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Abstract

The mechanical loss (Q−1) intrinsic to amorphous oxides is the limiting factor for sensitive,

high-precision gravitational wave detectors and optical devices. Recent experimental work sug-

gests that doping amorphous tantala with titania reduces Q−1, however the physical processes

underlying this reduction are unknown. Here we calculate Q−1 for pure and titania-doped tantala

using numerical methods combined with molecular dynamics simulations that have atomic levels of

resolution. Our results match experimental trends that titania doping decreases the magnitude of

the low-temperature loss peak characteristic of these materials, with 62% titanium cation doping

minimizing Q−1 at low temperature. We provide a microscopic explanation for this reduced loss by

examining how doping affects the potential energy landscape, strain coupling constant, relaxation

time, and other properties of the amorphous materials within the framework of the double well

potential model. Analyzing configurational changes provides the first atomic description of the

transitions driving mechanical loss at various temperatures in these oxides. These results iden-

tify the important parameters contributing to Q−1 that are most affected by doping and provide

guidance for how to screen for optimal doping combinations to minimize loss in other materials.

PACS numbers: 63.50.Lm,62.20.D,62.20.Qp
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I. INTRODUCTION

High-precision measurement devices such as optical clocks1 and interferometers2 rely on

mirror coatings with low thermal noise to achieve large signal-to-noise ratios. In particular,

the Laser Interferometer Gravitational Observatory (LIGO) aims to detect gravitational

waves by measuring the displacement of suspended mirrors with coatings made of amorphous

oxides. The thermal noise intrinsic to the coating limits the detector sensitivity between

30-500 Hz, which coincides with the most sensitive band of the interferometer2,3. Shot and

seismic noise dominate contibutions to the total noise above and below this frequency range,

respectively3.

Many attempts are underway to minimize thermal noise within this sensitive frequency

range4–9. Experiments measure the mechanical loss (Q−1, also known as internal friction)

of amorphous oxides, which directly relates to thermal noise via the fluctuation-dissipation

theorem10,11. To date, mirror coatings made of alternating layers of amorphous silica (SiO2)

and tantala (Ta2O5) have resulted in the lowest values of mechanical loss, with tantala

acting as the dominant source of noise6–8. Recent research suggests that doping Ta2O5 with

titania (TiO2) can reduce the loss by 20-40% with 14-25% Ti cation substitution6,9 while

also retaining the optical absorption requirements for the interferometer6. Understanding

why TiO2 decreases loss will provide insight into how to minimize noise to a greater degree

in future coatings.

Atomic modeling of such systems plays an important role in elucidating the physical

processes underlying Q−1 and guiding choices of optimal doping combinations. Internal

friction arises from energy dissipation from the perturbing source (e.g., light or sound waves)

into the internal degrees of freedom of the coating. In amorphous solids, the lack of long-

range order allows for low-energy excitations involving small groups of atoms that serve

as the fundamental source of this energy dissipation. These excitations can be modeled

as a particle transitioning between two level-systems (TLS) within the solid’s potential

energy landscape (PEL)12,13, giving amorphous materials many of their thermal, elastic, and

dielectric properties14. Below several Kelvin, transitions between TLSs occur via quantum

tunneling15. At higher temperatures, of primary interest in LIGO, the same PEL determines

Q−1 but transitions are mainly due to thermally activated processes16.

The success of the TLS model has thus far been phenomenological and the microscopic
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origin of TLS transitions has remained elusive17. However, recently developed computational

techniques allow for the simulation of atomic movement inside amorphous materials over a

timescale during which these transitions can be observed18–20. Such techniques provide a

method to understand the origin of transitions at an atomic level and to predict material

combinations that minimize mechanical loss.

In this paper, we investigate the internal friction due to thermally activated processes

in pure and titania-doped tantala using our recently developed computational method to

search for TLSs in amorphous materials21. Our results match experimental trends showing

a decrease in Q−1 with TiO2 doping and find that 62% Ti cation doping minimizes the me-

chanical loss at low temperature. We explain this pattern by examining the effect of doping

on the potential energy landscape and the TLS properties, including the coupling to strain,

Young’s modulus, and relaxation time. We also connect transitions with different barrier

heights to particular types of cation and anion motion, giving the first atomic description of

the motion causing loss at low and room temperatures in these materials. The calculations

provide important information about the origin of microscopic excitations that have not yet

been explored in amorphous tantala and titania as well as the physical processes that govern

how doping affects Q−1.

The rest of the paper is organized as follows. Section II.A introduces the theory of TLSs.

Sections II.B-D describes the computational methods implemented to search for TLSs and

calculate the internal friction. In Section III, we discuss our results regarding how TiO2

doping influences the internal friction and explore the underlying potential energy landscape

and physical parameters to understand why TiO2 reduces loss. Finally, we discuss general

conclusions in Section IV.

II. THEORY AND METHODS

A. Theory of Two-Level Systems and Internal Friction

The PEL of amorphous materials is rugged such that transitions between local energy

minima are possible by simple rearrangements of atomic subsets. This landscape allows an

amorphous solid to be modeled as a particle that moves between double wells separated by
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an energy barrier, where each well corresponds to a different configuration of the same set of

atoms. Such transitions from one well to another are possible via coupling to external strain,

e.g. from light or sound waves, and thermal motion. The atoms and PEL corresponding

to such a transition form a TLS. Mathematically, a TLS is characterized by the energy

asymmetry between the two wells (∆), the height of the energy barrier separating them

(V ), and the configurational distance between them (d) (Figure 1)12,13,21.

FIG. 1. Sketch of a two-level system (TLS) modeling the potential energy landscape of amorphous

solids. ∆ is the energy asymmetry between the two minima, V is the barrier height, d is the

configurational distance between the two wells, and E0 is the ground state energy.

