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When time-reversal symmetry is weakly broken and interactions are neglected, the surface of a
Z2 topological insulator supports a half-quantized Hall conductivity σS = e2/(2h). A surface Hall
conductivity in an insulator is equivalent to a bulk magneto-electric polarizability, i.e. to a magnetic
field dependent charge polarization. By performing an explicit calculation for the case in which the
surface is approximated by a two-dimensional massive Dirac model and time-reversal symmetry is
broken by weak ferromagnetism in the bulk, we demonstrate that there is a non-universal interaction
correction to σS . Our prediction can be tested by measuring the capacitance of magnetized thin
films in which the anomalous quantum Hall effect is absent.

PACS numbers: 73.20.-r 73.40.-c 73.43.-f 75.70.-i

I. INTRODUCTION

The quantum Hall effect1 stands alone among trans-
port phenomena because it is characterized by a non-zero
transport coefficient whose value is universal, dependent
only on fundamental constants of nature and not at all
on crystal imperfections and other peculiarities of indi-
vidual samples. The accuracy of the quantum Hall effect
is now established to better than eight figures2 and has
no established limitation. This surprising property can
be traced to its identification with a topological index3–5

of electronic structure, one that can be non-trivial only in
systems with broken time-reversal symmetry. For many
years quantum Hall states endured as the only known
example of topologically non-trivial electronic structure.
In recent years, however, the topological classification5,6

of electronic states has broadened considerably. The Z2

classification7–11 of what are seemingly the most innocent
of states—time-reversal invariant insulators—has partic-
ularly broad experimental implications. Only in the orig-
inal quantum Hall case, however, is the topological index
a readily measured macroscopic observable.

Non-trivial electronic topology is most commonly re-
vealed by the presence of protected boundary states at
surfaces and heterojunctions.12,13 The topological char-
acter of a three-dimensional insulator, for example, can
be revealed by examining its surface states14 to deter-
mine whether the number of Dirac points (linear band
crossings) is even or odd. The observable that is most
closely related to the non-trivial Z2 topological index of
time-reversal invariant insulators is its magneto-electric
polarizability,15–19 or equivalently its surface-state Hall
conductivity. Because a finite Hall conductivity re-
quires broken time-reversal symmetry, the association of
magneto-electric polarizability with a time-reversal in-
variant state is puzzling. The accepted resolution20 of
this conundrum, briefly, is that the bulk magneto-electric
polarizability is observable only when time-reversal in-
variance is weakly broken at the surface and the Fermi
level lies in the resulting surface-state gap. When these
conditions are satisfied, it is commonly argued that the

surface Hall conductivity of a non-interacting Z2 topo-
logical insulator (TI) must be quantized at a half-odd-
integer multiple of e2/h because i) it must change sign
under time reversal, and ii) it can change only by inte-
ger multiples of e2/h under time-reversal or under any
other change in the Hamiltonian. This magneto-electric
response of a TI has been referred to as its Chern-Simons
polarizability. In this article we show that, in contrast
to the case of the quantum Hall effect, weak interactions
quite generally yield a correction to this observable.

Our conclusions are based on an explicit calculation
for the case of a TI surface with a single Dirac cone,
and time-reversal symmetry that is broken by weak bulk
ferromagnetism (see Fig. 1). The model we consider pro-
vides a good description of the thin-film diluted-moment
ferromagnets based on (Bi,Sb)2Te3 TIs in which the
quantized anomalous Hall effect (QAHE)21–25 has re-
cently been observed. Chromium or vanadium doping
in these materials introduces local moments that order
at low temperatures, breaking time-reversal symmetry
and opening a gap in the surface-state spectrum. The
discovery21 of a QAHE in this material was inspired by

FIG. 1. A diluted-moment topological-insulator ferromag-
net containing local-moment spins that order, breaking time-
reversal symmetry and coupling to its surface Dirac cones.
We show that interactions between surface-state quasiparti-
cles and fluctuations of the magnetic condensate are respon-
sible for corrections of opposite sign to the top and bottom
surface half-quantized Hall conductivities.



