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We study the effects of strong electron-electron interactions on the surface of cubic topologi-
cal Kondo insulators (such as samarium hexaboride, SmB6). Cubic topological Kondo insulators
generally support three copies of massless Dirac nodes on the surface, but only two of them are ener-
getically degenerate and exhibit an energy offset relative to the third one. With a tunable chemical
potential, when the surface states host electron and hole pockets of comparable size, strong interac-
tions may drive this system into rotational symmetry breaking nematic and translational symmetric
breaking excitonic spin- or charge-density-wave phases, depending on the relative chirality of the
Dirac cones. Taking a realistic surface band structure into account we analyze the associated
Ginzburg-Landau theory and compute the mean field phase diagram for interacting surface states.
Beyond mean field theory, this system can be described at finite temperature by a two-component
isotropic Ashkin-Teller model, and we outline the phase diagram of this model. Our theory provides
a possible explanation of recent measurements which detect a two-fold symmetric magnetoresistance
and an upturn in surface resistivity with tunable gate voltage in SmB6. Our discussion can also be
germane to other cubic topological insulators, such as YbB6, PuB6.

PACS numbers: 73.20.-r, 71.35.Lk

I. INTRODUCTION

It was realized in the past decade that the band struc-
ture of a strongly spin-orbit coupled three-dimensional
solid with preserved time-reversal symmetry can be as-
sociated with a topological Z2 index1,2. A system with
such nontrivial topological index, also known as strong
Z2 topological insulator, belongs to class AII in ten fold
way of classification3. These materials ideally have an in-
sulating bulk but host an odd number of metallic surface
states which are protected against time-reversal invariant
perturbations. Typical topological insulators (such as
Bi2Se3) are often only very weakly correlated. Our theo-
retical understanding of these materials is thus based on
a noninteracting electronic band structure picture that
is not affected by electron-electron interactions. Within
the same class (AII), a strongly correlated topological
Kondo insulator (TKI) was predicted to exist in Ref.4, in
which the hybridization between localized f - and conduc-
tion d-electrons opens up a topologically nontrivial bulk-
insulating gap below the Kondo temperature. Indeed,
a number of recent experiments are strongly suggesting
that samarium hexaboride (SmB6) possibly supports a
TKI below the Kondo temperature ( 50 K)5–14. The bulk
topological invariant can be computed within the mean-
field description of this system, yielding a nonzero Z2

index. These recent findings motivate the search for ef-
fects where both interactions and topological details play
crucial role at low temperatures15–17.

Motivated by the possibility that TKIs can be a fertile
ground to support novel interplay of topology and cor-

relations, we here consider the effect of strong electronic
interactions on the surface of TKIs and demonstrate that
gapless surface states in these systems can be susceptible
towards nematic and excitonic density-wave phases. We
also show that our theoretical analysis can be germane
to two recent experiments18,19, which could be indica-
tive of interaction-induced instabilities on the surface of
a TKI: first, a magnetoresistance measurements on SmB6

reports a C2 and C4-symmetric magnetoresistance at low
and high temperatures, respectively18. These findings in-
dicate a rotational symmetry breaking nematic ordering
on the surface of a TKI. Second, Ref.19 reports a mea-
surement of the surface resistivity in SmB6 where the re-
sistivity increases with varying gate voltage, which may,
for example, arise due to an underlying excitonic order-
ing. In this work we develop a theory for the interacting
surface states in TKIs, which provides possible explana-
tions to these observations.

Consider the typical surface band structure of a cubic
topological insulator (for example, SmB6): these systems
are strong Z2 topological insulators and thus support an
odd number of metallic surface states. In the cubic en-
vironment of SmB6, the band inversion takes place at
the three X points of the bulk Brillouin zone (BZ)20,21.
Hence, an interface of a cubic TI with the vacuum sup-
ports three copies of massless Dirac cones at the Γ, X,
and Y points of the surface BZ, as illustrated in Figs. 1(a)
and (b) [throughout the paper, we assume that the sur-
face is cleaved along a high symmetry axis, such as (001)].
The underlying cubic symmetry enforces equal energies
EX and EY of the Dirac nodes at the X and Y points,
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respectively, which manifests a four-fold rotational C4

symmetry on the surface. The Γ Dirac point is, how-
ever, not constrained by this symmetry and generically
displays an offset with respect to the X and Y points,
i.e., EΓ 6= EX/Y (we set EΓ > EX/Y in the remainder to

be definite), which can be as large as ∼ 10−12 meV22,23.
This surface band structure is also in agreement with re-
cent ARPES measurements8–13,24–26. Due to such large
energy off-set among the Dirac points, it is natural to
anticipate that surface chemical potential is tuned in be-
tween EΓ and EX,Y , giving rise to electron and hole pock-
ets that can be conducive for excitonic condensation. If,
on the other hand, all the pockets are electron or hole
like such configuration can be achieved through external
gating, for example19.

