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We study the nonequilibrium dynamics of the linear to zigzag structural phase transition exhibited
by an ion chain confined in a trap with periodic boundary conditions. The transition is driven by
reducing the transverse confinement at a finite quench rate, which can be accurately controlled. This
results in the formation of zigzag domains oriented along different transverse planes. The twists
between different domains can be stabilized by the topology of the trap and under laser cooling the
system has a chance to relax to a helical chain with nonzero winding number. Molecular dynamics
simulations are used to obtain a large sample of possible trajectories for different quench rates. The
scaling of the average winding number with different quench rates is compared to the prediction of
the Kibble-Zurek theory, and a good quantitative agreement is found.

I. INTRODUCTION

Plasmas of singly charged ions can be spatially confined
by Paul or Penning traps [1]. When they are laser cooled
to sufficiently low temperatures they self-crystallize into
Coulomb crystals [2], whose structure depends on the
trapping parameters. The study of properties of various
structural phases of Coulomb crystals is of fundamental
importance as Coulomb crystals are related to diverse
physical systems, for example, electron Wigner crystals
in quantum wires [3] and on the surface of liquid He-
lium [4], dusty plasmas [5], microfluid crystals [6] and
colloids [7]. The investigation of the structural order of
ion Coulomb crystal has been a subject of extensive nu-
merical [8] and experimental [9, 10] efforts. Apart from
the equilibrium studies of the rich structural phase dia-
gram, there is an increasing interest in investigating the
nonlinear and nonequilibrium dynamical phenomena by
exploiting the various ion crystal structural transitions
in a precisely controlled experimental setting. Some ex-
amples of the studies of the nonlinear dynamics of ion
crystals include the simulation of linear and nonlinear
Klein-Gordon fields on a lattice [11], the study of nucle-
ation of topological defects [12–14], dynamics of discrete
solitons [15, 16], dry friction [17–20], as as well as propos-
als to realize models related to energy transport [18, 21]
and synchronization [22]. Even though all of the above
experiments and proposals are classical, the high degree
of isolation of the ion crystals from the surrounding en-
vironment implies also the possibility to enter the regime
where quantum mechanical effects must be accounted for
to describe critical phenomena [11, 23–25] and where the
quantum motion can be utilized for quantum information
processing using trapped ions [26, 27]. This paper focuses
on ions but with suitable modifications the ideas can be
transported to other systems composed of mutually re-
pelling particles in global confining potentials, for exam-

ple, ultracold atomic dipoles in quasi two-dimensional po-
tentials [28].

In this paper we consider the non-equilibrium statis-
tical mechanics of a chain of ions, following a quench in
the transverse potential frequency that induces a linear to
zigzag structural phase transition. The finite rate quench
results in the creation of structural defects in the zigzag
chain, referred to as kinks in a planar two dimensional
system. The scaling of the average number of kinks with
the quench rate is predicted by the Kibble-Zurek the-
ory (KZ) [29, 31]. The analysis in two dimensions has
been previously performed by some of us [12, 30] and
subsequently the creation of kinks was studied in several
non-equilibrium ion trap experiments [13, 14], see [31] for
a review. Presently, we consider three dimensional crys-
tals in a trap which is invariant under rotations about
the trap axis. In such systems finite rate quench in the
transverse potential results in twists in a zigzag, which
under periodic boundary conditions can stabilize into he-
lices with non-zero winding numbers. The main objective
of the paper is to quantify the scaling relation between
the winding number and the quench rate using KZ the-
ory and to verify the prediction using molecular dynamics
simulations. We also perform a finite size scaling analy-
sis, extending the previous results on KZ scaling in two
dimensional planar crystals [12, 30].