2

earlier theoretical work26 which predicted that thin films
of the tetradymite semiconductors Bi2Te3, Bi2Se3, and
Sb2Te3 would reveal a quantized Hall effect when doped
with transition metal elements.

The Hall conductivity on both top and bottom surfaces
of a diluted-moment TI ferromagnet is expected to be
half-quantized,16,17,27 provided28,29 that time-reversal-
symmetry breaking energy scales are small compared to
the bulk energy gap. When electronic properties of the
system are evaluated using mean-field theory, this expec-
tation is corroborated in the small surface-state-gap limit
by calculations based on a Dirac model with an energy
gap due to exchange interactions between surface-state
quasiparticles and the bulk magnetic condensate.12,13 We
show below that the surface Hall effect is no longer ex-
actly half-quantized when interactions between surface-
state quasiparticles and quantum fluctuations of the bulk
magnetization, described as magnons, are included. The
total Hall effect obtained by summing over the top and
bottom surfaces of a thin film remains quantized how-
ever, in agreement with experiment.

II. SURFACE-STATE HAMILTONIAN

We consider two-dimensional (2D) surface-state model
Hamiltonians with a single Dirac cone, exchange interac-
tions, and spin-dependent disorder or interaction terms:

H = Hqp +Hpert, (1)

where Hqp is a mean-field-theory quasiparticle Hamilto-
nian for a gapped Dirac system, and Hpert is a perturba-
tion. The mean-field Hamiltonian can quite generally be
expressed in the form

Hqp =
∑
k

Ψ†kHqp(k)Ψk, (2)

where Ψk is an annihilation operator spinor, and Hqp(k)
is expanded in a Pauli matrix basis:

Hqp(k) = d0(k)σ0 + d(k) · σ. (3)

This Hamiltonian has a gap separating low-energy
valence-band surface states, which are occupied in the
case of interest, from high-energy conduction-band sur-
face states:

ξ±(k) = d0(k)± |d(k)|. (4)

When the surface-state Hamiltonian is time-reversal in-
variant, d and hence the gap must vanish at k = 0. In
order to clearly explain the origin of the surface-state
Hall conductivity correction, we specialize below to the
case of the 2D massive Dirac model which is simplified
by isotropic energy bands:

HMD
qp (k) = ~vẑ · (k × σ)± ~mσz ≡ dMD

± (k) · σ, (5)

where we have chosen the zero of energy at the Dirac
point, v is the Fermi velocity of the surface-state Dirac
fermions, ∆ = 2~|m| is the surface-state gap, and the sign
in Eq. (5) depends on the direction of the thin-film mag-
netization relative to the surface normal. The σz term
in this Hamiltonian is the mean-field exchange interac-
tion between the surface-state spins and perpendicular
anisotropy bulk magnetization.

We describe our Hall conductivity calculation in detail
for the case in which the surface normal and the exchange
field on the surface are parallel and in the ẑ direction.
This choice corresponds to spin-↓ occupied surface states
and, if the interaction between the surface state quasi-
particle and the bulk magnetization is ferromagnetic, to
a spin-↓ bulk spin orientation. The gapped surface-state
conduction- and valence-band energies are given by:

ξMD
± (k) = ±~

√
v2|k|2 +m2. (6)

We distinguish two types of perturbative corrections to
the massive Dirac model: i) static perturbations in which
the Hamiltonian is changed but the Hilbert space is not,
and ii) dynamic perturbations in which the surface-state
quasiparticle are coupled to external bosonic degrees of
freedom like phonons or magnons. In the first case, we
consider the Hamiltonian Hst

pert = g0σ0 + g · σ, where g0

and g are charge and spin disorder potentials that depend
randomly on position. Since in this article our goal is
simply to establish that the interaction corrections to the
Hall conductivity do not vanish, we calculate corrections
only to leading order in perturbation theory. Because
the leading order response can be written as a sum over
contributions from different Fourier components p of g0

and g, we can consider one component at a time. It is
therefore sufficient to assume that these functions vary
sinusoidally with position with arbitrary wavevector p.

