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Abstract

The Wang-Landau Monte Carlo algorithm is implemented within an effective Hamiltonian ap-

proach, and applied to BaTiO3 bulk. The density of states obtained by this approach allows a

highly-accurate and straightforward calculation of various thermodynamic properties, including

phase transition temperatures, as well as polarization, dielectric susceptibility, specific heat and

electrocaloric coefficient at any temperature. This approach yields rather smooth data even near

phase transitions and provides a direct access to entropy and free energy, which allow to com-

pute properties that are typically unaccessible by atomistic simulations. Examples of such latter

properties are the nature (i.e., first-order versus second-order) of the phase transitions for different

supercell sizes, and the thermodynamic limit of the Curie temperature and latent heat.

PACS numbers: 64.60.De,77.80.B-,77.70.+a,77.22.Ch,77.22.Ej
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I. INTRODUCTION

Ferroelectric materials are of fundamental and technological interest. Over the past

decades, numerical simulations based on the implementation of Metropolis Monte Carlo

sampling or molecular dynamics methods1,2 within atomistic approaches (e.g., effective

Hamiltonians3–6, bond valence and shell models7,8) have resulted in a better understand-

ing of finite-temperature properties of ferroelectrics. Though they are widely used, standard

Metropolis Monte Carlo and molecular dynamics methods encounter severe problems when

applied to real ferroelectric systems. In particular, the critical slowing down near the phase

transition temperature makes it very difficult to estimate the thermal average of some mi-

croscopic quantities with satisfactory accuracy in a reasonable computational time. For

first-order transitions and for systems with rough energy landscapes, the Metropolis sam-

pling and molecular dynamics methods may fail to sample configurations properly or even

leave some configurations entirely unsampled. This kind of ergodicity breaking sometimes

goes unnoticed, because it may show up clearly only in certain microscopic quantities. More-

over, Metropolis Monte Carlo methods and molecular dynamics methods do not typically

give direct access to thermodynamic potentials. As a result, estimating the free energy or

entropy from such methods is tricky 9,10, which makes the computation of some physical

responses rather challenging.

Interestingly, a Monte Carlo method based on the density of states (or microcanonical

ensemble partition function) proposed by Wang and Landau11 has the potential to over-

come these difficulties. As a matter of fact, the Wang-Landau (WL) algorithm has been

successfully applied to numerous challenging problems in, e.g., magnetism12,13, liquid crys-

tals14, biophysics15, lattice gauge theories16, etc. In particular, the WL method is useful

for studying phase transition phenomena because it does not suffer from critical slowing.

Surprisingly, it has been scarcely applied to the important class of materials formed by fer-

roelectrics, despite its potential (as evidenced by the the recent study of critical behavior

in lead zirconate titanate materials using WL17). Three important issues therefore remain

to be asserted, to the best of our knowledge, before definitely asserting the relevance of

using WL to tackle complex phenomena in ferroelectrics: (1) is the WL algorithm able to

reproduce with the same accuracy the finite-temperature properties that are already acces-

sible by standard Monte-Carlo and Molecular Dynamics techniques in ferroelectrics (such
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as temperature-driven transitions between the paraelectric and a ferroelectric state, or be-

tween ferroelectric states having different directions of the electrical polarization)? (2) Can

the WL technique allows an easy access to an accurate computation of important physical

responses that are directly linked to the free energy or entropy (such as electrocaloric coeffi-

cients) in ferroelectrics? (3) What type of insight (with respect to traditional Monte-Carlo

or Molecular Dynamics) can the WL “bring to the table” in ferroelectrics?

The aim of this article is to address all these three general issues, by implementing the

WL approach within a first-principles-derived effective Hamiltonian3 to conduct a detailed

study of physical properties of BaTiO3. As we will see below, questions (1) and (2) can be

positively answered. Moreover, the present study provides examples related to question (3),

by, e.g., demonstrating that the character of ferroelectric phase transitions (i.e., second-order

versus first-order) as well as several challenging quantities (such as the thermodynamic limit

of the Curie point and latent heat) can be easily determined by using a WL algorithm within

an atomistic approach.