The internal friction (Q−1
l/t (ω, T )) measures the energy dissipated through an amorphous

solid due to longitudinal (l) or transverse (t) waves. At temperatures above 5 K, thermal

transitions dominate over quantum tunneling and Q−1
l/t (ω, T ) can be expressed as16:

Q−1
l/t (ω, T ) =

γ2
l/t

El/tkBT

∫

∞

0

∫

∞

0

ωτ

1 + ω2τ 2
sech2

(

∆

2kBT

)

f(∆)g(V )d∆dV, (1)

where τ is the thermally activated relaxation time, γl/t is the longitudinal (l) or transverse

(t) strain coupling constant (also known as the deformation potential), El/t is the elastic

modulus of interest, and ω is the observation frequency of the perturbing wave. The TLS

barrier height and asymmetry distributions are g(V ) and f(∆), respectively, which are

calculated using methods described in the next section. The barrier distribution has units

of [energy]−1 and is normalized to one, whereas f(∆) has units of [energy]−1[volume]−1 and
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is normalized such that its integration over energy asymmetry (∆) gives the TLS density

per volume (N).

In most experiments, the internal friction is measured using a cantilever with an ap-

plied force normal to the amorphous solid’s surface22, which mainly causes longitudinal

disturbances in the material. Therefore, here we calculate the internal friction using the

longitudinal coupling constant (γl) and the Young’s modulus (El = Y ) to best compare

witih experimental results (Q−1 = Q−1
l ).

The relaxation time (τ) for thermally activated transitions is given by an Arrhenius

expression16:

τ−1 = τ−1
0 cosh

[

∆

2kBT

]

exp−V/kBT , (2)

where τ−1
0 is known as the attempt frequency, kB is Boltzmann’s constant, and T is tem-

perature. The attempt frequency is calculated from the normal modes at the bottom of the

well (ν0
i ) and at the saddle or transition point (νt

i ), i.e. the vibrational frequency in the

direction from the potential well to the saddle point23:

τ−1
0 =

∏3N
i=1 ν

0
i

∏3N−1
i=1 νt

i

expS/kB . (3)

Because of the exponential dependence of τ on V , the distribution of relaxation times in an

amorphous solid mainly depends on the barrier height distribution. Thus, we assume that

variations in τ0 have little effect on the distribution of τ and approximate τ0 as an average

calculated across all TLSs.

The exponential term in Equation 3 is necessary because the free energy (F = V − TS)

is used to derive the Arrhenius expression, where S is the entropy of the transition state

at the saddle point24. This term describes the number of minima connected to a single

transition state. Previous work has found that numerical results best match experimental

internal friction data for silica when S/kB = ln421,25, and we use the same value here to

study tantala and titania-doped tantala.

The strain coupling constant (γ) describes the variation of the TLS asymmetry due to the

strain induced by the perturbing wave. In general, γ is a 6×6 tensor, however in isotropic

solids the longitudinal (transverse) components are expected to be equal. This allows for

independent longitudinal (γl) and transverse (γt) coupling constants to be calculated:

γl(t) =
1

2

∂∆

∂ul(t)

, (4)
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where ul(t) are the longitudinal (transverse) components of the strain matrix. Here we report

both longitudinal and transverse components but only use the longitudinal coupling constant

to calculate the internal friction using Equation 1.

The Young’s modulus (Y ) measures the stiffness of the amorphous solid and is calculated

using elastic moduli:

Y =
9BG

3B +G
, (5)

where B is the bulk modulus and G is the shear modulus. The moduli are calculated using

elastic constants as described in our previous work.21,26,27

B. Classical Force Field Parameters

We have modeled amorphous, TiO2-doped Ta2O5 samples and calculated their corre-

sponding Q−1(ω, T ) using classical molecular dynamics simulations and techniques imple-

mented in the DLPOLY 2.20 software package28. We describe atomic interactions using

a classical force field that describes Pauli repulsion and van der Waals interactions using

the BKS potential29 as well as partially covalent anion-cation interactions using a Morse

potential. The potential energy due to the interaction between atoms i and j is:

Φij = qiqj/rij + Aij exp(−rij/ρij)− Cij/r
6
ij

+Dij(1− exp(−aij(rij − bij)))
2,

(6)

where rij is the distance between atoms i and j. The first term represents the Coulomb

interaction, the second represents Pauli repulsion, and the third represents the van der Waals

attraction. These three terms comprise the original BKS potential used to model amorphous

silica.29 The last term is the Morse potential, added to better model the partially covalent

interaction between anions and cations in these oxides.27 Only electrostatic forces describe

cation-cation interactions, which allows for mixing of different oxides without adjusting the

force field parameters.

We have fit the potential parameters Aij , ρij , Dij , aij , and bij to reproduce radial dis-

tribution functions and elastic constants of the amorphous solids studied here. Since the

amorphous structure and elastic moduli are the key quantities affecting the internal friction

(through the TLS distribution, Young’s modulus, and coupling constant), these interatomic

potentials should be adequate for exploring Q−1 in tantala and titania. Details about the
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fitting procedure and results can be found in our previous work.27 In summary, this two-body

potential balances accurate modeling of structural and mechanical properties with compu-

tational efficiency in order to effectively search the potential energy landscape for thousands

of TLSs.

Amorphous TiO2 can exist in two forms with different coordination numbers and elastic

properties arising from various processing methods. Ion-beam sputtering result in a sam-

ple with mostly six-coordinated Ti atoms and a larger Young’s modulus between 147 and

169 GPa30,31. Other methods such as sol-gel or reactive evaporation provide softer, four-

coordinated samples with a Young’s modulus of 64 GPa30,32. Since most amorphous oxides

used for optical coatings and in gravitational wave detection use sputtering techniques2, we

use potential parameters that generate the stiffer, six-coordinated amorphous TiO2 sample

to dope Ta2O5 to better compare to experimental results.

C. Amorphous Samples and Annealing Procedures

To understand how TiO2 doping affects Q−1, we dope Ta2O5 incrementally by replacing

roughly 12.5% of Ta with Ti cations while keeping the total number of atoms constant (1008

total atoms). To match exact experimental doping percents, we slightly adjust the doping

amounts to end with eight different samples: pure Ta2O5, 14% Ti, 25% Ti, 41% Ti, 53% Ti,

62% Ti, 76% Ti, and pure TiO2. For example, the 25% Ti-doped Ta2O5 consists of 222 Ta,

77 Ti, and 709 O atoms. Such small increments will allow for the observation of systematic

trends in parameters to identify physical mechanisms that explain the effect of Ti doping.