It is therefore conceivable to place the chemical poten-
tial in between EΓ and EX/Y

19, yielding one hole pocket
around the Γ point and two electron pockets near the
X, Y points, as shown in Fig. 1(c). Now, if interactions
on the surface are included, electrons in the X/Y pockets
can pair via the so called the Keldysh-Kopaev mechanism
with holes in the Γ pockets28, giving rise to an excitonic
condensate i.e., a density wave, which is modulated by
half the reciprocal lattice vector of the surface BZ. This
paper discusses the phase diagram of this effective inter-
acting surface theory.

Since, the underlying bulk theory is strongly spin-orbit
coupled, spin (planar components) and momentum of the
surface Dirac cones will be locked as shown in Fig. 1(a)
and (b). Therefore, only the z-component of the spin
remains free and participates in the ordering. However,
in principle, two distinct possible types of excitonic in-
stabilities can occur on the surface of TKIs depending
on the relative chirality of the Dirac cones at the X/Y
and Γ points. When all Dirac cones on the surface have
identical chirality [Fig. 1(a)], the excitonic condensate is
formed by electrons and holes with opposite spin pro-
jection, giving rise to triplet spin-density wave (SDW)
order. If, on the other hand, the Dirac points at the Γ
and X,Y points carry opposite chirality [Fig. 1(b)], pair-
ing occurs between particles and holes with equal spin
projection, leading to singlet charge-density wave (CDW)
order. Here singlet and triplet orders are defined in terms
of total angular momentum. Our discussion is, however,
insensitive to the exact nature of the excitonic ordering,
and we thus assume equal chirality for all Dirac cones
and discuss the SDW instability in the following.

Currently there is an ongoing debate on the effective
model for bulk insulating state in SmB6 that can lead to
different spin texture on the surface23,29. However, the
nature of the excitonic order only depends on the rel-
ative chirality of electron- and hole-like Dirac surfaces.
Recent theoretical works30,31 have demonstrated that
depending on the relative strength of nearest-neighbor
and next-nearest-neighbor hybridization among d- and
f -electrons, one can realize either two scenarios, we pre-
sented in Fig. 1. Therefore, our classification exhausts
all possibilities for the excitonic order and the following

FIG. 1. (Color online) Top row: Two possible chiralities of
electron (blue) and hole (red) pockets on the surface of cubic
TKIs, leading to an excitonic instability in the (a) SDW and
(b) CDW channel. (c) Offset among the Dirac points near the
Γ and X/Y points, and (d) deviation from perfectly nesting,
due to (e) unequal sizes of the pockets, (f) ellipticity in the
electron pocket, parametrized by µ and δ, respectively.

discussion is insensitive to the details of the bulk band
structures (since, the SDW and the CDW orders give
identical phase diagram).

If the Fermi surfaces are perfectly nested [as shown
in Fig. 1 (d)], the Keldysh-Kopaev mechanism dictates
that an excitonic instability sets in for arbitrarily weak
repulsive interactions. It turns out, however, that a re-
alistic surface band structure deviates from perfect nest-
ing in two ways: first, generically the chemical poten-
tial will not be exactly placed in the middle between EΓ

and EX/Y [as illustrated in Fig. 1 (e)]. This Fermi sur-
face mismatch reduces the propensity for excitonic pair-
ing, analogous to the Clogstron-Chandrasekhar effect in
standard BCS theory where the chemical potential imbal-
ance is induced by a Zeeman term. Second, recent band
structure calculations22 indicate that only the Γ Dirac
cone is isotropic while both X and Y Dirac cones can
be anisotropic [see Fig. 1 (f)], in agreement with ARPES
measurements8–13,24–26. We take these realistic effects
into account, finding that the overall structure of the
phase diagram is not strongly affected by these effects,
although they may reduce the transition temperature of
various orderings.

We note that the surface band-structure shown on
Fig. 1 exhibits strong resemblance to the band struc-
ture of the iron-based superconductors. We discuss
both the similarities and the differences between these
systems at the end of the paper (see Sec. VI). The
excitonic ordering due to weak repulsive interactions,
known as Keldysh-Kopaev mechanism28, has also been
exploited to address the SDW instability in Cr32 and
iron-based superconductors33–35, antiferromagnetic or-
dering for weak Hubbard repulsion in monolayer36,37 and
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bilayer38 graphene, 2D Kondo insulators39 when placed
in an in-plane magnetic field, and in the context of pos-
sible excitonic instability in topologically trivial calcium
hexaboride (CaB6)40.