The article is organized as follows. Section II provides details about the effective Hamil-

tonian and the Wang-Landau implementation. Results are given and discussed in Section

III. Finally, Section IV summarizes the present work.

II. METHOD

A. Effective Hamiltonian

Here, we use the effective Hamiltonian (Heff ) of Ref.3, that was developped to model

Ba1−xSrxTiO3 (BST) systems. Its degrees of freedom are (1) the local soft mode ui
4, which is

technically centered on the Ti-sites of the 5-atom unit cell i and which is directly proportional

to the electric dipole moment of that cell; (2) inhomogeneous-strain-related dimensionless

displacement variables {vi}4; and (3) the homogeneous strain tensor {ηH}4. Two additional

physical quantities are defined in this effective Hamiltonian, but are kept frozen during the

simulations – unlike {ui}, {vi} and {ηH}. They are the set of variables {σj} characterizing

the atomic distribution of the mixed A-sublattice6 – with σj=+1 or -1 corresponding to the

presence of either Ba or Sr atom at the A-lattice site j – and the local strain {ηloc}, which

is related to the difference in ionic radius between Ba and Sr ions. The total internal energy
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of this Heff is given by:

Etot = Eave ({ui} , {vi} , {ηH}) + Eloc ({ui} , {vi} , {σj} , {ηloc}) . (1)

where Eave represents the energy of a virtual 〈A〉TiO3 simple system whose 〈A〉 atom in-

volves the potential average of Ba and Sr atoms18, and where Eloc represents a perturbation

to this virtual crystal approximation to model real (Ba1−xSrx)TiO3 systems (including x=0,

that is pure BaTiO3). Eave contains a local-mode self-energy, a long-range dipole-dipole in-

teraction, a short-range interaction between soft modes, an elastic energy, and an interaction

between the local modes and local strain4. Moreover, Eloc incorporates the effect of the real

Ba and/or Sr ions on the local soft modes and the inhomogenous strain tensor3. All param-

eters of this effective Hamiltonian are fitted from first-principles calculations, except one of

them (namely, the one related to the harmonic part of the local-mode self-energy) that is

allowed to vary in order to reproduce the experimental value of the Curie temperature of

disordered (Ba0.5Sr0.5)TiO3 solid solution. These parameters are provided in Ref.3, and more

details about effective Hamiltonians can be found in Ref.4 (and references therein). When

used in “traditional” Monte-Carlo (MC) and molecular dynamics techniques, this Hamilto-

nian has been shown to accurately predict several static and dynamical properties of BST

systems3,19,20,22. In particular, it results in critical temperatures of 385, 280 and 230±5 K

for the cubic-to-tetragonal, tetragonal-to-orthorhombic, and orthorhombic-to-rhombohedral

transitions of pure BaTiO3 (BTO) bulk, respectively, which are in good agreement with

the corresponding measurements of 400K, 280K and 180K23. Other examples demonstrat-

ing the accuracy of this effective Hamiltonian is the subtle temperature-gradient-induced

polarization19, and the existence of two modes (rather than a single one, as previously be-

lieved for a long time) contributing to the GHz-THz dielectric response of BaTiO3 and BST

compounds20,22.

B. Wang-Landau Method

Here, we implement the flat histogram sampling method of Wang and Landau11 in Monte

Carlo simulations using this effective Hamiltonian, and apply it to pure BaTiO3 bulk, in

order to illustrate how the resulting numerical tool can lead to a straightforward access of

many properties that are usually rather challenging to compute or even model. This Wang-
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Landau (WL) Monte Carlo simulation algorithm relies on the calculation of the density

of states Ω(E), defined as the number of local dipole configurations for a given energy

E. Unlike the conventional (Metropolis) Monte-Carlo method1 that practically generates

a canonical distribution Ω(E)exp(−E/kBT ) at a given temperature, WL determines the

density of states by conducting a non-markovian random walk in the configurational space.