Each simulation box is cubic with lengths between 19 and 22
◦

A, which is large enough to

capture the long-range disorder of the amorphous materials.

To produce the annealed amorphous samples, the extended Ta2O5 crystal structure is

equilibrated at 300K with an NVT ensemble and then heated to 6000K over 160 ps using

an NPT ensemble. At 6000K, the sample is equilibrated again with an NVT ensemble for

50 ps and then quenched to 300K over 160 ps with an NPT ensemble. The sample is finally

equilibrated again for 50 ps and then energy-minimized using an NVE (microcanonical)

ensemble. Radial distribution functions are examined to confirm the amorphous nature of

the sample after quenching from high temperature. We have used a 1 femtosecond time step

for all simulations.
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To obtain doped samples, we randomly replace Ta atoms in the amorphous sample with

the desired number of Ti atoms and complete the same procedure above to arrive at a newly

annealed and doped sample.

D. Barrier Search and Internal Friction Calculation

To find two-level systems, we bring an annealed configuration to a running temperature

(Trun ≈ 1000 K) and collect an MD trajectory with 500,000 time steps using an NVT

ensemble and a 1 femtosecond time step. Within each trajectory, the interval bisection

method20 searches for transitions from one local minima to another after a specified number

of time steps. Once adjacent local minima are found, the nonlocal ridge method20 determines

the saddle point between them to calculate the barrier height. A pair of minima connected by

a first-order saddle point forms a TLS. Following the system through the MD trajectory and

employing this procedure results in a collection of TLSs and a distribution of asymmetries

(f(∆)) and barriers (g(V )) used to calculate Q−1 (Equation 1).

To ensure proper sampling of the PEL, we have searched for two-level systems using

at least five distinctly annealed samples for each doping amount. The search for TLSs is

continued until the barrier and asymmetry distributions do not significantly change with

the addition of more data. We find that roughly 1000 TLSs are required to reach such

convergence. In addition, we have only included TLSs with ∆ < 0.1 eV because larger

values correspond to highly defected states not seen experimentally in other amorphous

solids, such as silica20,33.

We implement a separate search method to the TLS density (N) such that f(∆) can be

properly normalized to N . In this case, a single local minimum is chosen as the starting

point for an MD trajectory. Once a connected minimum is found along the trajectory, the

system is returned to the configuration of the first minimum and the search is resumed with

randomized starting velocities. By continually repeating this procedure, we find the total

number of minima connected to the original basin. The density N is the number of connected

minima, averaged across many different starting configurations, divided by the volume of the

simulation cell. We find that N is fairly consistent across all levels of doping, varying as a

function of Ti concentration only within the standard error of their distributions. Therefore,

we have calculated the average TLS density across all doping samples, N = 4.5, and used
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this value as a constant input for all calculations of the internal friction.

We determine the coupling constant (γl/t) and average relaxation time (τ0) using the set

of TLSs that give a converged distribution of asymmetries and barrier heights. For each

pair of minima in a given TLS, we apply increasing amounts of strain (0 to 0.5 percent)

to compress and stretch the cell and then allow the atoms to relax to their new energy

minimum for each level of strain. The six components of the coupling constant (γij) are

then calculated as the slope of the asymmetry as a function of the strain (uij) applied to

the cell. The arithmetic averages of γl and γt (Equation 4) are calculated across all TLSs

for a given system. To determine τ0, the Hessian matrix is calculated for the configuration

at each minima and the saddle point corresponding to each TLS. The eigenvalues of the

Hessian matrix are input into Equation 3 to calculate the relaxation time for a given TLS.

τ0 is then the average of these values across all TLSs.

Finally, we calculate the Young’s modulus (Y) by determining the elastic constants of the

amorphous sample and entering them into Equation 5. We have calculated elastic constants

using methods described in our previous work21,26,27. We calculate Y as an average across

ten different annealed samples of the same material.

Using the distributions f(∆) and g(V ), along with the averaged values of γl, τ0, and

Y , we solve Equation 1 numerically to calculate Q−1
l for each amorphous system. A more

detailed description of methods described above can be found in our previous work21.

III. RESULTS AND DISCUSSION

A. Internal Friction

We first discuss how Ti doping of Ta2O5 affects the internal friction of the amorphous

samples. Figures 2(a)-(b) plot Q−1(T ) of pure and TiO2-doped Ta2O5 with an observa-

tion frequency of ω = 1 kHz, matching the same magnitude used in recent experimental

measurements9. As seen in Figure 2(a), pure Ta2O5 exhibits a low-temperature peak of

Q−1(Tpeak) = 27.80 × 10−4 at 30 K, closely matching the characteristic peak seen in ex-

periment near 20 K in Ta2O5
9 as well as in amorphous silica21,25. The magnitude of the

calculated low-temperature peak is in good agreement with experiment, within the same

order of magnitude but a factor of 2.5 larger than the experimental value of Q−1
exp(Tpeak) =
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FIG. 2. Calculated internal friction (Q−1) of pure and titania (TiO2) - doped tantala (Ta2O5) as

a function of temperature (T) and observation frequency (ω). a) Q−1(T ) as a function of percent

cation Ti doping from 0 to 300 K with ω = 1 kilohertz (kHz). b) Q−1(T ) as a function of percent

cation Ti doping from 200 to 300 K with ω = 1 kHz. c) Q−1(ω, T ) of pure Ta2O5.

11.00 × 10−4 (see Table 1 for comparisons to experiment). These results suggest that our

model captures the dominant characteristics of the PEL of amorphous Ta2O5 that lead to

this low-temperature peak, which we discuss in Section III.B. We also explore possible rea-

sons for our larger peak magnitude when discussing physical parameters entering our model

in Section III.C.