This paper is structured as follows: in Sec. II, we intro-
duce the microscopic description of the interacting sur-
face states of a cubic TKI. In Sec. III, we discuss the
Ginzburg-Landau theory of the model that is valid in
the vicinity of a second order phase transition at finite
temperature. In particular, we discover that in the limit
of small ellipticity the order developing on the surface
breaks the C4 lattice symmetry down to C2. We further
illustrate that the condensation of excitonic order param-
eters only breaks discrete symmetries, thus implying that
true long range order is described accurately by a mean
field analysis of our effective surface theory. We present
a full numerical computation of the mean field phase di-
agram in Sec. IV, finding a second order phase transition
for nearly perfect nesting from a high-temperature para-
magnetic phase to a C2-symmetric state at low tempera-
ture in which an excitonic condensate develops between
the Γ and the either X or Y pockets, but not both, thus
spontaneously breaking the discrete C4 symmetry of the
surface BZ. As is well known, mean field theory does not
assume correlations in the paramagnetic or normal phase
at high temperature and does not distinguish between a
phase where true long range order develops in the form
of a nematic phase (with broken rotational symmetry)
where thermal fluctuations dominate and a density wave
(with broken translational symmetry). These two dis-
tinct transitions, which coincide in mean field theory, can,
in principle, take place at different temperatures. This
occurs through the proliferation of domain walls in the
system. It turns out that the effective theory describing
the dynamics of the domain walls can be mapped onto
a two-component isotropic Ashkin-Teller model. We ex-
ploit such mapping in Sec. V to elucidate the phase struc-
ture beyond the mean field level. Finally, the paper is
concluded by a summary and discussion in Sec. VI. In
particular, we comment on similarities as well as some
differences between our findings and the phase structure
in a completely different class of systems, the iron pnic-
tides.

II. MICROSCOPIC HAMILTONIAN FOR
INTERACTING SURFACE STATES

This section introduces the microscopic description of
the interacting surface states. The appropriate spinor
basis is chosen to be Ψj = (Ψ↑,j ,Ψ↓,j), near j = Γ, X, Y
points of the surface BZ, where Ψσ,j is composed of lin-
ear superposition of d and f electrons with spin projec-
tion σ =↑, ↓. The relative weight among d and f elec-
trons in the surface states is set by the bulk band pa-
rameters, such as hopping amplitudes and hybridization
matrix elements22. A recent transport measurements in
SmB6 with different thickness clearly establish that a low

temperatures (sufficiently below the Kondo temperature)
surface states are decoupled from the bulk and the trans-
port properties are essentially determined by the former
ones6. Furthermore, spin-resolved ARPES has estab-
lished the helical spin-texture of the surface states, and
quantum oscillation has observed the signature of Dirac
Landau levels up to 45 Teslas. Also, recent thermo-
electric measurements captured the signature of heavy
Dirac fermions on the surface, even after mechanically
damaging the surface 43. These observations strongly in-
dicate that despite small bulk gap (∼ 15 meV), and large
number of bulk states, the surface and the bulk states are
effectively decoupled in SmB6 that in turn allows us to
treat the gapless surface states separately44. Notice, in
YbB6 the bulk gap is ∼ 100 meV and one can safely
neglect any coupling between bulk and surface states.

The noninteracting Hamiltonians describing the helical
Dirac fermionic excitations near the Γ, X and Y points
take the form [setting ~ = 1]

Hj = vjxkxσx − vjykyσy, (1)

where j = Γ, X, Y , with vΓ
x = vΓ

y = v as the Fermi
velocity of the isotropic Dirac cone near the Γ point.
The underlying C4 symmetry of the surface BZ implies
vXx = vYy and vXy = vYx . The ellipticity of the Dirac
cones near the X and Y points is captured by defining
vXx = v(1 + δ) and vXy = v(1 − δ). The parameter δ

in SmB6 ranges from 0.1 to 0.48,11–13. The above form
of the Hamiltonians is restricted by the bulk topological
invariant and in momentum-space they represent anti-
vortices near Γ, X, Y points of the surface BZ, capturing
the nontrivial topological structure of the bulk insulating
state on the surface.

Excitonic SDW ordering arises from a repulsive inter-
action between fermions with opposite spin projections in
the Γ and X,Y pockets. Such a particle-hole pairing in-
stability can be taken into account by adding a repulsive
short-ranged interaction

Hint = −U0

2

∑
j=X,Y

∫
d2q

(2π)2
s†j,qsj,q (2)

to the free Hamiltonian, where U0 > 0 and

sj,q =

∫
d2k

(2π)2
c†Γ,k+qα(σ3)αβcj,kβ (3)

is the spin operator. c†j,kα creates a fermion in the
j = Γ, X, Y pocket with momentum k and spin α. The
momentum of the X and Y excitation is measured rela-
tive to the nesting vectors QX = (π, 0) and QY = (0, π).
In Eq. (3), a summation over the spinor indices α and β
is implied. Within the same framework, CDW ordering
can be studied by simply replacing the Pauli matrix σ3

by σ0 in Eq. (3) and changing the sign of one matrix in
HX/Y or HΓ in Eq. (1), without quantitatively changing
the results. The order parameter for the excitonic SDW
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condensation is

∆X/Y =
U0

2
〈c†Γ,kα(σ3)αβcX/Y,kβ〉, (4)

where 〈. . .〉 denotes the thermal expectation value.