In the dynamic perturbation case, Hdy
pert = Hb+Hqp−b,

we add to the Hamiltonian both a bare boson contribu-
tion Hb and an interaction Hqp−b between quasiparticles
and bosons:

Hb =
∑
p

~ωpa
†
pap, (7a)

Hqp−b = A−1/2
∑
k

(Ψ†k−pa
†
pMΨk + h.c.). (7b)

Here, a†p (ap) creates (annihilates) bosons with momen-
tum p, ωp specifies the boson dispersion, A is the surface
area, andM is a quasiparticle-boson interaction coupling
matrix which can be spin-dependent. In the zero tem-
perature limit, we can, in calculating the leading-order
quasiparticle-boson interaction correction, truncate the
boson Hilbert space both to a single boson momentum
p and to the n = 0 and n = 1 occupation numbers.
These simplifications allow the dressed eigenstates to be
obtained by diagonalizing 4× 4 matrices for each k.

Because the exchange interaction between a magnetic
quasiparticle and a ferromagnetic condensate is (at least
approximately) invariant under simultaneous rotation of
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the magnetic order parameter and the quasiparticle spin,
magnon creation (which raises spin for the ↓ condensate
spin direction considered here) is accompanied by quasi-
particle spin-flip from ↑ to ↓ and magnon annihilation by
quasiparticle spin-flip from ↓ to ↑. We therefore write
Msw = γsw(σx − iσy)/2. We show below that this in-
teraction vertex implies a correction to the surface Hall
conductivity.

III. MAGNETO-ELECTRIC POLARIZABILITY

Using linear-response theory (see Sec. I of the sup-
plemental material), the surface-state Hall conductivity
can be expressed in terms of current-operator matrix el-
ements between momentum-dependent ground |0〉 and
excited states |n〉:

σxy = − ~
2π2

∫
DP

d2k
∑
n 6=0

Im(〈0|jx|n〉〈n|jy|0〉)
(En − E0)2/~2

(8a)

=
e2

2πh

∫
DP

d2k Ωxy(k) (8b)

=
e2

2πh

∮
∂DP

dk ·A(k). (8c)

In Eq. (8) the integrals over momentum are taken over
the Dirac point region DP, bounded by ∂DP, defined
as the region in which the surface states lie inside the
bulk gap. Eqs. (8b) and (8c) rely on the observation
that the continuum model current operator expression,
jµ = −(e/~)(∂H/∂kµ), remains valid when quasiparticle-
boson coupling is included. When the boson momentum
is restricted to p and the boson Hilbert space is truncated
to n = 0, 1, the eigenstates in Eq. (8) are linear combi-
nations of n = 0 band electron states with momentum
k, and n = 1 band states with momentum k − p. The
Berry curvature30 is given by:

Ωxy(k) = i
∑
n 6=0

〈0| ∂H∂kx |n〉〈n|
∂H
∂ky
|0〉 − (x↔ y)

(En − E0)2

= ∂kxAy(k)− ∂kyAx(k), (9)

where the Berry connection Aµ(k) = i〈0|∂kµ |0〉. When
applying Eq. (8c) we must choose a gauge in which the
ground state is a smooth function of wavevector inside
the region DP.