Specifically, in order to set up the energy histogram, one first obtains upper and lower bounds

on E from estimating the energies relevant to a certain temperature interval. For cases

(such as ferroelectrics) for which the energy can take continuous values, one needs to use a

discretization scheme to divide the energy range of interest into a number of bins. Since Ω(E)

is not known a priori, the histogram and Ω(E) are initialized with 0 and 1, respectively, for all

energy bins between the upper and lower bounds. Then, the WL algorithm calculates Ω(E)

in an iterative procedure by starting from a random local mode and strain configuration

with energy in the range of interest. As the algorithm proceeds, the density of states is

modified by a multiplicative factor and the energy histogram is simultaneously increased by

1 each time an energy bin is visited. The fact that the probability of the random walk is

proportional to 1/Ω(E) guarantees that the energy histogram becomes flat when all energy

bins are about equally well sampled. In our simulations, the energy histograms are typically

checked every 104 Monte-Carlo sweeps, and we impose the histogram of the lowest energy

bin to be larger than 90% of the value of the energy histogram averaged over all energy bins

as our criterion of flatness. The iteration is completed when flatness is achieved. Next, the

modification factor is reduced following the strategy described in Ref.21, the histogram is

reset to zero for all bins, and the next step of iteration begins. Finally, the simulation ends

after the modification factor has reached a sufficiently low value.

Once Ω(E) is determined, the partition function is naturally obtained for any tempera-

ture, T , as Z = ΣEΩ(E) exp(−βE) with β = 1
kBT

. As a result and as we will now illustrate,

many thermodynamic quantities can be easily calculated for any temperature, and in a

single step, within WL.

III. RESULTS

For instance, the supercell average of any n power of the magnitude of the α-Cartesian

component of the local modes can practically be determined by computing:
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〈|uα|n〉 =
ΣE|uα|nΩ(E)e−βE

ΣEΩ(E)e−βE
(2)

Note that such determination is similar in spirit with the computation of magnetic prop-

erties discussed in Refs.12,13, since |uα|n is calculated here for each energy bin used for esti-

mating Ω(E) rather than by considering the density of states as a function of both energy

and polarization and then calculate this joint density of states (which is computationally

demanding for ferroelectric systems).

A. Local modes and dielectric response

Figure 1a shows the temperature behavior of 〈|uα|〉, with α=x, y or z, as computed

within WL using Eq.(2) with n=1, for a 16×16×16 BaTiO3 supercell (note that the x,

y and z axes are chosen along the pseudo-cubic [100], [010] and [001] directions, respec-

tively). For comparison, Figure 1a also reports the computation of the supercell average

of the local mode, 〈u〉, for the same supercell, but using standard Metropolis Monte-Carlo

simulations (using 20,000 MC sweeps for reaching thermal equilibrium and an additional

20,000 MC sweeps for computing statistical properties). It shows that the 〈|ux|〉, 〈|uy|〉 and

〈|uz|〉 Cartesian components are all small at high temperature (note that they do not fully

annihilate there because, unlike for the conventional MC simulations, Eq.(2), with n=1,

corresponds to the computation of the supercell average of the magnitude of uα rather than

the supercell average of uα – that can take positive and negative values. Such difference

also explains why predicted critical transition temperatures can slightly vary between the

WL and Metropolis algorithms). Figure 1a also shows that 〈|uz|〉 suddenly increases, while

〈|ux|〉 and 〈|uy|〉 remain small, for temperatures below ' 385K. This behavior is indicative

that BTO bulk is predicted to undergo a phase transition from the paraelectric cubic phase

to the ferroelectric tetragonal phase at the Curie temperature of ' 385K, as similar to pre-

vious works using the same effective Hamiltonian but within Metropolis MC and molecular

dynamics techniques3,20,22. Similarly, the sudden increase of 〈|uy|〉 at around 280K and then

of 〈|ux|〉 close to 230K are characteristic of the well-known transitions towards (ferroelectric)

orthorhombic and rhombohedral states, respectively. Figure 1a therefore attests that the

implementation of the present Heff within the WL algorithm is also capable of accurately

predicting structural transitions in ferroelectric systems. Interestingly, the sharp increase of
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the 〈|uα|〉’s seen in Fig. 1a at these three critical temperatures hint that the corresponding

transitions are all first-order. We will come back to the nature of these transitions later on.