The paper is organized as follows. Section II introduces
the ion crystal system and reviews the Ginzburg-Landau
theory of the structural linear to zigzag phase transition.
In Section III the scaling of defects with quench rate is
derived using KZ and finite size scaling theory. Section
IV describes the simulation method. In Section V the
KZ scaling law obtained using the numerical simulations
is compared to the theoretical prediction. Finally the
conclusions of the paper are drawn.
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II. ION CRYSTALS AND GINZBURG-LANDAU

MODEL

Kibble-Zurek scaling laws connect equilibrium proper-
ties with the response of a system to the slow quench of
one of its control parameter. Thus, in order to derive the
scaling laws for the linear to zigzag phase transition, the
microscopic theory must first be connected to the coarse-
grained Ginzburg-Landau theory. This connection was
established analytically in [32] and this section provides
an overview of the theory.

Charged particles are trapped by either using time
varying electric fields (Paul traps) or a combination of
electric and magnetic fields (Penning traps). Coulomb
crystals in such traps are regular periodic solutions to the
equations of motion. A common modelling approxima-
tion used in the study of Coulomb crystals is the pondero-
motive or pseudopotential theory (PPT), which replaces
the time-varying trap potential with a time-independent
harmonic potential [1]. For ions in a Paul trap PPT
captures the secular motion of the ions but neglect the
rapid micromotion. In the current paper, we will always
use PPT, since it facilitates the derivation of Ginzburg-
Landau theory and the numerical simulations. PPT is a
good approximation for the purpose of studying the lin-
ear to zigzag phase transition, since it correctly predicts
the equilibrium positions of the ions and the vibrational
spectrum in the linear chain configuration [33, 34]. The
Ginzburg-Landau theory for the linear to zigzag phase
transition, which is crucial for the subsequent analysis,
relies only on the normal modes and frequencies of the
linear chain in the vicinity of the critical point of the
structural phase transition.

Assuming PPT, the potential energy of the system con-
sisting of N ions is given by

V =
1

2
mω2

r

N
∑

j=1

(

x2
j + y2j

)

+Q2
N
∑

i<j

1

|ri − rj |
, (1)

where rj = (xj , yj, zj) are the coordinates of the jth ion,
Q2 ≡ e2/4πǫ0, e is the charge of the ions, ǫ0 is the vac-
uum permittivity, ωr is the radial secular frequency, m
is the mass of the ions, x and y denote radial directions
and z denotes the axial direction. Above a certain criti-
cal value of ωr the lowest energy configuration is a single
row of particles along the z-axis, which in the thermody-
namic limit is evenly spaced. This limit corresponds to
decreasing axial trap frequency as N increases, so that
the interpaticle distance at the centre of the trap is kept
constant [35]. In this limit, the system is translationally
invariant and thus homogeneous - the inter-ion spacing
is a constant a. In most ion trap experiments the axial
confinement is achieved using a weak harmonic potential
in the z-direction and the chain is finite. Crystals in such
harmonic traps are inhomogeneous with a varying along
the chain. Here, we will be dealing solely with the homo-
geneous crystals i.e. crystals in thermodynamic limit or

with periodic boundary conditions. Such homogeneous
systems could be realized in the laboratory in ring traps
[36, 37] and octupole traps [38–40].

Ginzburg-Landau (GL) potential is derived by Taylor
expanding the potential (1) in small displacement around
the equilibrium positions of the ions in the linear chain
configuration. This is performed by keeping up to fourth
order terms in the radial displacements φ [30, 32], which is
a complex order parameter that is related to the original
degrees of freedom by the equation

φ(ka) = (−1)k (xk + iyk) . (2)

where xk and yk are the radial coordinates of the kth ion
and i =

√
−1. The field φ is the transverse displacement

of the ions from the axis, but with the reversed sign for
every odd ion. The resulting Taylor expansion of the
potential reads

V =
1

2

m

a

∫

dz
[

δ|φ|2 + h2|∂zφ|2 + g|φ|4
]