III. GINZBURG-LANDAU THEORY

In this section, we discuss the Ginzburg-Landau ex-
pansion of the ordered state, which describes the second
order phase transition at small δ. This analysis will allow
us to gain a qualitative insight into the phase diagram for
interacting surface states of TKIs and the notion of sym-
metry breaking in various ordered phases. The Ginzburg-
Landau functional can be constructed by systematically
expanding the free energy F in powers of ∆X and ∆Y ,
yielding

F(∆i) = K
[
(|~∇∆X |)2 + (|~∇∆Y |)2

]
+ α[|∆X |2 + |∆Y |2]

+
β

2
(|∆X |2 + |∆Y |2)2 + γ|∆X |2|∆Y |2. (5)

The last term (proportional to γ) plays an important
role in determining the symmetry breaking in the ordered
phase. For γ = 0, the free energy is degenerate for fixed
|∆X |2 + |∆Y |2. If γ > 0, surface states develop a finite
expectation value of either |∆X | or |∆Y |, but not both.
Such a phase manifestly breaks the C4 rotational symme-
try down to C2, and the system simultaneously develops
a nematic order. On the other hand, when γ < 0, the
system minimizes the free energy by simultaneously con-
densing |∆X | and |∆Y | at the same temperature, and
the four-fold C4 rotational symmetry of the system is
preserved.

In terms of the microscopic parameters, γ reads49

γ = Tr[ĜΓĜXĜΓĜX + ĜΓĜY ĜΓĜY − 2ĜΓĜXĜΓĜY ],(6)

where we define

Ĝ−1
Γ = −iω+HΓ−λ−, Ĝ−1

X/Y = −iω+HX/Y +λ+, (7)

with λ± = λ ± µ [see also Fig. 1(c)] and Tr implies a
summation over momentum, Matsubara frequency, and
spinor indices. If all bands are perfectly circular (δ = 0),

ĜX = ĜY and concomitantly γ = 0, which remains true
even if the bands are not perfectly nested, i.e., µ 6= 0. In a
realistic situation with elliptic eletron-like Fermi pockets
near X and Y points (i.e., δ 6= 0), we have γ 6= 0. For
small ellipticity (δ � 1), expanding all the quartic terms
in F in powers of δ, we obtain γ = δ2g(T, µ), where
g(Tc, µ) is a positive function close to Tc. Thus, the SDW
state breaks the C4 symmetry on the surface under X ↔
Y . In the limit of large ellipticity, we must treat δ non-
perturbatively, which is done in the next section.

We point out that the Ginzburg-Landau functional
in Eq. (5) possesses a U(1) valley symmetry of the
SDW OPs (∆X , ∆Y ) associated with their phases ∆j =

|∆j |eiφj , which implies that for γ > 0 the SDW order
not only spontaneously breaks a discrete C4 rotational
but also a continuous U(1) symmetry. It is important
to note that such continuous U(1) symmetry is only an
artifact of the low energy approximation for the surface
states and can be reduced if we allow an additional quar-
tic term

FSB = ρ|∆X |2|∆Y |2 [cos(2ϕX) + cos(2ϕY )] (8)

in Eq. (5). Such a term can, for example, be generated by

pair-scattering processes represented by c†Γc
†
ΓcXcX and

c†Γc
†
ΓcY cY , also known as Umklapp processes, which are

allowed in the presence of an underlying lattice50. The
physical origin of such terms can be appreciated in the
following way: the phase degree of freedom of ∆j rep-
resents a sliding mode of the SDW order in real space.
However, in any material the commensurate density wave
will be pinned to the lattice. Hence, we need to take
into account such lattice-induced terms to pin density-
wave order, that also reduce the (artificial) valley U(1)
symmetry down to a discrete Z2 one. Most importantly,
this implies that no continuous symmetry is broken and
the SDW order on the two-dimensional surface of cubic
TKIs can exhibit true long-range order42. In particular,
we expect that a mean field analysis provides an accurate
phase diagram of the effective surface theory, despite the
fact that the system is two-dimensional. We discuss the
mean field phase diagram in the next section.