The internal friction for pure Ta2O5 decays at temperatures beyond 30 K, leading to a

room temperature value of Q−1(300 K) = 1.43 × 10−4 (Figure 2(b)). This is on the same

order of magnitude as experimental values (Q−1
exp(300 K) = 2.75 × 10−4), a factor of two

smaller because our model does not a predict a plateau in Q−1 observed experimentally
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beyond 200 K9. The atomic configurations modeled in the present study represent bulk

samples with perfect stoichiometry, whereas experimental samples are frequently thin films

with an often unknown stoichiometry. Either of these factors could feasibly lead to larger

barrier heights that weight the distribution at higher eneries to produce such a plateau near

room temperature. Therefore, we are currently studying how surfaces and stoichiometry

affect the barrier distribution and resulting internal friction to understand if either is re-

sponsible for discrepancies between model and experiment. Nevertheless, this is the first

model to match the order of magnitude of loss at low and room temperature in tantala and

indicates that we are capturing the dominant loss mechanisms also seen in experiment. The

current findings also provide an important baseline describing the characteristics of Q−1 due

to bulk effects with which future studies of thin films and defects can be compared.

Figure 2(c) plots Q−1(ω, T ) of pure Ta2O5 as a function of temperature and observation

frequency. As frequency increases, the peak consistently moves to higher temperatures and

larger magnitudes. The relative changes in peak magnitude agree well with experiment,

as our model predicts an approximately 10% increase in Q−1(Tpeak) from 100 to 1000 Hz,

matching an approximately 14% increase in the experimentally measured peak for a similar

increase in frequency9. Similar behavior is seen for all levels of Ti doping (not shown).

TABLE I. Calculated and experimental values of the peak temperature (Tpeak), internal friction

at peak temperature (Q−1(Tpeak)), and the percent reduction of Q−1(Tpeak) for each Ti doping

compared to pure Ta2O5. Experimental values are included in parentheses.

% Ti Tpeak (K) Q−1(Tpeak) (× 10−4) % reduction

0 30 27.80 (11.0)9 –

14 38 21.11 (8.5)9 24 (19)9

25 32 22.57 20 (32)34

41 35 20.31 27

53 32 17.59 (6.00)34 37 (46)34

62 34 15.78 43

76 30 16.47 (0.80)34 41

100 46 18.70 33

Doping Ta2O5 with TiO2 consistently decreases the magnitude of the low-temperature
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peak (Figure 2(a)). For the 14% Ti-doped sample, Q−1(Tpeak) decreases from 27.80 × 10−4

to 21.11 × 10−4. Although our raw values are larger than those in experiment, this decrease

with small Ti doping corresponds to a 24% loss reduction, matching well with the 19%

reduction reported by experiment for the same level of Ti doping9. The internal friction

at low temperature continues to decrease with further Ti doping, leading to Q−1(Tpeak) =

17.59 × 10−4 for 53% cation Ti doping, a 37% reduction compared to pure Ta2O5 that

matches very well with a 46% reduction seen experimentally for the same doping level34.

Qualitatively, moderate Ti doping broadens the low-temperature peak, with the effect most

pronounced for 41% cation Ti doping. A similar feature is observed in experimental data

for 14% and 55% Ti-doped samples34. The position of the low-temperature peak does not

significantly change with Ti doping, varying between 30-38 K across all Ti doping levels. In

contrast, the peak significantly shifts to higher temperature near 46 K for the pure TiO2

sample.

Overall, our model predicts that doping Ta2O5 with 62% cation Ti doping minimizes the

internal friction at the low-temperature peak, Q−1(Tpeak) = 15.78 × 10−4. This value is an

order of magnitude higher compared to experimental results for a similar 76% doping level,

Q−1
exp(Tpeak) = 0.80 × 10−4 (Table 1)34. This anomalously low experimental measurement is

believed to be due to crystallization of the sample. Our model results support this conclusion

and indicate that a purely amorphous sample would have a much larger peak magnitude.

Doping effects show different trends near room temperature (Figure 2(b)). All levels of

cation Ti doping decrease Q−1(300 K) compared to pure Ta2O5 and range between 0.87 ×

10−4 and 1.20 × 10−4, matching recent experimental evidence that 14% cation Ti doping

decreases room temperature loss9. Pure TiO2 shows a similar room temperature loss as

Ta2O5, indicating a nonmonotonic dependence of loss on doping. However, no consistent

pattern of loss as a function of Ti doping is seen and therefore we cannot conclude that

lower or higher levels of Ti doping consistently decrease Q−1 at room temperature. To the

best of our knowledge, no other experimental data regarding room temperature loss exists

for the other levels of Ti doping, and therefore it is difficult to compare the accuracy of these

results. However, the findings generally indicate that small levels of Ti doping are enough

to substantially decrease loss at room temperature.

Based on these results, our model provides an excellent representation of how TiO2 dop-

ing affects Q−1 at low temperatures and identifies the systematic decrease of the magnitude
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of the internal friction with TiO2 doping. Examination of the underlying distributions (3.2),

parameters (3.3), and characteristics of dominant transitions (3.4) will provide understand-

ing of the physical processes leading to these results.

B. Barrier and Asymmetry Distributions

The underlying PEL and double well distribution of each amorphous sample dictates

the temperature dependence of Q−1(ω, T ). Thus, to understand why Ti doping decreases

the internal friction and pure titania shows a shift in Q−1(Tpeak), we next examine how the

barrier and asymmetry distributions (g(V ) and f(∆)) change with increased doping levels.

Figures 3(a)-(e) plot g(V ) (black curve) and log(g) (red, dotted curve) for pure Ta2O5

and several representative Ti doping levels. The logarithm of the distribution is useful to

examine because it reveals whether a more complex, multiexponential function is necessary

to describe the decay of g(V ). Other than minor variations within small energy ranges, all

barrier distributions demonstrate a generally monoexponential decay. Previous experimental

studies have approximated g(V ) as a monoexponential function to explain experimental

results9,22, and the current findings indicate that this approximation is generally valid for

tantala and titania samples.

