
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Lowering the lasing threshold of distributed feedback lasers
with loss

V. Yu. Shishkov, A. A. Zyablovsky, E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, A. V.
Dorofeenko, and A. A. Lisyansky

Phys. Rev. B 92, 245420 — Published 14 December 2015
DOI: 10.1103/PhysRevB.92.245420

http://dx.doi.org/10.1103/PhysRevB.92.245420


1 

 

Lowering the lasing threshold of distributed feedback lasers with loss  

V. Yu. Shishkov,1,2 A. A. Zyablovsky,1,2 E. S. Andrianov,1,2 A. A. Pukhov,1,2,3 A. P. 
Vinogradov,1,2,3 and A. V. Dorofeenko1,2,3 

1Moscow Institute of Physics and Technology, 9 Institutskiy per., 141700 Dolgoprudny, Moscow 
reg., Russia 

2All-Russia Research Institute of Automatics, 22 Sushchevskaya, Moscow 127055, Russia 
3Institute for Theoretical and Applied Electromagnetics RAS, 13 Izhorskaya, Moscow 125412, 

Russia 
 

A.A. Lisyansky4,5 
4Department of Physics, Queens College of the City University of New York, Flushing, NY 

11367, USA 
5The Graduate Center of the City University of New York, New York, New York 10016, USA 

 We study laser generation in 1D distributed feedback lasers with amplifying and lossy 
layers. We show that when the lasing frequency differs from the transition frequencies of the 
amplifying medium, loss induced lasing may occur due to the broadening of the resonator mode 
with increasing loss in the absorbing layers. This broadening leads to a shift in the lasing 
frequency towards the transition frequency. As a result, the cavity mode interaction with the 
amplifying medium is enhanced, and the lasing threshold is lowered.  

I. INTRODUCTION 

Lasers generate coherent radiation due to induced transitions in an active medium caused 
by the electromagnetic field in the resonator. For laser generation to arise, in addition to the 
resonant phase conditions being fulfilled, the amplification of the field must be sufficient to 
compensate for loss due to dissipation in the laser material and radiation from the sample.1, 2 It is, 
therefore, natural to expect that an increasing resonator loss would result in an increase of the 
lasing threshold. There are situations, however, when the lasing threshold decreases as loss 
increases.3, 4  

In Ref. 3, quenching of lasing by increasing the strength of the pump has been predicted 
for a system of two identical resonators containing an amplifying medium kept at different pump 
rates. This results in the field concentration in the more strongly pumped resonator. Lasing starts 
in this resonator. Due to coupling of resonator modes, the oscillations in the second resonator are 
synchronized to the lasing mode and the whole system lases. When the pump rate in the low 
pumped resonator increases while remaining fixed at the other one, a phase transition from a 
non-symmetric to symmetric field distribution in the resonators occurs. As a result, the field 
increases in the low pumped resonator and decreases in the highly pumped resonator leading to 
the suppression of lasing. In experiment,4 instead of increasing the pump rate, the loss in one of 
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the resonators was increased, and the phase transition went from symmetric to the non-
symmetric eigenmode. This ensured that the optical field is concentrated in the more active 
resonator and lowered the lasing threshold. 

 Another possibility of the lasing onset may be realized when the increase in the loss 
causes a variation of the refractive index and improves the phase condition. This was shown 
theoretically for a resonator uniformly filled with an active medium with temporal dispersion.5 

In lasers, the transition frequency 0ω  of the amplifying medium is usually tuned to the 

frequency of one of the resonator modes Rω . This allows for the greatest effective interaction 
between the field and the amplifying medium. In real systems, however, these two frequencies 
are detuned. Among other reasons, a detuning between 0ω  and Rω , which depend differently on 
the temperature, may arise due to the temperature variation in the system during the process of 
lasing.6  

In this paper, we demonstrate a mechanism of lasing generation via loss that works when 
the frequency of the transition line of the amplifying medium differs from the laser mode 
frequency. An increase of loss may pull the lasing frequency towards the transition frequency 
thereby lowering the laser threshold. Analytical calculations are confirmed by computer 
simulation for a distributed feedback (DFB) lasing possessing both amplifying and absorbing 
layers. The obtained results can be used for lowering laser generation thresholds in DFB lasers 
with metallic layers, which have recently been actively studied.7-13 

II. MAIN EQUATIONS 

We consider a DFB laser based on a one-dimensional photonic crystal (see Fig. 1)13. The 
elementary cell of this crystal consists of passive metallic and active dielectric layers. As we 
show below, thanks to the metal layers, the field distribution in the system changes only slightly 
when loss increases. As a result, the lasing mode does not shift when the loss level changes.  
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FIG. 1. Schematic of the DFB laser based on 1D photonic crystal. Thin blue and thick 
green layers depict passive metallic and active dielectric layers, respectively. 