, (3)

where we assumed that |φ((k + 1)a)− φ(ka)| ≪ a, while
h = ω0a

√
log2, g = (93ζ(5)/32)ω2

0/a
2. Parameter δ is

the control field and is given by

δ = ω2
r − ω(c)2

r , (4)

where ω
(c)
r =

√

7ζ(3)/2ω0 and ω0 =
√

e2/4πǫ0ma3.
The GL potential (3) arises naturally in physical sys-

tems where the order parameter has rotational symmetry.
For example near the critical point, symmetry breaking
in Josephson tunnel junctions [41, 42] as well as Bose-
Einstein condensates [43] (within a Gross-Pitaevskii de-
scription) have the same dimensionality and symmetry
properties as the linear to zigzag transition in ion traps.

The phase transition exhibited by model (3) is a clas-
sical second order symmetry breaking phase transition.
When δ > 0 the system is in the symmetric state where
the lowest energy configuration is φ̄ = 0 i.e. a linear
chain is stable. When δ < 0 the system is in the symme-
try broken state where the lowest energy configuration is
φ̄ = eiθ

√

|δ|/2g with θ ∈ [0, 2π]. This corresponds to a
zigzag configuration at an angle θ to a chosen reference
plane. The critical point of the phase transition is δ = 0

or ωr = ω
(c)
r . Figure 1a) illustrates the functional form

of the ground state potential energy, V (φ̄), for δ > 0
(single well potential) and for δ < 0 (Mexican hat po-
tential). Model (3) allows for phase winding solutions -
these are stable configurations where the phase θ varies
along the crystal. With periodic boundary conditions the
total phase must be equal to 2πW , where W is an integer
known as the winding number

W =
1

2π

∫

∂zθ(z)dz. (5)
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FIG. 1: a) The potential energy of the mean field configuration φ̄ of the ion chain in the i) three dimensional system and
symmetric radial potential and ii) in two the two dimensional system. The potential are shown for cases δ > 0 and δ < 0; the
transition from single well to a double well or Mexican hat potential occurs at δ = 0. b) Examples of several stable zigzag
chain configurations produced as a result of a quench from a linear to zigzag phase in i) three dimensional system and ii) two
dimensional system. Helical configurations of winding numbers 0, 1 and 2 are shown and two dimensional zigzag configurations
with 1 and 3 kinks are shown. All of the configurations were found by quenching ion chains across the structural transition
using molecular dynamics simulations.

Examples of possible stable configurations with wind-
ing numbers of 0 (ground state), 1 and 2 are shown in
figure 1. In this paper, configurations of non-zero wind-
ing number are referred to as helical structures. One
should emphasize that these twisted zigzag structures are
different from helical crystal phases that were predicted
numerically [44] and observed experimentally [37]. One
enters the helical structural phase by reducing the ra-
dial confining frequency below a critical value at which
the zigzag crystal becomes unstable. Topological helices
that are subject of the present paper have not yet been
observed in experiments.

The strength of confinement in the y and x directions
may in general be unequal, in which case the trap is ra-
dially asymmetric. In strongly asymmetric traps all of
the ions in the crystal lie in one plane. For two dimen-
sional planar crystals equation (3) holds, except now the
order parameter φ is real, since all coordinates in one of
the transverse directions are zero. In two dimensions, for
δ > 0 the ground state is φ̄ = 0, the system is in a linear
phase and the potential is a single well (figure 1 b)). For

δ < 0 the ground state of the system is φ = eiθ̄
√

|δ|/2g
with θ̄ = 0 or θ̄ = π, the ground state is a zigzag chain
and the potential is of the form of a double well (fig-
ure 1b)). In the symmetry broken phase (δ < 0), the
system supports stable kink solutions - solutions where
the field interpolates between the two possible ground

state values +
√

|δ|/2g and −
√

|δ|/2g. The number of
kinks in the system is defined as the number of times φ
crosses the z-axis. Figure 1b)ii) shows examples of one
and three kinks in chains where particles experience full
Coulomb interactions. This type of structural defects is
often referred to as Z2 kinks or solitons, since they arise
as a result of phase transitions that break reflectional Z2

symmetry. Kinks in two dimensional Coulomb crystals
were studied theoretically and experimentally as discrete
soliton model systems [16, 37, 45], as possible qubit can-
didates for quantum information processing [27] and in
the context of KZ mechanism [12–14, 30].

