δklδmn + δknδlm + δkmδln]

∑
s

θ
(s)
k θ

(s)
l =

3

2
δkl. (45)
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We find,
∂bk(r)

∂t
= Dklmn∂l∂m

δHint

δbn(r)
, (46)

with

Dklmn =
1

4

[
(Dg + 3Dc)δlmδkn + (Dg −Dc)2δk(lδm)n

]
. (47)

This expression reduces to the expected isotropic limit of Dg = Dc.

Before addressing the contribution to dislocation motion in a hexagonal lattice that arises

from Hloc , we compare our results, Eqs. (46) and (47), with prior coarse grained treatments

of the form (4),11,13,37. Comparison of Eqs. (4) and (46) leads to the identification,

Bjksn = εjlεsmDklmn (48)

where we have made repeated use of the identity εijεjn = −δin in two dimensions. Explicit

substitution of Eq. (47) leads to,

Bjksn =
1

4

[
(3Dg +Dc)δjsδkn + (Dc −Dg)2δk(sδj)n

]
=

1

2
(Dg +Dc)

(
δj(sδn)k −

1

2
δjkδsn

)
+Dgδj[sδn]k +Dc

1

2
δjkδsn. (49)

where we have separated the tensor B into a symmetric but traceless part, an anti symmetric

part, and the trace part with respect to the first two indices (equivalently the last two).

This allows us to make a connection with the properties of the dislocation density current

Jjk ∝ Bjksn
11 as already argued by Limkumnerd based on volume change arguments37: the

trace of the current is proportional to Dc so that the dislocation current is indeed traceless

if there is no climb.

Equation (49) is symmetric under the exchange of first and second pairs of indices

((j, k) ↔ (s, n)) which is consistent with Onsager’s reciprocity relation because the rate

of free energy change is

dF

dt
= −

∫
d3r

δH

δbj
Bmjstεlmεsb∂l∂b

δH

δbt
.

However, we obtain two additional allowed terms in Bmjst compared to Ref.11. The latter

only give the traceless symmetric contribution in Eq. (49). In addition, and unlike prior

work, our expression for the mobility does explicitly distinguish between climb and glide

motion.

We turn next to the calculation of the contribution to the motion of the Burgers vector

density arising from the local part of the energy. Replace Hint by Hloc given in Eq. (38)
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in Eq. (44). The isotropic term in Eq. (44), proportional to Dc, leads to diffusion of b(r)

when the equation is multiplied by θ̂(α) and summed over α. However, the term involving

the longitudinal derivative is quite nontrivial because it involves products of three bond unit

vectors. When such a product is summed over bonds α the resulting rank three tensor is

not independent of the bond orientation θ(r) although it does have hexagonal symmetry

with respect to the bond angle. Neglecting terms involving time derivatives of the slip line

orientations, we find the core contribution to the evolution equation to be,(
∂bk(r)

∂t

)
c

≈ 2

3
(Dg −Dc)

∑
α

θ
(α)
k θ

(α)
l θ(α)m ∂l∂m

δHc

δb(α)(r)
+

2

3
Dc∇2bk. (50)

Given Eqs. (38) and (35) we find

δHc

δb(α)(r)
= Ecb

(α)(r) = Ec

(
t+ Proj(α)(b)

)
. (51)

We define the third rank tensor

gklm(θ) =
4

3

∑
α

θ
(α)
k θ

(α)
l θ(α)m , (52)

so that

gxxx = cos 3θ gxxy = sin 3θ

gyyy = − sin 3θ gyyx = − cos 3θ. (53)

Here again the tensor does not depend on the order of its indices since it comes from a tensor

product over a single vector. Then Eq. (50) reduces to,(
∂bk(r)

∂t

)
c

=
2

3
Dc∇2bk +

1

2
Ec(Dg −Dc)gklm(θ)∂l∂mt(r) + . . . (54)

We have not explicitly written here the term involving projections of b since we just want

to point out that there exists a dependence of the motion of the Burgers vector density on

geometrically unnecessary defects through the triplet density t. Although expression (54) is

largely formal, it does show a kinetic equation that explicitly depends on the rotation field

θ through a term that includes the density of unnecessary dislocations.