IV. MEAN FIELD PHASE DIAGRAM

To go beyond the Ginzburg-Landau regime of the
phase diagram, we now analyze the interacting surface
theory in the mean field approximation. In this section
we neglect the symmetry-breaking terms [Eq. (8)], and
thus the excitonic orders enjoy an artificial U(1) symme-
try. In terms of the order parameters, defined in Eq. (4),
the free energy density reads

F =
2

U0

(
|∆X |2+|∆Y |2

)
− 1

2β

6∑
i=1

∫
d2k

(2π)2
ln

[
2 cosh

βEi
2

]
,

(9)
where β is the inverse temperature and Ei are the
six eigenvalues of the effective quadratic single-particle
Hamiltonian

HHS =

 HΓ − λ−σ0 −∆Xσ3 −∆Y σ3

−∆†Xσ3 HX + λ+σ0 0

−∆†Y σ3 0 HY + λ+σ0

 . (10)

In the above equation, we set λ± = λ±µ as illustrated in
Fig. 1(a). As is characteristic for two-dimensional Dirac
systems, the free energy in Eq. (9) diverges linearly due to
large-momentum contributions, which, however, can be
absorbed in a renormalization of the effective interaction
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strength

1

U0
=

1

U
− 2

v2
Λ, (11)

where U > 0 is the renormalized interaction and Λ is an
ultraviolet cutoff in momentum space45,46, which in real
systems corresponds to the bulk band gap. Consequently,
physical quantities only depend on U but not on the non-
universal cutoff scale Λ or the bare coupling U0.

In Fig. 2 (left), we present the phase diagram as ob-
tained by minimizing the free energy in Eq. (9) as a func-
tion of chemical potential µ and temperature T for the
chemical potential λ = 2U−1 and an ellipticity of the
X/Y surface pockets of δ = 0.2. At small chemical po-
tential, the ground state displays a two-fold rotational or
C2 symmetry, where electrons from either X or Y pocket
pair with holes from the Γ point, respectively, yielding
|∆X | 6= 0 and |∆Y | = 0 or vice versa. The appearance of
C2 SDW order naturally introduces a nematicity (charac-
terized by ∆X 6= ∆Y ) in the system. As the temperature
is increased, there is a continuous second-order transition
out of the SDW phase to the paramagnetic (PM) phase.

This limit corresponds to the Ginzburg-Landau anal-
ysis presented in the previous section. If the chemical
potential (and hence the Fermi surface mismatch) is in-
creased, the direct C2-normal (PM) transition at low
temperature is masked by an intermediate phase in which
the C4 rotational symmetry is restored and all Fermi
pockets participate in the excitonic pairing. Both C2-C4

and C4-PM transitions are first order in nature. Figure 2
(right) shows the complete phase diagram as a function
of µ, δ, and T . Increasing the ellipticity δ pushes the
critical chemical potential for the C2-C4 transition to
smaller values but only mildly affects the subsequent C4-
PM transition. Hence, while a small ellipticity favors the
C2 phase at small µ, the region of the phase diagram
with C4-symmetry increases when the Fermi surfaces are
strongly anisotropic.

There is an intuitive picture why at small ellipticity
the system is C2 symmetric and only at large Fermi
surface mismatch the C4 symmetric phase arises47: for
nearly perfect nesting (small δ and µ), the same hole-like
state near the Γ point contribute to the excitonic pair-
ing electron-like states from X and Y pockets. Thus,
pairing between Γ and X reduces the phase space for
pairing between Γ and Y and vice versa, implying that
only one condensate develops and the system enters the
C2 symmetric phase. As the Fermi surface mismatch in-
creases, however, disjoint regions of the Γ Fermi surface
contribute to the excitonic condensation and a C4 sym-
metric phase becomes preferable, as demonstrated by our
full calculation of the phase diagram.

For δ = 0 (circular Fermi surfaces) the quadratic
Hamiltonian in Eq. (10) manifests a U(1) symmetry
among the exitonic OPs ∆X and ∆Y , and consequently
the free energy depends only on the magnitude ∆2 =
|∆X |2 + |∆Y |2. Thus, in the limit δ = 0, there is no dis-
tinction between the C2 and the C4 symmetric phases.

At zero temperature, the free energy takes the particu-
larly simple form F = µ2 − ∆2

0/2, where ∆0 represents
the SDW OP at T = 0 and µ = 0, which implies a first-
order transition between condensed and normal phase
at the standard critical Clogston-Chandrasekhar value
µcrit = ∆0/

√
2, which can also be seen in Fig. 2 (right).

We point out that the structure of the BZ in iron-
based superconductors is qualitatively similar to the one
for the surface states of cubic TKIs. Interestingly, the
phase diagrams of these two systems bear some quali-
tative similarities27,47,48. In particular, the C2-C4 phase
transition that can be tuned by doping has been observed
experimentally in pnictide materials48.