III. NON-EQUILIBRIUM DYNAMICS AND

SCALING LAWS

Near the critical point, in the presence of laser cooling
the quench dynamics can be modeled by the time depen-
dent Ginzburg-Landau equation [30]

∂2
ttφ+ Γ∂tφ+ δφ+ h2∂2

zzφ+ g|φ|2φ = θ(z, t), (6)

where ∂2
ttφ is the inertial term, Γ∂tφ is the friction term

and θ(z, t) is the stochastic terms. Equation of motion for
the complex conjugate field φ∗ is analogous to equation
(6). The stochastic force satisfies the following statistical
relationships
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〈θ(z, t)〉 = 0 (7)

〈θα(z, t)θβ(z′, t′)〉 = 2ΓkBTδαβδ(z − z′)δ(t− t′). (8)

where 〈...〉 denotes the ensemble average. The Langevin
dynamics given by (6)-(8) simulates the system in contact
with the thermal bath at temperature T. In ion traps the
friction and stochastic terms arise because of the inter-
actions between the ions and the Doppler cooling laser
beam.

Suppose that the radial frequency ωr is externally var-
ied such as to induce a linear quench in δ at a rate pro-
portional to v

δ(t) = −δ0vt sign(t), (9)

where t ∈ [−t0, tf ], t0 > 0 and tf > 0. The quench rate v
is made dimensionless by taking v = 1/(τQω0), where τQ
is the quench time and ω0 =

√

e2/4πǫ0ma3. The value
of t0 is taken to be large enough so that the system is far
from the critical point and the correlation length is of the
order of the microscopic length scale a, i.e., there should
be no long range correlations.

The finite rate quench drives the system out of equilib-
rium and as a result there is a finite probability that at
the end of the quench the system will contain a number
of stable defects. Qualitatively, it is expected that the
slower the quench the less defects will form. In the limit
of infinitely slow quenches the dynamics is isothermal i.e.
the system maintains constant temperature during the
whole quench protocol. In this case, the final state always
belongs to the lowest energy ground state manifold. At fi-
nite quench rates, a system can undergo phase transition
faster than the time it takes for phonons (information)
to propagate across the whole system. Causally discon-
nected regions select the ground state independently and
this lack of coordination results in topological defects.
Faster quenches result in more causally disconnected re-
gions and hence more topological defects.

The quantitative scaling law relating the number of
defects and the quench rate is established by KZ theory
[29, 46, 47]. KZ theory connects the important length
and time scale in the system during the non-equilibrium
quench to the characteristic quench time 1/v. This time
and length scale are often referred to as “freeze-out time”

t̂L and “freeze-out correlation length” ξ̂L, where L refers
to the size of the system. The spatial characteristics of
the system such as the density of defects are then related
to the “freeze-out correlation length” and hence v. Al-
though in underdamped systems there is, strictly speak-
ing, no relaxation, in a Ginzburg-Landau model one can

still identify scaling relation for both ξ̂∞ and t̂∞ as a
function of v [30, 48–50]. We argue how one can also
obtain this scaling by directly rescaling the length and
time such that the equations of motion become indepen-
dent of v, thereby identifying the natural length and time
scale in the dynamics [51]. If we neglect the non-linear

interaction term, which is small near the critical point,
and the forces due to laser cooling (for the underdamped
dynamics) the equation of motion reads

∂2φ

∂t2
− δ0vt sign(t)φ + h2 ∂

2φ

∂z2
= 0, (10)

where the system is taken to be infinite i.e. z ∈ (−∞,∞).
Consider a linear rescaling of z and t according to the

prescription

Z = z/ξ̂∞ , (11)