For now, let us concentrate on the diagonal elements of the dielectric response, χαα,

which can also be easily accessed from the Wang-Landau algorithm once Ω(E) is known, by

computing12,13:

χαα = βL3(〈|uα|2〉 − 〈|uα|〉2) (3)

for a L×L×L supercell, and where 〈|uα|2〉 and 〈|uα|〉 are obtained via Eq.(2).

Figure 1b reports the average diagonal element of the dielectric tensor, i.e. χdiag =

Σαχαα/3, as a function of temperature for the 16×16×16 supercell, and also compare it

with the one obtained from the standard Metropolis Monte-Carlo simulations (this latter is

computed from Eq. (3) too, but for which 〈|uα|2〉 and 〈|uα|〉 are determined by averaging

these quantities over the MC sweeps at every considered temperature). Figure 1(b) indicates

that the WL algorithm correctly predicts peaks of χdiag at the critical transition tempera-

tures of 385, 280 and 230K, respectively. It is also important to realize that Fig. 1a and

1b demonstrate that one particular strength of the Wang-Landau algorithm is to provide

physical quantity (such as polarization and dielectric response) that smoothly behave with

temperature for any temperature window, which contrasts with the standard Metropolis

Monte-Carlo simulations that typically yield large fluctuation near transition temperatures

(see, e.g., the variation of ux in Fig. 1a near 280K and χdiag near 320K in Fig. 1b for

the traditional MC computations). Such strength will be further demonstrated and taken

advantage of below, and has been previously demonstrated to be crucial to study complex

phenomena (such as the existence of critical behaviors in ferroelectric bulks or the diffuse

character of phase transitions in ferroelectric ultrathin films17,24).

B. Specific heat

Note that other physical quantities can be naturally and smoothly obtained (for every

temperature) by using the Wang-Landau algorithm. One example includes the specific heat,

C, which is given within our WL implementation for a L×L×L supercell by 11–13:

C = kBβ
2 〈E2〉 − 〈E〉2

L3
(4)
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with

〈En〉 =
ΣEE

nΩ(E) exp(−βE)

ΣEΩ(E)e−βE
(5)

for any n integer.

Figure 2a shows the resulting specific heat of BaTiO3 as a function of temperature for

a periodic supercell having lateral sizes of L=16. One can see sharp, large peaks at each

transition temperature, which is consistent with the excess specific heat measured near the

Curie temperature in Ref.25 and with the fact that the three phase transitions of BaTiO3

bulks are experimentally known to be of first order.

Let us know use one aforementioned strength of the WL method to further demonstrate

that our effective Hamiltonian results for the specific heat are consistent with the known

first-order nature of the paraelectric–to–ferroelectric transition in BaTiO3 bulk. More pre-

cisely, we take advantage that WL provides very smooth data for the specific heat for any

temperature and for any considered L×L×L supercell, as shown in Fig. 2b for temperatures

close to the Curie point. Such smoothness allows to easily locate the Curie temperature

(which is the position of the highest-temperature peak in the specific heat) and to extract

the value of C at this Curie temperature for any studied L×L×L supercell. This latter

value will be denoted here as Cmax
L , and is shown in the inset of of Fig. 2b as a function

of the L lateral size of the supercells (with L equal or larger than 12). This inset clearly

reveals that Cmax
L scales as L3, which is fully consistent with finite-size scaling of a first-order

transition26.

Interestingly, the thermodynamic limit of the Curie temperature, TC(∞), for the

paraelectric-to-ferroelectric transition can also be easily determined within WL, by first

identifying the transition temperature, TC(L), of the periodic L×L×L supercell as the max-

imum position of the specific heat and the minimum of the Binder parameter defined as

V (L) = 1 − 〈E4〉/3(〈E2〉)2 26 (where 〈E4〉 and 〈E2〉 are given by Eq.(5) with n=4 and 2,

respectively); and then using the finite-size scaling relation TC(∞)− TC(L) ∼ L−326. Doing

so provides a TC(∞) of 388.1± 0.1K for the presently used effective Hamiltonian.