The interaction of the electromagnetic field E with the active medium can be described 
with the Maxwell-Bloch equations2, 14 
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where P is the polarization of the active medium which we consider as a two-level system (TLS), 
n is the population inversion of the TLS, 0ω  and the transition frequency between the TLS 

ground and excited states, ged  is the dipole moment of the transition of the TLS, c is the speed of 

light, h  is the Planck constant, Pτ  and nτ  are relaxation times of the polarization and the 

population inversion, respectively, and 0n  is the population inversion in the TLS in the absence 
of the field. The latter quantity characterizes the pump rate of incoherent radiation that creates 
the inversion. 

We assume that the field and the polarization are slow functions of time with the carrier 
frequency 0ω . Then, E and P can be represented in the form 

*
0 0( , ) ( , ) exp( ) ( , ) exp( )E x t e x t i t e x t i tω ω= − +  and *

0 0( , ) ( , ) exp( ) ( , ) exp( )P x t p x t i t p x t i tω ω= − + , 
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where the complex-valued functions ( , )e x t  and ( , )p x t  are slowly changing during the 

oscillation period, 0( , ) / ( , )e x t t e x tω∂ ∂ <<  and 0( , ) / ( , )p x t t p x tω∂ ∂ << . In this description, 

the dispersion of the TLS is taken into account by the explicit calculation of the layer dynamics. 

The dispersion of a metal is described by the Drude equation ( ) 12 2( ) 1 .p iε ω ω ω γω
−

= − +  Then, 

using the slow amplitude approximation we obtain15 
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Using Eqs. (4) and (5) we obtain Maxwell-Bloch equations for slow amplitudes 
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where ( ) 0xα =  for dielectric layers.  

III. THE DEPENDENCE OF LASING THRESHOLD ON LOSSES (NUMERICAL 
SIMULATION) 

For a finite photonic crystal system, Eqs, (6)-(8) can be solved by using the FDTD method. We 
consider the photonic crystal having 30 elementary cells of size a = 200 nm. In the crystal, the 
ratio of the widths of the dielectric and metallic layers is / 4d md d = , and the transition 

frequency of the TLS is 16
0 10ω =  Hz. We also assume that the relaxation times of the 
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polarization and the TLS population inversion are 143 10pτ −= ⋅  sec and 125 10nτ −= ⋅  sec, 

respectively, and the absolute value of the dipole moment is | | 20ge =d dB.16 Finally, we assume 

that the permittivity of dielectric layers is 3dε =  and the permittivity of the metal layers is the 

same as that of silver at the frequency of 16
0 10ω =  Hz ( ( )0Re 1mε ω = − ). These parameters are 

typical for recently studied plasmon DFB lasers.7-12  

 

FIG. 2. The frequency dependence of the dielectric permittivity of the metal layers for different 
values of the imaginary part of the dielectric permittivity of these layers at the amplifying medium 
transition frequency, 0Im ( )mε ω . The frequency region of interest is between the vertical dotted lines. One 
can see from Fig. 2(b) that in this region, an increase of  0Im ( )mε ω  is accompanied by an increase of 
Im ( )mε ω .  
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The chosen transition frequency of the TLS falls into the gap of the photonic crystal, 
16 160.985 10 Hz 1.3 10 Hzω× < < ×  . Therefore, the lasing mode is a standing wave of the gap 

edge. Thus, there is a detuning 141.5 10 HzΔ = ×  between the TLS transition frequency and the 
frequency of the resonator mode. For the chosen values of the system parameters, the dielectric 
permittivity of the metal layers changes only weakly near the center of the second band gap, 

161.14 10cω = × Hz, in the range of frequencies of 0.7 0.9c cω ω ω< <  (see Fig. 2). 

In numerical simulations, for initial conditions we choose a random distribution of the 
field in the photonic crystal in the absence of the polarization and the population inversion in the 
active medium. Then we look for the steady state of field generation. 

In the laser, the dependence of the energy on the pump rate, shown in Fig. 3, has a 
standard form. At the threshold, the energy of the field starts increasing with an increase of the 
population inversion. When loss increases, the slope of the generation line decreases.1 Above the 
threshold, as shown in Sec. IV, the generated energy is inversely proportional to Im mε . This 
explains the decrease of line slopes in Fig. 3 with a loss increase. 

 

FIG. 3. Generation curves (the energy of the electromagnetic field summed over the photonic 
crystal) calculated for different values of the imaginary part of the dielectric constant of the metal. 

As Fig. 4 shows, the dependence of the population inversion threshold non-
monotonically depends on the loss in metal layers. For small losses, its increase results in an 
increase of the threshold. Then, above some critical value of the loss, its increase leads to a 
decrease of the population inversion threshold, which starts increasing for further loss increase.  
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FIG. 4. The dependence of the population inversion threshold on the imaginary part of the 
dielectric permittivity of the metal at the transition frequency of the amplifying medium. The solid line is 
numerical simulation. The dashed line is plotted in accordance with the theory developed in Sec. IV.  