T = t/t̂∞ , (12)

where ξ̂∞ and t̂∞ are the sought scaling factors. Substi-
tuting (11) and (12) in (10) gives

∂2φ

∂T 2
− vδ0t̂

3
∞
T sign(T )φ+ h2 t̂

2
∞

ξ̂2
∞

∂2φ

∂Z2
= 0. (13)

The equation (10) becomes independent of v with the

following choice of ξ̂ and t̂

ξ̂∞ ∼ v−1/3 (14)

t̂∞ ∼ v−1/3, (15)

The rescaling of the spatial and temporal variables in the
quench equation (10) according to (11)-(12) brings the
equation into v-independent and hence universal form.
The important length and time scale during the quench

are, therefore, ξ̂∞ ∼ v−1/3 and t̂∞ ∼ v−1/3, which agree
with the result reported in Refs. [30, 48–50]..

Finite systems with periodic boundary conditions ac-
curately model infinite systems in thermodynamic limit
as long as the correlation length is significantly smaller

than the size of the system. Thus we expect that ξ̂L in fi-

nite systems is approximately equal to ξ̂∞ for some range
of quench rates, but at very slow quenches the correlation
length may become large enough to be comparable to the
system size L and the boundary effects would modify the
KZ prediction. We now develop the finite size KZ scaling
theory for linear to zigzag structural transition following
the treatment presented in [52] for non-equilibrium quan-
tum transition from paramagnetic to antiferromagnetic
phase. The crossover from the KZ scaling in thermody-
namic limit to a finite-size scaling is expected to occur

when ξ̂∞ ∼ L. Using Eq. (14) and taking the system
size L to be proportional to the number of ions N , the
crossover to finite-size scaling occurs at a critical quench
rate v(c) ∼ N−3. Accordingly, we postulate a finite size

scaling relation ξ̂N ∼ ξ̂∞f
(

v/v(c)
)

i.e.

ξ̂N ∼ v−1/3f
(

N3v
)

, (16)
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where the asymptotic behaviour of the scaling function
is such that in the KZ regime tends to a constant,
f(x) ∼constant for x ≫ 1, while for "adiabatic" quenches
at x ≪ 1, namely, for slow nearly isothermal quenches
that do not generate defects, is f(x) ∼ x1/3. In prac-
tice the scaling should break down at very fast quenches,
where the correlation length is comparable to the micro-
scopic length scale (inter-ion spacing), and in which case
the low-energy GL theory is no longer valid.

We now address the question of how the number of

topological defects depend on ξ̂L. We are interested in
determining the scaling with v. In the case of the two
dimensional system, the average distance between kinks

is simply proportional to ξ̂L and the expected number of

domains is 〈Nd〉 ∼ L/ξ̂L i.e.

〈Nd〉 ∼ Nv1/3g
(

N3v
)

, (17)

where the function g is the reciprocal of f .

In the three dimensional case and the helix formation,
the relation between the winding number distribution
and quench rate can be obtained by an argument which
was used to derive the KZ scaling of the winding num-
ber of Bose-Einstein-Condensate (BEC) wavefunction ob-
tained by a nonequilibrium quench in a radially symmet-
ric toroidal trap [53]. This argument is also used to pre-
dict the winding numbers in strongly coupled holographic
superconductors described by gauge-gravity duality [54].
One assumes that the chain of length L is divided into

n = L/ξ̂ regions and each region picks at random an ori-
entation θ to some fixed reference plane. Thus there are
n random variables, each uniformly distributed between
0 and 2π and thus having a mean of zero and a variance
of π2/3. The winding number is W ≈ 1

2π

∑

θj and hence
the distribution of the winding number is a convolution of
n uniformly distributed random variables. For large n the
central limit theorem is valid and W will have a Gaussian
distribution with mean zero and variance Lπ2/(2ξ̂). Thus
〈