To illustrate the major effects of TiO2 doping on the barrier distribution, we plot g(V )

for pure Ta2O5 and several doping levels together in Figure 3(f). Ta2O5 exhibits a distinct

peak in the distribution with the largest number of barriers occurring near 25-35 meV. The

number of low-energy barriers in this range systematically decreases with Ti doping (left

black arrow in Figure 3(f)). These results match experimental findings in which the barrier

distribution g(V ) was determined by assuming a constant asymmetry distribution and fitting

internal friction measurements to Equation 19. This fitting procedure predicted that Ta2O5

exhibits a peak in g(V ) near 20 meV and Ti doping broadens and decreases the magnitude

of the peak. Our calculated results match both of these trends, again confirming that our

model is accurately capturing the major characteristics of the underlying PEL.

The second major change with Ti doping occurs for higher-energy barriers, as noted by

the two right black arrows in Figure 3(f), where Ti doping increases the number of barriers

between 80-110 meV and 150-200 meV. The increase in barriers in these regions are especially

apparent for the pure TiO2 sample.
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FIG. 3. Normalized barrier distributions (g(V )) for amorphous tantala (Ta2O5) and various levels

of cation titanium (Ti) doping. a) through e) plot g(V ) (black solid line) and log(g(V )) (dotted

red line) for pure Ta2O5, 25% Ti, 50% Ti, 75% Ti, and pure TiO2, respectively. f) g(V ) for

representative levels of Ti doping to compare and highlight major changes in barrier distribution.

Black arrows emphasize significant effects of Ti doping that are discussed in more detail in the

text.

To understand the impact of these trends in g(V ) on the internal friction, we must first

determine which energy ranges of barriers influence Q−1 at particular temperatures. By

integrating Equation 1 over ∆ but removing the integral over V , we arrive at an expression

that describes which barriers contribute to Q−1 at a given temperature:

f(V, T ) =
γ2
l

Y kBT

∫

∞

0

ωτ

1 + ω2τ 2
sech2

(

∆

2kBT

)

f(∆)g(V )d∆. (7)

Figure 4 shows g(V ) (black line) and f(V, T ) (filled colored regions) at increasing values of

temperature for Ta2O5. At 30K, roughly corresponding to the peak of Q−1 for most samples,

an extremely small range of barriers around the peak of g(V ) dominate the contribution to

the internal friction (blue filled region). Since this 40 meV peak decreases in magnitude with

Ti doping (Figure refbs(f)), this will lead to a corresponding decrease in the magnitude of

Q−1 near 30K and partially explains the decrease in low-temperature loss with the addition
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FIG. 4. Normalized barrier distributions (g(V )) for amorphous tantala (Ta2O5) and the expression

forQ−1 integrated over the asymmetry distribution (f(V, T )) for several sample temperatures. Note

the arbitrary units of both distributions, as the primary focus of this graph is to locate the energy

range covered by f(V, T ) for a given temperature.

of Ti.

As the temperature increases, not only do higher-energy barriers dominate the contri-

bution to Q−1, but a greater spread of barriers across a larger energy range is important.

Barriers just below 100 meV are most important at 50 K (purple region), which directly

corresponds to the energy range of the shoulder seen in g(V ) for TiO2 (Figure 3(f)). The

contribution to Q−1 from these higher-energy barriers outweighs those near 40 meV and

drives the shift in the loss peak for TiO2 to 46 K. Since the addition of Ti atoms decreases

the number of barriers near 40 meV relative to those near 100 meV, this analysis also ex-

plains the slight broadening of the loss peak to higher temperatures with Ti doping. The

internal friction at 90-100 K will be dictated by barriers around 150 meV (filled green re-

gion in Figure 4), corresponding to the second region of increased barriers with Ti doping

as shown in Figure 3(f). This increase in barriers with Ti doping slows the decay of Q−1

as a function of temperature such adding Ti atoms decreases the magnitude of Q−1 most

significantly at low temperature.

A second intriguing discovery from this analysis is the dramatic difference in the types

of transitions describing loss at different temperatures. Previous theoretical discussion of

amorphous solids, usually using silica as an example, have described the loss process as

transitions over low-energy barriers involving only a few oxygen rotations35. Our results
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support the notion that low-energy barriers dominate the contribution to low-temperature

loss. However, gravitational wave detectors and other optical devices are often concerned

with room-temperature loss. As shown in Figure 4, barriers ranging between 300-550 meV

dictate loss behavior at 300 K, which will likely involve significantly different structural

changes compared to smaller 40 meV barriers that are important at 30 K. We explore the

structural differences between these types of transitions in Section III.D to emphasize the

different atomic picture necessary when discussing low-temperature and room-temperature

loss.

In addition to g(V ), the asymmetry distribution also weights which TLSs contribute to

Q−1. Figures 5(a)-(d) plot f(∆)/N for pure Ta2O5, 25% cation Ti, 76% cation Ti, and pure

TiO2 amorphous samples. Based on Equation 1, TLSs with ∆ > 2kBT do not significantly

contribute toQ−1 due to the sech2(∆/2kBT ) term, and therefore we only plot f(∆)/N < 0.06

eV, roughly corresponding to relevant asymmetries up to 300 K. No significant differences

are seen in f(∆) across Ti dopings. In general, all amorphous samples demonstrate a slight

peak at extremely small asymmetries (∆ < 0.01 eV) after which the distribution is roughly

flat or slightly decreasing with increasing ∆. This small peak has slightly larger values

for pure Ta2O5 and 25% cation Ti samples, flattening out for higher levels of Ti doping.

The increased frequency of low-asymmetry barriers indicates that roughly symmetric TLSs

contribute more strongly to Q−1 than more asymmetric double wells, but that this effect

will not largely change as a result of different Ti doping levels.