C. Electrocaloric coefficient

Moreover, the electrocaloric coefficient, which is currently attracting a lot of attention27–31

can also be “easily” extracted from the Wang-Landau algorithm at any temperature. For
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that, one has to recall that the electrocaloric coefficient, γ, corresponds to a change of

temperature under an applied electric field, E , and is given by30:

γ = −T
C

∂P

∂T

∣∣∣∣
E

(6)

where C is the specific heat and where P is the electrical polarization.

Taking C to be provided by Eq. (4) and |P | = Z∗

a2lat

ΣE |u|Ω(E)e−βE

ΣEΩ(E)e−βE
, were Z∗ and alat are the

Born effective charge and the 5-atom lattice constant, respectively, gives in units of
[
pK·m
V

]
:

γ = −1.945Z∗alatL
3T

(
〈|u|E〉 − 〈|u|〉〈E〉
〈E2〉 − 〈E〉2

)
(7)

where 〈|u|E〉 =
∑
E |u|EΩ(E) exp(−βE)

ΣEΩ(E)e−βE
and 〈|u|〉〈E〉 =

∑
E |u|Ω(E) exp(−βE)

ΣEΩ(E)e−βE
·
∑
E EΩ(E) exp(−βE)

ΣEΩ(E)e−βE
, while

〈E2〉 and 〈E〉 are given by Eq.(5).

Figure 2c shows the resulting electrocaloric coefficient for a 14×14×14 BaTiO3 super-

cell, as computed from WL using Eq. (7). One can see that this coefficient peaks at

the transition temperatures, as consistent with recent theoretical predications28,29 and with

measurements32–34 in ferroelectric materials. In particular, γ is predicted to be larger than

∼50 mK.cm/kV in the vicinity of the Curie temperature, which is consistent with the ex-

perimental values of 53 mK.cm/kV obtained at a temperature of 391K in BTO polycrystal32

and of 75 mK.cm/kV extracted at T=402 K in BaTiO3 single crystal33.

D. Example of insight provided by WL

Let us also now further demonstrate the type of physical insight that the WL method can

provide in ferroelectrics, by, e.g, paying close attention to the paraelectric-to-ferroelectric

transition in BaTiO3 bulk. For that, we take advantage of the fact that the WL algorithm

allows to compute the free-energy-like quantity defined as A(E, β) = − lnP(E, β)35, where

P(E, β) = Ω(E) exp(−βE)
ΣEΩ(E)e−βE

is the normalized canonical distribution (i.e., the canonical proba-

bility function). Figure 3a shows how A depends on the E internal energy for the 16×16×16

supercell and at three different temperatures that are all very close to the Curie temper-

ature, namely 385.9, 385.0 and 384.0 K. A adopts two minima at energies to be denoted

by Ef and Ep, respectively, for any of these three temperatures (with the value of Ef and

Ep being slightly dependent on the temperature). Strikingly, the minimum of A at Ef is

higher than the one at Ep for the temperature above 385K, while the opposite situation
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holds below 385K and these two minima have equal depth at T=385K. Such features are

representative of a first-order transition occurring at 385K (for L=16) with the minima at

Ef and Ep corresponding to the equilibrium energy of the ferroelectric and paraelectric state,

respectively. The first-order nature of the paraelectric-to-ferroelectic transition in BaTiO3 is

a known experimental feature, and is thus undoubtedly (and “easily”) confirmed by the im-

plementation of the Wang-Landau algorithm within our effective Hamiltonian. Interestingly,

Figure 3b provides similar data at three temperatures close to TC , but for the L×L×L super-

cell with L = 10 (note that the Curie temperature for such smaller supercell is numerically

found to be 377.2K). In that case, the bimodality of the canonical probability distribution,

and hence the double-well structure of A, is lost, i.e., there is only one minimum of A at

any temperature (including the Curie temperature) – which is characteristic of second-order

transitions. In other words, Figures 3a and 3b reveal that the (true) first-order nature

of the paraelectric-to-ferroelectic transition in BaTiO3 can only be resolved by simulations

conducted on large-enough supercells (in our case, the L lateral size of this supercell has to

be at least 12 unit cells).