W 2
〉

scales in the same way as 〈Nd〉, i.e.,
〈

W 2
〉

∼ N/ξ̂L.
Using Eq. (17), this gives the scaling relation

〈

W 2
〉

∼ Nv
1

3 g
(

N3v
)

. (18)

For an infinite chain the winding number scales as
〈W 2〉 ∼ v1/3, and thus the nonequilibrium scaling ex-
ponent of the winding number is 1/3. A similar scaling
result was obtained for the winding numbers in BECs
in radially symmetric traps [53], where the critical expo-
nent associated with 〈W 2〉 was shown to be 1/4. The
difference in the nonequilbrium critical exponents in the
ion crystal system and the BEC is due to the difference in
the dynamical universality classes. The BEC dynamics is
modelled by a Gross-Pitaevskii equation where the time
evolution is given by a first time derivative of the order
parameter rather than the second time derivative as in
the case of the underdamped motion of ion crystals.

IV. SIMULATION METHOD

We use molecular dynamics simulations to obtain a
large number of trajectories (∼2000) of ion crystals un-
dergoing quenches at different rates from a linear to
zigzag configurations. This allows us to determine the
average number of defects for a given quench rate and
hence the KZ scaling. In KZ studies the simulations often
involve numerically solving the hydrodynamic equations
such as Gross-Pitaevskii equation [55, 56] or the time de-
pendent Ginzburg-Landau equation [48, 49]. In contrast
here, we simulate the underlying microscopic equations.
The coarse-grained field description of the system, given
in the previous section, is used only to derive the expected
scaling.

The equations of motion for the jth ion are given by

m∂ttxj = −mω(t)2xj − Γ∂txj − ∂xj
Vc + θxj(t),(19)

m∂ttyj = −mω(t)yj − Γ∂tyj − ∂yj
Vc + θyj(t), (20)

m∂ttzj = −∂zjVc + θzj(t), (21)

where m is the mass of the ion, ω(t) is the transverse con-
fining frequency, Vc is the Coulomb potential energy, Γ is
the friction coefficient and (θxj , θyj, θzt) is the stochastic
thermal force acting on the jth ion. The simulated sys-
tem is periodic - the axial coordinates of all of the ions
are restricted to the region of [−L/2, L/2].

The quench is chosen to be such that the transverse
frequency is decreased linearly from an initial value ωi

to the final value ωf . The time τQ taken for the trans-
verse frequency to reach the final value is varied from
experiment to experiment. In the KZ experiments slow
quenches are used and the variation in δ (equation (9))
is approximately linear. At the start of each quench the
system is evolved at constant trap parameters for 200 µs
in order to initialize the system in thermal equilibrium.

All of the simulation were carried out using Langevin-
Impulse integration method [57]. The following parame-
ters were used. The mass of the ions was set to m = 172
amu, which corresponds to Yb+ ions. The spacing be-
tween ions in the linear chains was set to a = 12.9
µm giving ω0 =

√

e2/4πǫ0ma3 = 610 kHz. Temper-
ature was set to T = 5 mK and friction coefficient to
Γ = 1.5 × 10−21 kg s−1 obtained by assuming optimal
Doppler cooling on the 2S1/2−2P1/2 transition. The sec-
ular frequencies of the confining potential in the y direc-
tion were ωxi/(2π) = 239 kHz and ωxf = 140 kHz. In
the case of the two dimensional experiment the confining
potential in the y direction was set to a constant value of
ωy/(2π) = 477 kHz. In the case of the three dimensional
experiment the confining potential in the y direction was
set to be equal to the confining potential in the x direc-
tion at all times. The quench times ranged from around
around 60 µs to 2 ms. The integration timestep was set
to 3.2 ps.
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FIG. 2: a) Scaling of the average number of domains 〈Nd〉 as a function of quench rates for two dimensional crystals consisting