The present results for f(∆) reveal details about the distribution that have been ignored

in previous calculations. Previous models and experimental analyses hav often simplified the

asymmetry distribution to a constant, f(∆) ≈ f0
12,16. These assumptions have been used

to fit experimental internal friction data to calculate V0, known as the activation energy

that describes the decay rate of g(V )9,22,36. The present results of a peak in f(∆) for low

asymmetries indicate that these assumptions are not always accurate. In this work, we

directly input numerically calculated distributions into Equation 1 without assumptions

about their shape.
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FIG. 5. Normalized asymmetry distributions (f(∆)/N) for a) amorphous tantala (Ta2O5), b) 25%

titanium (Ti) cation doping, c) 76% Ti cation doping, and d) pure TiO2.

C. Parameters

Beyond the barrier and asymmetry distributions, the averaged parameters included in

Equation 1 have a major impact on the relative magnitude of Q−1 as a function of Ti

doping. Figure 6 plots the relaxation time (τ0, 6(a)), strain coupling constants (γl and γt,

6(b)), and Young’s modulus (Y , 6(c)) as a function of Ti doping. In general, increased Ti

doping is associated with a shorter relaxation time, smaller longitudinal coupling constant,

and larger Young’s modulus. Note that only the longitudinal coupling constant is used to

calculate Q−1, but both longitudinal and transverse components are included for comparison

to future experimental measurements.

The decrease of τ0 with Ti doping has only a small effect on the magnitude of Q−1, slightly

decreasing the internal friction with Ti doping, however both γ2
l and Y directly scale the

magnitude of Q−1. Since γ exhibits a squared dependence, only small changes lead to large

shifts in the magnitude of Q−1. As a consequence, the pattern of γl as a function of Ti

doping generally dictates the trends in Q−1 at low temperature. As seen in Figure 6(b), γl

is at a minimum for 62-76% Ti doping, matching the same doping level that minimizes the

low-temperature loss peak (Figure 2(a)). In addition, shifting from a highly-doped sample

to pure TiO2 increases γl back to a value similar to that of pure Ta2O5, largely explaining

the increase in Q−1(Tpeak) from 76%-doped Ta2O5 to pure TiO2. These results suggest that

substantial manipulation of the coupling constant is possible through doping and provides
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FIG. 6. Average values of parameters entering the numerical calculation of the internal friction

(Q−1). a) Relaxation time (τ0), b) longitudinal (γl) and transverse (γt) strain coupling constant,

and c) Young’s modulus (Y) as a function of percent Ti cation doping.

a promising route to minimize the internal friction in these or other types of amorphous

materials. The Young’s modulus increases consistently with Ti doping, indicating that

TiO2 leads to a stiffer amorphous material. This also contributes to a decreased Q−1 with

Ti doping since Y appears in the denominator of Equation 1.

As noted in Section III.A, the present calculations overestimate the magnitude of
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Q−1(Tpeak) for pure and doped Ta2O5 compared to experiment by roughly a factor of

two. One possible explanation for this may be an overestimation of the longitudinal cou-

pling constant. Although no experimental values of either are known for Ta2O5, γt for

silica has been measured as 0.9-1.0 eV and (γl/γt)
2 = 2.2537. Our calculated values of

γl and γt for Ta2O5 are 2.5 eV and 1.95 eV, of the same order of magnitude but larger

than silica’s values. Thus, if we assume tantala should have a similar coupling constant

as silica, our larger values can at least partially explain the overestimated low-temperature

loss. However, since no previous experimental work has measured strain coupling constants

in tantala, we cannot determine their accuracy. The present results clearly emphasize the

parameter’s importance in dictating how doping changes the magnitude of Q−1. Therefore,

future experimental work should attempt to measure the coupling constant in Ta2O5 and

TiO2 to provide benchmarks and confirm that our force fields are generating an accurate

value of γl and γt.

The present results provide insight into the important physical processes that change as

a result of Ti doping. In particular, the addition of TiO2 makes the double wells of the

amorphous solid less sensitive to the strain caused by the illuminating frequency, decreasing

the coupling constant. This, in combination with TiO2 increasing the stiffness of the material

and increasing Y , explains the decreased magnitude of Q−1 observed experimentally.

D. Atomic Characterization of Two-Level Transitions

Having explained the effect of Ti doping on Q−1 by exploring the TLS distributions and

parameters, we finally provide an atomic description of the two-level transitions dominating

mechanical loss at low and room temperature. Many structural changes could play a role

in typifying TLS transitions, and a comprehensive analysis of all factors predicting barrier

height, asymmetry, and loss is beyond the scope of this paper. However, previous work

has suggested that anion rotations around central cations are a primary characteristic of

transitions in amorphous oxides35. Therefore, we focus on analyzing the number of atoms

involved in each transition, the number and magnitude of O rotations, as well as changes in

Ta/Ti-O bond length to characterize transitions in tantala and titania.

Since our previous discussion in Section III.B described how TLS barrier height connects

to loss at different temperatures (Figure 4), we focus on associating structural characteristics
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to different energy ranges of V . In particular, we highlight three categories: the peak of

g(V ) (0-60 meV), the shoulder that increases for pure TiO2 (60-120 meV), and the increase

in barriers with Ti doping between 120-240 meV. TLS asymmetry is not strongly correlated

with most structural characteristics (r ≈ 0.20) and is not discussed in detail here.

Figures 7(a)-(d) display histograms for each structural characteristic considered across

all TLS and within each barrier range for Ta2O5 (left column) and TiO2 (right column).

Histograms for data from Ti-doped samples resemble combinations of pure tantala or titania,

so here we only analyze the two extremes to identify the major changes between them. For

example, data for the 25% Ti-doped Ta2O5 sample will largely resemble patterns in the

Ta2O5 histograms with slight trends toward TiO2 patterns.

As seen in Figure 7(a), most transitions in Ta2O5 involve around 30 atoms, with very

few transitions involving more than 150 atoms. A correlation exists between the number

of atoms involved and barrier height (r = 0.55 for Ta2O5, r = 0.44 for TiO2), such that

higher-energy barriers generally involve more atoms. For Ta2O5, barriers between 60-120

meV involve 30-70 atoms, and barriers between 120-240 meV are associated with a large

range of 30-100 atoms. In contrast, titania shows a sharpening of the histogram peak near

30 atoms for barriers in both the 0-60 meV and 60-120 meV ranges (Figures 7(a), right

column). This is evidence of a localized, higher-energy barrier between 60-120 meV that

is more prominent in titania. It is this type of TLS transition that creates the shoulder in

g(V ), leading to the broadened loss peak at higher temperature compared to tantala (Figure

2(a)).