We reiterate that the exact projections of the Burgers vector along slip systems, and the

concomitant triplet density, will depend on the size of the coarse graining cell. As its size

becomes larger, the triplet density will decrease as the geometrically unnecessary dislocations

are averaged out. As a consequence, the contribution from Eq. (54) to the motion of the
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Burgers vector will become smaller as the coarse graining cell becomes larger. Eventually,

at sufficiently long spatial scales, the evolution on the hexagonal lattice should become the

same as in an isotropic system.

In summary, although we cannot provide complete explicit equations for the model that

we have introduced except within the approximations given, the implicit relations between

magnitudes can be obtained via a numerical implementation. In it, given the Burgers vector

density distribution as initial condition, Eq. (44) needs to be iterated in time, together with

Eq. (54) and the related equation that results from the local projection of b. Equations

(5) and (34) allow the determination of the orientations θ̂(s)(r) from the densities. From

the densities and the orientations the Burgers vector follows. The interaction energy Hint

can now be evaluated. Equation (35) is then used to determine the triplet density, and the

system of equations evolved in time.

V. TWO EDGE DISLOCATIONS

The coarse grained theory presented has a simpler representation when the defects are

assumed to be discrete and isolated, although the assumptions of the theory fail in this limit.

For the sake of illustration only, we consider in this section the motion of two point edge

dislocations and also assume that both defect interaction energies and lattice rotation can

be approximated by the results for an isotropic solid.

Consider as initial condition two edge dislocations at r = r1 and r = r2 of Burgers vectors

b x̂ and −b x̂ respectively on an undistorted, infinite, two dimensional space. In order to

avoid the complication of unnecessary dislocations, we consider the case of only two slip

planes as would be appropriate for a square lattice. As was the case in Sec. III, superindices

correspond to magnitudes expressed in the rotated lattice.

Insertion of these two dislocations in the otherwise undistorted lattice leads to rotation.

For the purposes of the present example, we estimate the lattice rotation by assuming that

the medium is isotropic instead, Eq. (5)38,

θ(r) = − 1

2π

[
b(r− r1)θ̂

0(r1)

|r− r1|2
− b(r− r2)θ̂

0(r2)

|r− r2|2

]
. (55)

The initial condition (55) assumes that the Burgers vectors are directed along one slip plane

at the location of the defects. As shown following Eq. (1), the directions of the slip planes
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of this notional square lattice are

θ̂0(r) = (cos θ(r), sin θ(r)) θ̂1(r) = (cos θ(r + π/2), sin θ(r + π/2)) (56)

The rotation field (55) becomes singular at the defect location. This singularity can be

eliminated, for example, by noting that near the defect the smallest possible distance is on

the order of the lattice spacing, itself on the order of the Burgers vector. Other models of

defect structures42 lead to zero rotation near the defect core. We adopt the latter and by

combining Eqs. (55) and (56), we find the following implicit relations for the lattice rotation,

θ(r1) =
b

2π

(r1 − r2) · (cos θ(r2), sin θ(r2))

|r1 − r2|2

θ(r2) =
b

2π

(r1 − r2) · (cos θ(r1), sin θ(r1))

|r1 − r2|2
(57)

The location of the defects and the two rotations of Eq. (57) constitute the initial

conditions of the problem.

A. Dynamics

Defect motion on a square lattice is governed by Eq. (28). The initial discrete Burgers

vector distribution can be written as

b = b δ(r− r1(t)) θ̂
0(r1)− b δ(r− r2(t)) θ̂

0(r2), (58)

where δ(r) is the two dimensional Dirac delta distribution. The initial Burgers vector of

both dislocations is taken along θ̂0, and given the assumed separate conservation of Burgers

vector components along each slip plane, b will remain along θ̂0 for all times.