of 51, 101 and 201 ions. The lines indicate the theoretically predicted 1/3 scaling law. b) The plot of 〈Nd〉N
2v2/3 versus N3v

and the collapse of the three curves. The black solid line was obtained by performing a linear regression fit of the combined
data in the range N3v > 316.0 (N3v = 316.0 is indicated by a dashed line).
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as a function of quench rate evaluated for three
dimensional chains of 200, 100 and 50. The lines indicate the theoretically predicted 1/3 scaling law. The inset displays the
measured winding number distribution for a data set highlighted by a rectangular box on the graph. The red curve in the inset
is a Gaussian distribution with mean zero and the variance of the winding number distribution. b) The plot of 〈W 2〉N2v2/3

versus N3v and the collapse of the three curves. The black solid line was obtained by performing a linear regression fit of the
combined data in the range N3v > 403.0 (N3v = 403.0 is indicated by a dashed line).

V. SIMULATION RESULTS AND DISCUSSION

Figure 2 shows the results of two dimensional simula-
tions that were done for ion chains containing 51, 101 and
201 ions. In all of the experiments the number of domains
Nd is counted at the end of the simulation. Figure 2a)
shows the average number of domains 〈Nd〉 as a function
of quench rate v on a logarithmic scale. In the graph one
observes a strong indication of the expected scaling be-
haviour of 〈Nd〉 ∼ v1/3, a plateau at slow quenches due
to the finite size effect and a plateau at fast quench rates.
To verify the scaling more precisely we plot 〈Nd〉N2v2/3

as a function of N3v. Equation (17) suggests that in such

a plot the three curves collapse onto a universal quench
function xg(x), which is indeed clearly visible in figure
2b) even at slow quenches where there are deviation from
the thermodynamic limit KZ scaling law. A comparison
of the measured scaling to the predicted scaling of 1/3
is obtained by making linear regression fit in the range

N3v > 316.0, which gives 〈Nd〉N2v2/3 ∝
(

N3v
)1.007

and

hence 〈Nd〉 ∝ v0.3403. The deviation of the measured
exponent from the theoretical prediction of 1/3 is 2%.

Figure 3 displays the results of the three dimensional
experiments for the chains of 50, 100 and 200 ions. The
winding number of the helices W is determined in the
end of each simulation. A plot of 〈W 2〉 versus v is
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〈

W 2
〉

obtain for chains of 100 ions using simulations

with three different friction coefficients Γ = 1.5 × 10
−20 kg

s−1, Γ = 1.5× 10
−21 kg s−1 and Γ = 6.5× 10

−20 kg s−1. The
solid line indicates a theoretically predicted 1/3 scaling law.

shown in figure 3a). An inset contains a histogram of
a selected distribution of W and a probability density
function of a normal distribution with the same vari-
ance. A close match between the histogram and the
Gaussian justifies the use of the central limit theorem
in section III for the derivation of the scaling law for
〈W 2〉. The results shown in figure 3a) are in good agree-
ment with the predicted scaling of 〈W 2〉 ∝ v1/3. For an
accurate quantification of the scaling behaviour we plot
〈W 2〉N2v2/3 versus N3v to collapse the three curve as
suggested by equation (18). This plot is shown in fig-
ure 3b) where indeed the collapse of the curves is clearly
visible. To obtain the scaling exponents that approx-
imates the exponent in thermodynamic limit we per-
form a linear regression fit in the region N3v > 403.0,
that avoids finite size effects at slow quenches. The fit-