Regarding oxygen rotations, TLS transitions in both Ta2O5 and TiO2 typically involve

five O atoms rotating more than 10 degrees around a central Ta atom (Figure 7(b)) with

the largest rotation between 18-20 degrees (Figure 7(c)). A correlation again exists between

barrier height and number of oxygen rotations (r = 0.54 for Ta2O5, r = 0.47 for TiO2) and

largest oxygen rotation angle (r = 0.67 for Ta2O5, r = 0.66 for TiO2), such that larger barriers

are associated with more O atoms being involved with larger rotation angles. Most low-

energy barriers (0-60 meV) in tantala involve only 3-5 O atoms, whereas titania demonsrates

a wider distribution of oxygen atoms involved. Also, compared to tantala, titania exhibits

larger barriers that involve more O atoms rotating at larger angles (red bars in Figures

7(b-c)), confirming the analysis of the barrier distributions in Section III.B.

Finally, the histograms of the Ta/Ti-O bond length changes are shown in Figure 7(d).
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FIG. 7. Histograms for tantala (Ta2O5, left column) and titania (TiO2, right column) of a) the

number of atoms involved in two-level-system (TLS) transitions, b) number of O rotations greater

than 10 degrees, c) largest O rotation angle, and d) largest change in Ta/Ti-O bond length.

Differently colored histograms correspond to subsets of TLS transitions categorized by barrier

height (V ). All distributions are normalized to the total number of samples across all barrier

heights. An atom is considered part of a transition if its position changes by at least 0.1 Angstrom

between minima.

Both tantala and titania show very similar trends in this case, with most changes in bond

length roughly between 0.12-0.16 Angstroms. A much smaller correlation associates barrier

height with bond length changes (r = 0.27 for Ta2O5, r = 0.23 for TiO2), indicating the

total number of involved atoms and rotating oxygen atoms are the primary characteristics

determining the barrier heights of the two-level systems.
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This structural analysis of TLS transitions in titania and tantala reveal that, despite small

differences, the two amorphous oxides support very similar loss mechanisms. Differences

between histograms in Figure 7 only involve slight shifts in the typical number atoms involved

or size of oxygen rotation angles, as discussed above, but transitions in the two amorphous

oxides generally share similar structural traits. These findings indicate that the oxides

match well in the sense that doping one with the other will not qualitatively change the loss

behavior, a conclusion confirmed by the same low-temperature peak in Q−1 across all Ti

dopings followed by decay with increasing temperature. Instead of distinctly different types

of structural transitions, our analyses reveal that TiO2 differs from Ta2O5 by allowing more

high-energy transitions with barriers between 60-240 meV. It is this difference in barrier

frequency that leads to the shift in the low-temperature peak to 46 K for TiO2.

To provide a final perspective on the two-level systems driving mechanical loss, Figure 8

visualizes three typical transitions in Ta2O5 and TiO2 that highlight the differences between

low and room temperature as well as the prototypical transition near 100 meV that occurs

more frequently in TiO2. The left column of the figure shows the first minimum in the TLS

(blue cations and red anions), the right column shows the second minimum (green cations

and brown anions), and the middle column visualizes their overlap to emphasize the major

changes between them. Atoms not involved in the transition are displayed as faint grey

octahedra in the background.

In Figure 8(a), we illustrate a typical pair of minima from a TLS that drives the 30 K loss

peak in Ta2O5. This type of transition has a barrier height of 32 meV, involves 30 atoms,

four O rotations above 10 degrees, and spans about 8 Angstroms. Two, 20-degree oxygen

rotations, identified by the black arrows, appear to drive the transition, causing smaller

deformations rippling away from these central atoms. In contrast, Figure 8(b) shows a

typical transition dominating room temperature loss. This transition has a barrier of 453

meV, involves 149 atoms, 10 O rotations over 10 degrees, and spans 20 Angstroms. This type

of transition cannot be localized to the motion of one or two primary oxygen atoms, as was

described for the low-temperature transition, but rather includes a multitude of rotations

spread across the supercell.

Finally, Figure 8(c) represents a typical transition leading to the increase in g(V ) near

100 meV for pure titania. Compared to the TLS with a low-energy barrier shown in Figure

8(a), this transition is slightly less localized, with 35 atoms moving across 10 Angstroms, and
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FIG. 8. Configurations of local minima for three sample two-level systems (TLS) for a) tantala

(Ta2O5) (V = 32 meV), b) Ta2O5 (V = 453 meV), and c) TiO2 (V = 91 meV). The left column

shows the configuration of the first minimum in the transition, the right column shows the second

minimum, and the middle column visualizes their overlap to emphasize the differences between

minima. Black arrows highlight the major oxygen rotations making up each transition. Blue

octahedra and red spheres represent the cation and anion of the first minimum, respectively. Green

octahedra and brown spheres represent the cation and the anion of the second minimum.

involves six O rotations, with one angle over 25 degrees. As emphasized by the black arrows,

four of these O rotations are over 20 degrees and are spread out across the configuration,

in contrast to the two localized rotations shown in Figure 8(a). This result indicates that

titania supports transitions that are still described by only a few oxygen rotations but that

are spread out to a greater degree compared to tantala.

This atomic description of TLS transitions with small and larger barriers is necessary to

consider when predicting which types of dopants will minimize loss. To decrease Q−1, one
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must identify a dopant that blocks the typical transition providing the most thermal noise.

However, these results indicate that the dominant transition type varies dramatically with

temperature, suggesting that dopants must also be selected to prevent motion characteristic

at either low or high temperature. Using Ta2O5 and TiO2 as an example, adding Ti decreases

the number of low-energy barriers characterized in Figure 8(a) in favor of the type seen in

Figure 8(c). This change in localized transitions influences the barrier distribution between

0-150 meV, impacting low-temperature loss most significantly. However, these transitions

have little impact on room temperature loss. To affect Q−1 at 300 K, doping combinations

must be chosen that affect large-scale configurational changes similar to that exemplified

in Figure 8(b). To the best of our knowledge, this distinction has not been discussed in

the literature before and should be emphasized in future discussions of minimizing loss with

dopants.