We note that there are two possible ways to modify
the mean field phase diagram: for a large Fermi surface
anisotropy, the system may condense into an incommen-
surate density-wave phase, where the periodicity of the
excitonic condensate is different from the reciprocal lat-
tice vector32. Furthermore, for large doping, various su-
perconducting instabilities may set in. The discussion of
these phenomena is beyond the scope of this paper.

Our present mean field analysis does not account for
thermal fluctuations. Quite generally, a full analysis of
the phase diagram should, in principle, distinguish be-
tween the nematic and the excitonic phases. As will be
discussed in the following section, once thermal fluctu-
ations are incorporated, the transition temperatures for
these two instabilities can be different. Let us focus on
the regime of small chemical potential, where mean-field
theory predicts a C2 phase for arbitrary δ, as shown in
Fig 2. In this phase either ∆X or ∆Y develops a nonzero
but real expectation value and thus the surface states si-
multaneously develop a nematic (due to the breaking of
C4 symmetry) as well as a translational symmetry break-
ing commensurate SDW order. These orders can be rep-
resented by two different Ising-like variables and thus the
ground state at T = 0 displays an exact four-fold degen-
eracy. However, at finite temperature, thermal fluctua-
tions allow the system to fragment into multiple domains
of these degenerate phases. We we will argue that inter-
play of these domains at finite temperatures can be cap-
tured by a two-component isotropic Ashkin-Teller model,
and allude to the finite temperature phase diagram for
the surface states beyond the mean field approximation.

Before concluding the section a discussion on the na-
ture of the nematic order seems appropriate. Notice that
the nematic phase is described by a fluctuating excitonic
order that does not acquire a finite vacuum expectation
value. As pointed out in the Introduction that depend-
ing on the relative strength of nearest-neighbor and next-
nearest-neighbor hybridization amplitude among the op-
posite parity orbitals (such as d and f) in the bulk, the
chiralities of electron and hole pockets can be same or
opposite, which in turn determines the nature of density-
wave excitonic order (SDW or CDW). Therefore, depend-
ing on bulk hybridization strength over a finite range, the
nematic phase may represent either a fluctuating charge-
or spin-density-wave order. However, the phase diagram
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FIG. 2. (Color online) Left: phase diagram for λ = 2U−1 and δ = 0.2 as a function of Fermi surface mismatch µ and temperature
T . At small temperature and chemical potential, the ground state has only a C2 symmetry. Red (thick) and blue (thin) lines
denote second and first order phase transitions, respectively. Right: Phase diagram for λ = 2U−1 as a function of Fermi surface
anisotropy δ, µ, and T . Notation as in the left panel. The parameter δ in various ARPES experiments are δ = 0.258, 0.1111,
0.2112, 0.3313. It is worth pointing out that the phase diagrams we obtain here are qualitatively similar to the one extracted
experimentally for iron pnictides, which also share similar structure of the BZ48.

of the interacting surface states is insensitive to the exact
nature of the ordering, as only discerte Ising-like sym-
metries are broken in the charge- or spin-density-wave
phases (uniform or fluctuating).

V. THERMAL FLUCTUATIONS, DOMAIN
WALLS AND ASHKIN-TELLER MODEL

To understand the role of a domain walls at finite tem-
peratures, we first consider a simpler situation, where the
system exhibits only a two-fold degeneracy among the
configurations, say A and B [chosen from four possible
states with ∆X > 0 or ∆X < 0 and ∆Y > 0 or ∆Y < 0].
The free energy of the domain-wall per unit length of this
system is given by F = JAB−TSAB , where SAB(JAB) is
the entropy (energy) per unit length of a single domain
wall. For temperatures T > JAB/SAB we have F < 0,
and the free-energy is minimized through the prolifera-
tion of domain walls between these two phases.

To estimate the result of proliferation of domain walls
on the surface of cubic TKIs, we define two Ising-spin
variables s = sgn(|∆X | − |∆Y |) and σ = sgn(∆X + ∆Y ).
The spin variable s determines the direction of the SDW
order, while σ represents how the translation symmetry
is broken. Therefore, in the nematic phase s 6= 0, and
when the density-wave order condenses we have σ 6= 0.
The energy of the domain walls can be accounted for by
an effective exchange Hamiltonian

Hex = −
∑
〈i,j〉

[J2 sisj + J1(1 + sisj)σiσj ] , (12)

where J2 represents the energy a domain wall between

the regions where |∆X | 6= 0 and |∆Y | 6= 0. J1 represents
a similar quantity where ∆X or ∆Y changes the sign
without changing the direction of the symmetry breaking
(hence the factor (1 + sisj)). We expect J2/J1 to be
proportional to δ2, where δ is the ellipticity of the pockets
near X and Y points. In terms of a redefined variable
s → s̃ = sσ, the rescaled Hamiltonian assumes the form
of a two-component isotropic Ashkin-Teller model51

Hex = −J1

∑
〈i,j〉

(s̃is̃j + σiσj)− J2

∑
〈i,j〉

s̃is̃jσiσj . (13)

The phase diagram of this model is shown in Fig. 352,
which we discuss below qualitatively in terms of the orig-
inal variables s and σ.