Given the relation ∂tδ(r− r(t)) = −∂j
(
δ(r− r(t))

drj
dt

)
, the conservation law of Burgers

vector, Eq. (24) can be written as,

b

[
δ(r− r1(t))

d(r1)k
dt

− δ(r− r2(t))
d(r2)k
dt

]
= −

(
Dgθ

0
kθ

0
j +Dc(δkj − θ0kθ0j )

)
∂j

δH

δb1(r)
, (59)

where we have also used the linear constitutive assumption of Eq. (25), and the relation for

the anisotropic diffusivity of Eq. (26).

In order to compute the thermodynamic driving force in the right hand side of Eq. (59)

we write Eq. (41) as

H = −1

2

∫
drdr′Vst(r, r

′)bs(r)bt(r′). (60)
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Then, given the discrete Burgers vector distribution of Eq. (58), we find

∂j
δH

δb1(r)
= −b [∂jV (r, r1(t))− ∂jV (r, r2(t))] , (61)

also having defined V = V11. Finally, the kinetic equation for the location of dislocation one

is
d(r1)k
dt

=
(
Dgθ

0
k(r1)θ

0
j (r1) +Dc(δkj − θ0k(r1)θ0j (r1))

)
(−∂jV (r, r2))r=r1

, (62)

and the analogous equation for the second dislocation. This equation has the form d(r1)k
dt

=

LkjFj according to which the defect velocity equals a mobility times a thermodynamic force.

The mobility in this example depends explicitly on lattice variables: the orientation of the

slip systems at the defect location.

The thermodynamic force can now be evaluated explicitly from the interaction energy

(41) if we also approximate it by that of an isotropic medium. In Fourier space, it is given

by

H =
K

2

∫
d2q

(2π)2
1

q2
(δij − q̂iq̂j) bi(q)bj(−q). (63)

For example, for a single edge dislocation at the origin, bj(r) = bδ(x1)δ(x2)δj1, the energy

of the configuration V1 is

V1 =
Kb2

2

∫
d2q

(2π)2
q22
q4
. (64)

If we now consider instead two edge dislocations as in Eq. (58) with ρ = r1 − r2, their

interaction energy (excluding self energies) is

V (ρ) = −Kb2
∫

d2q

(2π)2
q22e

iq·ρ

q4
. (65)

This integral can be evaluated explicitly. Let

J(ρ) =

∫
dq
eiq·ρ

q4
, (66)

then V (ρ) = (Kb2/(2π)2)(∂2J(ρ)/∂ρ22). The two dimensional Green’s function of the bi-

harmonic operator ∇4G(r − r′) = −δ(r − r′) is G(r − r′) = − |r−r
′|

8π
(ln |r− r′| − 1). Then

J(ρ) = (π/4)|ρ|2 (ln |ρ|2 − 2) and,

V (ρ) = − Kb2

(2π)2
π

2

[
1− 2ρ22

ρ2
− ln ρ2

]
. (67)

This leads to the thermodynamic forces,

− ∂V

∂ρ1
= − Kb2

(2π)2
1

ρ
cosφ cos 2φ, − ∂V

∂ρ2
= − Kb2

(2π)2
1

ρ
sinφ(1 + 2 cos2 φ), (68)
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where φ is the angle between the line joining the two dislocations and the x axis. The

functional dependence in Eq. (68) agrees with the classical result for the interaction force

between two straight edge dislocations in an isotropic medium (noting, e.g., that sinφ(1 +

2 cos2 φ) = y(3x2 + y2)/(x2 + y2)3/2)43. The coefficients differ in the planar strain considered

there because the stress in the direction along the dislocation line in three dimensions is not

zero, but rather σ33 = ν(σ11 + σ22), with ν the Poisson ratio. This component of the stress

tensor does not appear in the purely two dimensional calculation addressed here.

Given an initial configuration comprising two edge dislocations, Eqs. (68) would give the

force acting on each one that is required in the right hand side of Eq. (62). The anisotropic

mobility depends of lattice rotation at the location of each defect, which is given by Eqs.

(57). Equation (62) then gives the defect velocities.