In obtaining the curves in Fig. 4, the numerical simulations have been done for a finite 
photonic crystal containing 30 elementary cells while analytical calculations have been 
conducted for an infinite crystal. There is additional radiation from the ends of the finite crystal 
that is absent in the infinite crystal. Additional radiation results in an increase of the generation 
threshold that explains some difference between the numerical and analytical results that can be 
seen in Fig. 4.  

 In Fig. 5, the dependence of the TLS lasing frequency gω  on loss in the metal is shown. 

When loss increases, gω  is pulled towards the transition frequency of the TLS. As we mention 

above, the latter is positioned in the photonic bandgap of the crystal. Below we show that pulling 
the lasing frequency towards the transition frequency of the TLS results in a decrease of the 
lasing threshold. 
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 FIG. 5. The lasing frequency gω  near the threshold as a function of loss in the metal layers (in 

units /c c aω = , which is the frequency at the center of the second band gap). The results of numerical 
simulations and analytical calculations are shown by solid red and blue dashed lines, respectively. The 
TLS transition frequency, 0ω , is shown by the dash-dotted green line.  

IV. THE DEPENDENCE OF LASING THRESHOLD ON LOSSES (ANALYTICAL 
APPROACH) 

In this section, we obtain the dependence of the threshold population inversion 0
thn  on the 

imaginary part of the dielectric permittivity of metal, Im mε , for an infinite photonic crystal. As it 
follows from numerical simulations, in the laser under study, the regime of a single mode lasing 
is realized (Fig. 5). In this regime, the field distribution of an infinite photonic crystal coincides 
with the distribution of one of the modes described by the Helmholtz equation15 
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2 2

2 2Re[ ( , )] 0M M
M M

E x
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x c
ωε ω

∂
+ =

∂
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with the periodic boundary conditions. Here ( , )M xε ω  is either dε  or ( )m Mε ω  in dielectric or 

metal layers, respectively. ( )ME x  and Mω  are the field distribution and the frequency of the 
mode. In this approach, Eq. (1) is split into two equations. The first one, Eq. (9), defines the 
special distribution of the lasing mode. The second equation, Eq. (10) below, gives the time 
evolution of the amplitude of this mode. The numerical analysis shows that the imaginary part of 
the value of permittivity of metal and the inversion population do not substantially affect the 
field distribution in the system (Fig. 6). Thus, compared to Eq. (1), in Eq. (9) the imaginary part 
of the dielectric permittivity of metal and the temporal dependence of the active medium 
controlled by the population inversion are excluded because they affect the field distribution in 
the lasing mode only weakly.17 



9 

 

 

FIG. 6. The ratio of the energies localized in the dielectric and the total energy in the photonic 
crystal. The pump rate is fixed, 4

0 1.5 10n −= × . 

To determine the lasing threshold, it is sufficient to solve a linear problem neglecting the 
dependence of the population inversion n on the field amplitude.14 In this case, 0n n=  and it does 

not depend on time. This allows for a factorization of the generated field, ( ) ( ) ( ), ME x t E x e t= , 

after which Eq. (1) is simplified as  
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where 
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eg M Md E x E x dxμ = ∫ . 

From Eqs. (12) and (13) we can find 0
thn  that characterizes the threshold pump rate. At the onset 

of lasing, time dependencies of the electric field and the polarization have the form 

0( ) exp( )ge t e i tω= −  and 0( ) exp( )gp t p i tω= − , where 0e  and 0p  are constants and gω  is the 

lasing frequency that is determined by the condition of the onset of lasing. As a result, we obtain 
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Since the lasing mode frequency and the frequency of the TLS transition are close, we obtain the 
final equations 
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Parameters gω  and 0n , for which the nontrivial solution of Eqs. (15) and (16) arises, determine 

the lasing frequency and the threshold population inversion:  
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If we identify 2 / MU ωΓ  as the longitudinal relaxation time of the laser, aτ , and 2 /M Uπμω h  

as the interaction constant of the field with the amplifying medium, RΩ , then Eqs. (17) and (18) 

coincide with well-known equations for gω  and 0
thn :1 
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Thus, the generation curves, shown in Fig. 2 are the same as for a laser with the uniform 
distribution of the field in the resonator. These curves are described by the equation1 

 ( )2
0 0 / 4th

st a ne n nτ τ= − , (21) 

where ste  is the stationary field amplitude above the threshold. Note that a non-monotonic 
behavior of the threshold population inversion described by Eq. (20) is a feature of single mode 
lasers. In a multimode laser with the Fabry-Perot resonator, modes are very close to each other so 
that there is practically no frequency detuning. 