IV. CONCLUSIONS

We have combined molecular dynamics (MD) simulations with numerical techniques to

calculate the internal friction (Q−1) for pure and titania-doped tantala. Strain from a

perturbing sound wave induces energy dissipation in amorphous solids that we have modeled

as thermally activated transitions between two-level systems. Applying the interval bisection

and nonlocal ridge methods within MD simulations, we have calculated the barrier (g(V ))

and asymmetry (f(∆)) distributions describing the ensemble of two-level systems for each

amorphous sample. From these distributions, we have computed Q−1(ω, T ) for pure and

doped tantala. By connecting loss behavior at certain temperatures with certain types

of TLS transitions, we provide the first atomic description of the configurational changes

dominating loss at low and room temperatures.

The results from our model reproduce the low-temperature peak in Q−1 between 20-30

K seen in experimental measurements of pure and doped tantala. The magnitude of the

calculated peak for pure Ta2O5 is within a factor of 2-3 of experiment, suggesting that our

model has captured the dominant transitions between two-level systems that lead to this

signature characteristic. Increasing Ti content consistently decreases Q−1 at low temperature

due to a broadening of the barrier distribution to higher energies, an increasing Young’s

modulus, and a decreasing longitudinal coupling constant with doping. We find that 62%
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cation Ti doping minimizes the magnitude of the internal friction peak. Doping Ta2O5 with

14% cation Ti and 53% cation Ti lead to 24% and 37% reductions in the peak magnitude of

Q−1, respectively, both of which agree well with experimental findings for the same doping

levels and confirm the accuracy of the theory and interatomic force fields used.

The ability to calculate the mechanical loss with atomic resolution has provided several

key findings to inform future experiment and design of optimal doping combinations. First,

tantala and titania have very similar barrier distributions, differentiated only by a decrease

in the 30 meV peak with Ti doping and corresponding increase in barriers near 100 and

200 meV. This change in the distribution leads to the low temperature loss peak decreasing

and broadening slightly due to less low-energy barriers being available when Ti is added

as a dopant. However, our results support the idea that tantala and titania are congruent

dopants and have the same qualitative, low-temperature loss peak. Because of this, changes

in the TLS distribution only change the magnitude of the loss peak as a function of Ti

doping, not its general shape.

Second, the coupling constant is the primary parameter dictating the magnitude of the

low temperature loss peak. This quantity describes the sensitivity of the TLS asymmetry

to an applied strain. Very little experimental research has considered this parameter when

discussing how doping affects mechanical loss. Our results encourage experimental mea-

surements of this quantity in tantala and titania samples using fitting to low-temperature

models, since our findings reveal that controlling the coupling constant could be an effective

way to minimize loss.

Third, this is the first study to provide an atomic glimpse of the transitions characterizing

mechanical loss at low and room temperature. On average, transitions in tantala contribut-

ing to loss at low temperature (V=30-40 meV) involve 30 atoms and four oxygen rotations

with angles greater than 10 degrees. Structural changes in these transitions appear well-

localized around 1-2 rotations of 15-20 degrees, with smaller rotations radiating out roughly

8 Angstroms and involving 8-10 cation octahedra. The substitution of Ti cations to tantala

leads to a higher frequency of more delocalized transitions (V = 80-110 meV) that involve

several oxygen rotations over 20 degrees spread across 10 Angstroms, driving loss near 40-50

K.

In contrast to this low temperature behavior, TLS transitions dictating loss at room tem-

perature look qualitatively different. These transitions (V=350-550 meV) involve an average
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of 130 atoms diffusely spread across 20 Angstroms and 16 oxygen rotations, with multiple

rotations above 25 degrees. Thus, the simplistic picture of one or two anion rotations first

exemplified in silica does not apply to room temperature loss mechanisms. This is impor-

tant information when considering how to decrease loss, as dopants must be chosen to block

specific atomic motion that characterizes the internal friction at a particular temperature.

The largest discrepancies between our model and experimental data occur near room tem-

perature, where experimental data demonstrate a plateau in Q−1 for temperatures above 200

K. In contrast, our results suggest a continually decreasing mechanical loss with temperature,

due to the decreasing frequency of high-energy barriers, that leads to an underestimation of

Q−1 near 300 K. The reasons for this discrepancy are likely due to differences between our

modeled samples and those used in experiment. In particular, we have only examined bulk,

perfectly stoichiometric samples, whereas experimental measurements have been taken on

thin films that may feature strong surface effects and non-stoichiometric defects. For ex-

ample, in silica, experimental bulk and thin film samples have revealed differences in the

decay of the barrier distribution, and it is likely that amorphous tantala and titania would

show similar behavior. Thus, future work is currently underway to understand how surface

effects and stoichiometry affect the temperature dependence and magnitude of the internal

friction. In addition, the interatomic potential used in the present study may not be cor-

rectly describing medium-range or long-range order that could affect the internal friction

at higher temperature. The potentials used were fitted to experimental radial distribution

functions with a particular focus on matching the first bonding shell. We are currently

working with experimentalists to compare the medium-range structure seen experimentally

with our model predictions and improve the interatomic potentials as necessary to model

this longer-range structure.

Despite these limitations, this is the first study using computational modeling of tantala

and titania with atomic resolution that matches the characteristic low-temperature loss

behavior seen consistently in experiment. We have identified the primary differences between

the TLS distributions in tantala and titania that drive changes in loss behavior. Our insights

into the atomic configurations making up TLS transitions reveal the types of atomic motion

that contribute to the internal friction and low and room temperature. These findings

are the first look into the microscopic processes guiding mechanical loss in tantala and

titania and provide an important benchmark with which to compare future studies of doping
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combinations, surface effects, and non-stiochiometric samples.
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