For weak Fermi surface anisotropy, which corresponds
to small values of J2/J1(∼ δ2), there exists a transi-
tion (across the dashed line in Fig. 3) from a high tem-
perature disordered phase to a low temperature ordered
phase. Along this line of direct transition between the
disordered and the ordered phases, the exponents change
continuously, much like for the Kosterlitz-Thouless tran-
sition. In the ordered phase, the surface states break
both translational (by the SDW order) and rotational
(by the nematic order) symmetries, and the expectation
values of the Ising-spin variables in Eq. (12) are 〈s〉 6= 0
and 〈σ〉 6= 0. This phase is also known as the Baxter
phase51. However, for large δ or J2/J1 (strong Fermi
surface anisotropy) transitions associated with these two
symmetry breakings bifurcate and occur at distinct tem-
peratures. The system first condenses into the nematic
phase, where 〈s〉 6= 0 but 〈sσ〉 = 〈σ〉 = 0, and only
subsequently enters the ordered (Baxter) phase at lower
temperature. Next we characterize each of these phases
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FIG. 3. Phase diagram of the two-component isotropic
Ashkin-Teller Model52. In terms of microscopic parameters
J1 ∼ U and J2/J1 ∼ δ2.

in terms of original order parameters, ∆X and ∆Y .
The nematic phase is ordered along either QX = (π, 0)

or QY = (0, π) in such a way that a large density of
sign flips (domain wall) of the order parameter prolif-
erate in the system. In this phase 〈|∆X |〉 or 〈|∆Y |〉 is
non-zero, but 〈∆X〉 = 〈∆Y 〉 = 0. Consequently, the
nematic phase breaks the C4 rotational symmetry, yet
still retains the translational invariance of the the system.
Only at lower temperature, through a subsequent transi-
tion system enters into the ordered/Baxter phase, where
both nematic and density-wave orders develop non-zero
expectation value. It is worth mentioning that a simi-
lar, but distinct, nematic phase has also been studied for
iron-based superconductors49,53,54.

VI. SUMMARY AND DISCUSSION

In summary, we discuss various many-body instabili-
ties on the surface of strongly interacting cubic TKIs. We
show that if the chemical potential is placed in between
the Dirac points at the Γ and X/Y points of the surface
BZ and the resulting electron (near X and Y points)
and hole (near Γ point) pockets are of comparable size,
fermions can condense into a nematic and density-wave
phase. In this phase only one of the electron pockets par-
ticipates in excitonic pairing, and thus the 4-fold rotation
symmetry on the surface gets lifted spontaneously. Our
results provide a possible explanation for the recently
observed C2 symmetric magnetoresistence18 and the up-
turn in surface resistivity with tunable gate voltage or
equivalently the chemical potential19 in SmB6.

The excitonic phase, however, can display a spin- or
charge-density wave ordering depending on the relative
chirality of the Dirac cones with electron and hole like
carriers. In Sec. II, we argued that due to the pres-
ence of underlying strong spin-orbit coupling that causes
spin(in-plane components)-momentum locking of the sur-
face states1,2, and only the z-component of electrons’

spin participates in various instabilities, which in turn
also allows the system to exhibit long-range order at
finite-T . Our results are substantiated by complimentary
Ginzburg-Landau analysis of order parameters (for small
Fermi surface mismatch) in Sec. III and the free-energy
minimization in mean-field approximation (for arbitrary
values of the parameters µ, δ, λ, T ) in Sec. IV. For large
Fermi mismatch, on the other hand, our mean-field anal-
ysis predicts that both electron pockets gets involved in
excitonic ordering, and the ordered phase restores the
4-fold rotational symmetry of the surface BZ.

Furthermore, we extend our analysis beyond the mean-
field level, and account for thermal fluctuations and do-
main walls when the system condenses into a C2 density-
wave phase in Sec. V. In this limit, the system can be
described by a two-component isotropic Ashkin-Teller
model and we presented a finite temperature phase di-
agram in Fig. 3. For small Fermi surface mismatch, both
nematic and density-wave orders condense at the same
temperature in agreement with our mean-field analysis.
Only for substantial Fermi surface mismatch, these two
transitions take place at different temperatures. System
first pairs into a nematic phase and yet at a lower tem-
perature to an excitonic (Baxter) phase. Although our
study is primarily motivated by ongoing experimental
works in SmB6

18,19 that are suggestive of the presence
of strong electronic correlations on its surface, it can de-
scribe various signature of electron-electron interactions
on the surface of other strongly interacting cubic TIs,
such as YbB6

24–26, PuB6
55.