Moreover, for any L×L×L supercell with L larger than 12, one can also extract the latent

heat at the first-order paraelectric-to-ferroelectric transition as ∆e(L) = (Ef (L)−Ep(L))/L3,

where the difference in energy between Ef (L) and Ep(L) is computed at the TC(∞) critical

temperature. The thermodynamic limit of this latent heat, ∆e(∞), is then obtained by

fitting the ∆e(L)-versus-L curve as ∆e(L) = ∆e(∞) + a exp(−bL), where a and b are

parameters related to finite-size corrections (here, they are numerically found to be ≈ −1.2

J/g and ≈ 0.01 J/g, respectively). As shown in Fig. 3c, the resulting ∆e(∞) is equal to

1.2±0.05 J/g, which is in rather good agreement with the measurement of 1 J/g reported in

Ref.36. The fact that ∆e(∞) is finite is also fully consistent with the first-order character of

the paraelectric–to-ferroelectric transition in BaTiO3 bulk. Note that two previous methods

also used effective Hamiltonian techniques within a special numerical procedure (namely,

thermodynamic integration in Ref.9 versus the application of auxiliary fields in Ref.10) to

extract free-energy-like quantities close to the Curie temperature in BaTiO3 bulk. However,

these two methods did not report the behavior of free-energy-like quantity as a function of

the internal energy, which therefore precluded the computation of the latent heat.
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IV. SUMMARY

In summary, we have demonstrated the capabilities and advantages of combining the

Wang-Landau Monte Carlo algorithm with an effective Hamiltonian approach for ferroelec-

tric bulks. It is also important to realize that this WL scheme can be implemented within

other atomistic approaches, such as the bond valence and shell models7,8. It can also be

applied to nanoscale ferroelectrics, which are of high current interest – partly due to their

potential applications in miniaturized devices37–40. In fact, it is timely and more appropriate

to use the microcanonical ensemble (as automatically done within the WL algorithm) rather

than the macrocanonical one (which is inherent to the Metropolis Monte-Carlo technique)

when mimicking ferroelectric nanosystems41,42. We are therefore confident that our present

work will motivate the use of the WL algorithm in ferroelectrics, both in their bulk and

nanostructure forms, and can thus lead to a deeper understanding of this important class of

materials as well as to the design of optimized or even novel properties.
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FIGURE CAPTIONS
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FIG. 1: Temperature behavior of the supercell average of the local mode (Panel a) and average

dielectric susceptibility (Panel b) for a 16×16×16 periodic BaTiO3 supercell, as predicted from the

Wang-Landau method (crosses) and as computed using the Metropolis algorithm (squares).
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FIG. 2: Specific heat (Panels a and b) and electrocaloric coefficient (Panel c) versus temperature

for periodic BaTiO3 supercells, as computed within the Wang-Landau algorithm. Panel (a) shows

the specific heat, C, of a 16×16×16 periodic BaTiO3 supercell for an interval of temperatures cov-

ering the three phase transitions while Panel (b) depicts C close to the paraelectric-to-ferroelectric

transition for L × L × L supercells having different L lateral sizes. The inset of Panel (b) shows

Cmax
L (see text) as a function of L3, with the linear fit being represented by a straight line. A

14×14× 14 supercell is used for the results depicted in Panel (c). Error bars are smaller than the

dimensions of the symbols.
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FIG. 3: Properties related to the nature of the paraelectric-to-ferroelectric transition of BaTiO3

bulks, as obtained from the Wang-Landau algorithm. Panel (a) represents the free energy-like-

quantity A versus the internal energy for temperatures above, below and at the transition point

for a 16×16× 16 periodic BaTiO3 supercell. Panel (b) provides similar data but for a 10×10× 10

supercell. Panel (c) displays the the finite-volume latent heat plotted against the lattice size L,

with the fit to ∆e(L) = ∆e(∞) + a exp(−bL) being shown via a dashed line.
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