We next evaluate the system of equations numerically. Consider that the two opposite

edge dislocations lie along the line y = 0 separated by a distance 10b. For convenience, we

work in reduced units such that distances are expressed in units of b and speed in units

of DgKb. In a first scenario, we suppose that only glide is possible (i.e., Dc/Dg = 0) and

examine the impact of lattice rotation on the motion of the dislocations. Figure 2a shows the

dependence of dislocation position on the y = 0 line, x (t), on time, t, for each dislocation.

As is evident from the figure, in the absence of lattice rotations, the dislocations move with

increasing speed until annihilation. Figure 2b shows the dislocation position normal to this

plane, y (t). In the absence of lattice rotations, there is no motion perpendicular to the

plane, as expected.

If lattice rotations are incorporated in the model, qualitatively new behavior is observed.

Figures 2a and 2b also show that the motion of two dislocations is similar to the case of

no rotation for large separations, but the two defects come to rest at a fixed separation.

The local rotation of the lattice has evidently resulted in motion in the y-direction leading

to the formation of a stable, dipolar configuration oriented at somewhat less than 45◦ from

the x-axis. (One would expect a 45◦-dipole for two opposite edge dislocations moving on

parallel slip planes in the absence of lattice rotations.)

In the second scenario, we assess the effect of defect climb on the trajectory of the

dislocations. Figures 3 show the positions, x (t), and y (t), respectively, for Dc/Dg = 0.02

with lattice rotations for the two dislocations. The inclusion of climb is seen to lead to an

instability in the dipolar configuration resulting in annihilation, as might be expected from
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FIG. 2. a.) The dislocation position on the y = 0 line, x (t), as a function of time, t, for two

opposite edge dislocations that are initially separated by a distance of 10, in units of b. For each

case there is no climb mobility. The blue and red curves are the positions in the absence of lattice

rotations, while the gold and green curves pertain to a system with lattice rotations. Note that,

in the latter case, motion is arrested after some time. b.) The corresponding dislocation position,

y (t), as a function of time, t, for the two dislocations.

the functional form of the force in the y-direction given in Eqs. (68).

This illustrative example, while highlighting the main elements and dependencies of the

model described in Sections III and IV, has several shortcomings. First and foremost, the

theory as presented is expected to apply to a coarse grained defect distribution but not

to isolated defects. Thus the overdamped nature of Eq. (25) can only be assumed at the

mesoscale, not at the scale of individual dislocations. Second, and for the purpose of the
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FIG. 3. a.) The dislocation position, x (t), as a function of time, t, for the case in which both

lattice rotations and climb are operative. In this case, Dc/Dg = 0.02. The dipolar configuration

seen in the previous figure is unstable and annihilation results. b.) The corresponding dislocation

position, y (t), as a function of time, t.

example, we have used isotropic results to compute interaction defect energies and lattice

rotation, while retaining motion along two privileged slip axes. The results of Secs. III and

IV are free of these limitations, but are considerably more involved, necessitating a fully

numerical approach for their analysis.

We conclude by mentioning that we expect that the methods described above provide a

first step into incorporating kinetic lattice effects into continuum (coarse-grained) descrip-

tions of defect motion. We have done so by allowing directional defect mobilities along

distinguished slip systems in weakly distorted systems. The case of a square lattice is some-

what simpler as the number of slip systems equals the dimensionality of the lattice. For
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a hexagonal lattice, on the other hand, linear elasticity is that of an isotropic system -a

simplification- whereas the coarse-grained model requires the introduction of geometrically

unnecessary dislocations -a complication. In this latetr case, and for large coarse-graining

volumes, a fully isotropic theory is expected albeit with separate climb and glide diffusivities.

Unfortunately, the governing equations which we have obtained are quite complex and need

to be evaluated numerically. Such a numerical solution could be compared to direct coarse-

graining of Molecular Dynamics simulations of two-dimensional lattices. Alternatively, our

results can be verified against numerical solutions of Phase Field Crystal models which hold

at the same level of coarse graining as our theory. Finally, for the simple example of two

point edge dislocations that we have described in Sec. V, we have shown dynamical arrest

in dislocation motion that arises from mismatches in the local slip planes as the defects

approach each other. Such an effect is absent in a purely continuum theory.
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