Various recent experiments have extracted the effective
parameters for the surface band structure. For exam-
ple, ARPES experiments have found the ellipticity factor
δ = 0.1−0.48,11–13 not too large in SmB6. Extracting the
energy offset among the Dirac points in an experiment is
a challenging task. Nevertheless, various first-principle23

and effective band structure22 calculations suggest that
|EΓ − EX/Y | ∼ 2 − 10 meV. The estimated values of
these parameters indicates that while the ellipticity of
the Fermi pockets is not too large to destroy the propen-
sity of nematic and excitonic orderings on the surface, a
large offset among the Dirac points allow one to tune
the surface chemical potential over a reasonably wide
range to realize electron and hole pockets of comparable
sizes thourhg external gating19, conducive for orderings.
Therefore, with currently estimated values of these band
parameters, it is quite conceivable that surface states of
SmB6 or other cubic TKIs (such as YbB6 and PuB6) can
accommodate various exotic broken symmetry phases.

Detection of the nematic or the C2 symmetric excitonic
orderings demands direction dependent measurements of
transport quantities, for example. Here, we focus only
on the C2 symmetry breaking ordering, as it occupies
most of the phase diagram in Fig. 2. Notice in the ne-
matic and the excitonic phases the four-fold rotational
symmetry gets broken, while the former one is deviod
of uniform condensation of any order parameter. There-
fore, to pin the the onset of these orderings one needs
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to perform direction dependent measurements of various
physical quantities, such as conductivity, resistivity, mag-
netoresistence, on the surface that can sense the lack of
rotational symmetry in the close proximity to an order-
ing. Recent experiment18 has reported the lack of four
fold rotational symmetry in magnetoresistance in SmB6

below 5K, which is suggestive of at least a nematic or-
dering on the surface.

It should be noted that the surface BZ of cubic TKI
closely is similar to the one in pnictides49,53,54. However,
there exist several crucial differences between these two
systems. For example, due to the strong spin-orbit cou-
pling the SDW order of the surface states breaks only the
discrete Z2 symmetry [note that the valley U(1) symme-
try of SDW order is only an artifact of the low energy
approximation in Eqs. (1), (10) which gets reduced to
Z2 due to the presence of an underlying lattice captured
by the term FSB in Eq. (8)], responsible for true long-
range order, whereas spin-rotation is a good symmetry
and the SDW phase breaks continuous SO(3) symme-
try in pnictides53. In addition, the Fermi surfaces on the
surface of TKIs constitute vortices or anti-vortices in mo-
mentum space that in turn encode the bulk topological
invariance of the system, while the bands in pnictide ma-
terials are regular non-relativistic parabolic bands. Con-
sequently, the regular parabolic bands and therefore the
SDW order in pnictides can carry additional orbital de-
generacy, which depends on various nonuniversal details
of the system49, whereas the non-interacting model [see
Eq. (1)] and the SDW/CDW order [see Eq.(10)] we con-
sider for the surface states TKIs is constrained by non-
trivial bulk topological invariant. In additional contrast
to our results, a recent theoretical study finds that the
transition from paramagnetic-C2 SDW in pnictide is dis-
continuous or first order in nature56. Despite these fun-
damental differences, we find that the qualitative struc-
ture of the phase diagram in Fig. 2 for the surface states
of TKIs bears some similarities to the one for iron pnic-
tides both calculated theoretically49 and also with the

one obtained experimentally (see the phase digram of
Ba1−xNaxFe2As2 in Fig. 2 of Ref.48). The similarity be-
tween such different systems is both surprising and en-
couraging. Therefore, we expect that our study will initi-
ate future works related to TKIs that may unearth some
exotic effects due to the presence of strong electronic cor-
relations in these systems and may as well shed light into
the phase diagram of iron pnictides.

As a final remark, we highlight some other possible
phenomena, arising from strong residual electronic inter-
actions on the surface of TKIs, among which the renor-
malization of plasmon spectrum due to strong fluctua-
tions15, non-Fermi liquid phase for d-electrons16, quasi-
particle inteference29. In addition, a spatial variation of
the hybridization has been proposed to lead to a topolog-
ical chiral-liquid on the surface57, without destroying the
helical structure of the surface states (protected by bulk
topological invariant). While these proposals are quite
fascinating and of definite fundamental importance, our
work focuses on the possibilities of realizing various bro-
ken symmetry phases (excitonic and nematic) on the sur-
face of TKI, resulting from strong residual interactions,
which can explain some peculiar experimental observa-
tions in recent past18,19.
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