ted scaling is 〈W 2〉N2v2/3 ∝
(

N3v
)0.994

, which implies

〈W 2〉 ∝ v0.3273. The measured scaling exponent devi-
ates from the predicted exponent of 1/3 by 1.8 %. More
data at slow quenches is needed in order to quantify pre-
cisely the modifications of the scaling law by the finite
size effect. Note that the parity of the number of ions
in the chain determines the boundary conditions of the
Landau field theory and hence significantly affects the fi-
nite size effects. If the number of ions in the chain is
even then φ(−L/2) = φ(L/2), whereas for odd number
of ions the boundary condition is φ(−L/2) = −φ(L/2).
For the 2d simulations we have focused on chains with
odd number of ions and for the 3d simulations we have
chosen even number of ions. The reason is that the finite
size effects for the scalings of 〈Nd〉 and 〈W 2〉 seemed to
be less prominent for these choices of the parity of the
number of ions. We leave the more detailed investigation
of the finite size effects in non-equilibrium U(1) and Z2

symmetry breaking processes for future investigations.

In the underdamped dynamical regime the average
number of defects should not depend on the friction co-

efficient Γ [49]. However, if we increase Γ, at certain
point the frictional force will start to dominate and the
dynamics will be overdamped with a different KZ scal-
ing. In order to verify that the system is indeed under-
damped and the scaling law is not sensitive to Γ, quenches
at three different friction coefficients are simulated in a
system composed of 100 ions. The three friction coeffi-
cients used in the simulations are Γ = 1.5×10−20 kg s−1,
Γ = 6.5× 10−21 kg s−1 and Γ = 1.5× 10−21 kg s−1. Fig-
ure 4 shows that in the KZ scaling regime there is no sta-
tistically significant difference between the results of the
simulations with these three different friction coefficients,
which confirms the validity of the underdamped model.
Interestingly, we can see that at fast quench rates, where
one typically expects to see a plateau, there is a consistent
decrease of the number of helices with increasing quench
rate. This antiKZM behaviour is more pronounced at
small friction coefficients. A possible reason for this is
that if there is a large amount of undissipated kinetic en-
ergy in the system, the topological defects are very mobile
and frequently annihilate one another. An experimental
observation of antiKZ scaling in a system driven through
a ferroelectric phase transition was reported in [58]. It is
possible that there is a common origin between the an-
tiKZM behaviour seen in figure 4 and in [58]. We leave
a systematic investigation of antiKZM as a subject for
future work.

VI. CONCLUSIONS

In this paper we examined the non-equilibrium dynam-
ics of Coulomb crystals undergoing a structural transi-
tion from a linear to zigzag configuration in rotation-
ally symmetric homogeneous traps. It was shown using
Ginzburg-Landau theory that this is a U(1) symmetry
breaking phase transition. The symmetry broken zigzag
phase supports stable phase winding solutions, which are
referred to as helical structures. The probability of ob-
taining a helix of a certain winding number depends on
the quench rate of the transition. We have applied the
universal Kibble-Zurek theory to derive the scaling law
connecting the variance of the winding number distribu-
tion and the quench rate in the underdamped dynami-
cal regime. The scaling law was verified using extensive
molecular dynamics simulations of quenches in chains of
three different sizes. A good quantitative agreement be-
tween the results of the simulations and the predictions of
the Kibble-Zurek theory was found using finite size the-
ory analysis. The scaling was shown to be robust to the
variations of system size and friction coefficient. At fast
quench rates and small friction coefficient, we observed
an intriguing antiKZM behaviour in the scaling of the
winding number.

This work shows once more that ion crystals are very
well suited as classical simulators of complex and critical
dynamics. We hope it will stimulate progress towards the
experimental observations of defects production in heli-
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cal crystals The analysis presented in the current paper
is completely classical, however, at sufficiently low tem-
peratures the linear to zigzag structural transition is a
quantum phase transition of the Ising universality class
[23, 24]. By implementing advanced laser-cooling meth-
ods to prepare chains of ions in the ground-state [59–61],
it may be possible to explore dynamic structural phase
transition in quantum regime. The techniques used in
this work may also be applied to other nonequilibrium
classical structural phase transition in ion crystals, for
example, structural transitions from single-plane crystals
to multiple plane crystals observable in Penning traps [9].
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