The results obtained in this section allow one to explain the non-monotonic dependence 
of the threshold of the population inversion described by Eq. (18) and shown in Fig. 3. The 
threshold increases linearly with respect to Γ  for small and large losses  
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0
thn  has a minimum for an intermediate value of Γ . The non-monotonic behavior with loss 

increase is due to an increase of broadening of the lasing mode line. This broadening results in a 
shift of the lasing frequency towards the transition frequency of the amplifying medium (Fig. 5). 
The interaction between the electromagnetic wave and the amplifying medium peaks when these 
two frequencies coincide. It decreases when the frequencies move away from each other. As a 
result, the loss increase in the resonator causes an increase of the attenuation rate in the metallic 
layers and a field increase in the amplifying layers. Depending on which of these competing 
factors prevails, the lasing threshold may either increase or decrease with the loss increase in the 

resonator. In Fig. 4, for ( )
1
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∫ ∫ , an increase of the interaction 

between the amplifying medium and the electromagnetic field plays the main role. This increase 
can be described by considering an overlap of the resonator mode line and the transition line of 
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the amplifying medium (Fig. 7). When loss in the resonator is small ( Im 2mε < ), the overlap 
increases with the loss increase. Then, for Im 2mε ≤ , it decreases. The largest overlap and the 
lowest generation threshold occur for the same value of Im mε  (Fig. 8).  
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 FIG. 7. Lorentzians of the resonator and transition lines of the amplifying medium for values (a) 
Im 0.1mε = , (b) Im 0.25mε = , and (c) Im 1.5mε = . The Lorentzians are normalized so that the area under 
each curve is equal to unity. Blue and red lines correspond to the resonator and amplifying medium lines, 
respectively. The orange line shows the lasing frequency. The pumping frequency is 0 0.878 Cω ω=  and 
the frequency of the resonator mode is 0.864M cω ω= . 
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FIG. 8. Dependencies on Im mε  of the lasing threshold (the red solid line) and the ratio of areas 
of Lorentzians of the amplifying medium and the resonator mode overlap (the green dashed line). 

V. DISCUSSIONS AND CONCLUSIONS  

Since a DFB laser works at the boundary of the bandgap,12, 18 thanks to the Borrmann 
effect,19 the field is mainly concentrated in active dielectric layers. Hence, the field distribution 
in the system changes only slightly when the loss in the metal increases. As one can see from 
Fig. 9, the fraction of the generated energy localized in the metal changes only by about 5% 
while the imaginary part of the metal permittivity increases by the factor of 5. As shown in Sec. 
IV, in the absence of frequency detuning, the threshold value of the population inversion that is 
needed for laser generation is 

 0 ~ Imth
m mdn Iε × , (23) 

where ( ) ( )2 2
md M M

metal dielectric

I E x dx E x dx= ∫ ∫ , ( )ME x  is the electric field distribution in the 

lasing mode.  

 As one can see from Eq. (23), when the fraction of the generated energy localized in the 
metal changes by 5% while Im mε  increases from 0.4 to 1.5, the threshold population inversion  

0
thn  triples. This is also confirmed by numerical simulations. In the presence of detuning, 0

thn  is 
no longer described by Eq. (23). It is now described by Eq. (18) that gives the dependence shown 
in Fig. 3. In this case, when Im mε  increases from 0.4 to 1.0, mdI  and 0

thn  are moving in opposite 
directions; the former increases and the latter decreases. Thus, as opposed to Refs. 3, 4, the non-
monotonic behavior of the lasing threshold is not caused by changes in the spatial overlap of the 
lasing mode and the active medium layers.  
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FIG. 9. The ratio of the energies localized in metal and dielectric in the photonic crystal. The 
pump rate is fixed at 4

0 1.5 10n −= × .  

To conclude, we show that in a DFB laser in which the transition frequency of the 
amplifying medium is detuned from the frequency of the resonator mode, an increase in the loss 
may lead to a decrease in the lasing threshold. Such a decrease is due to the broadening of the 
resonator mode that leads to the lasing frequency being pulled towards the transition frequency 
of the amplifying medium and to an increase of the overlap between the lines of the resonator 
mode and the transition of the amplifying medium. As a result, the interaction between an 
electromagnetic wave and the amplifying medium also increases. Thus, while the loss increases 
the dissipation rate in the resonator, it nonetheless results in an increase of the amplification rate 
in the active medium. If the latter factor prevails, the conditions for lasing are improved.  

Our results allow for selecting the parameters of a DFB laser for which an increase of the 
imaginary part of the dielectric permittivity is not critical. Moreover, such an increase may 
improve laser characteristics. This is important in connection with the ongoing development of 
plasmonic DFB lasers.7-12 
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