In the absence of interactions and disorder (i.e. for
Hpert = 0), Eq. (8a) reduces to

σxy = − ~
2π2

∫
DP

d2k
Im(〈0|jx|1〉〈1|jy|0〉)

(E1 − E0)2/~2
, (10)

where |0〉 now represents a valence band and |1〉 a conduc-
tion band single-particle state. Performing the wavevec-
tor integration recovers the half-integer QAHE obtained
in independent-particle theories:16,31

σxy = sign(V) sign(m)
e2

2h
, (11)

where by V we denote the sense of the vorticity of the
momentum-space valence-band-spinor texture in the ab-
sence of a gap. The same result for the Hall conductiv-
ity can be obtained by using the Berry connection ex-
pression. For the massive Dirac model the line integral
in Eq. (8c) is around a circle with radius Λ such that
vΛ� m. Eq. (8c) then simplifies to

σxy =
e2

2πh

∫ 2π

0

dφ i 〈0| ∂
∂φ
|0〉|k=Λ. (12)

where φ is the momentum orientation angle. We use
this expression below to calculate the correction to the
surface state Hall conductivity when electron-magnon in-
teractions are included.

As explained previously, the half-quantized surface
state Hall conductivity is expected to be invariant under
weak perturbations. In Sec. II of the supplemental ma-
terial we demonstrate explicitly that this expectation is
confirmed when the massive Dirac single-particle Hamil-
tonian is perturbed by a weak spin-dependent disorder
term. However, as we now show, corrections are finite
when the Dirac surface-state quasiparticle interact with
quantum fluctuations of the ordered state responsible for
time-reversal symmetry breaking.

The origin of the interaction effect is schematically
summarized in Fig. 2 where we illustrate (panels a–c)
the surface-state band structure of the massless Dirac
model, the massive Dirac model, and the Dirac model
coupled to a bosonic mode. The band eigenstates can be
viewed (panels d and e) as momentum-dependent spin-
1/2 coherent states. When electron-magnon coupling is
neglected the massive Dirac model spin has spin-↓ orien-
tation at the Dirac point k = 0, and an in-plane orienta-
tion at large |k| with a finite vorticity, forming a meron.
The k = 0 spin orientation fixes the gauge choice for the
unperturbed spin-coherent states. Because of the large
splitting between conduction- and valence-band states at
large |k| used to evaluate the Berry connection, electron-
magnon scattering coherently mixes primarily n = 0 and
n = 1 magnon states, leaving the electronic state in the
valence band. The Hall conductivity correction is due in
part to the reduced weight of the n = 0 valence-band
state responsible for the non-interacting Hall effect, and
in part due to the momentum-orientation coherence be-
tween n = 0 and n = 1 states which changes the sign of
the n = 1 Berry connection contribution. In panel f of
Fig. 2 we plot the Berry connection integral of Eq. (12),
calculated as a function of |k| both neglecting and includ-
ing electron-magnon interactions. For large |k| the inter-
acting model does not converge to the quantized value of
1/2 but obtains an interaction correction. The calcula-
tion is described in greater detail below.

At leading order in perturbation theory, corrections
are obtained by summing over contributions from dis-
tinct boson modes, and the boson Hilbert space can be
truncated to occupation numbers 0 and 1. To bring out
the physics of the interaction correction as simply as pos-
sible we focus first on the contribution from interactions
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FIG. 2. (Color online) Band structure for a) a pure (~v = 1, m/v = 0) Dirac model, b) a massive (m/v = 1) Dirac
model, and c) a massive Dirac model interacting with momentum p = 0 magnons restricted to occupation numbers 0 and 1

(A−1/2M21Ω/v = 1/3, ω/v = 1/2). Panel d) shows the momentum space spin texture of the ground state of the pure Dirac
model in which spins projections lie in the xy plane and rotate along with the momentum direction. Panel e) shows the spin
texture of the massive Dirac model with a momentum-space vortex centered at k = 0. The spin is in the −ẑ direction at k = 0.
(The color code denotes the z component of the spins.) Panel f) shows the result of Eq. (12) in units of e2/(2h) as a function
of |k| in the non-interacting and the electron-spinwave-interacting 2D massive Dirac model. For large |k| the interacting model
does not converge to the quantized value of e2/(2h) but obtains a correction given by [−(Ω/ω)2/2]× e2/(2h).

between surface-state quasiparticles and a boson mode
with 2D momentum p = 0. This simplification leads to a
Hilbert space in which four possible states are associated
with each crystal momentum, valence- and conduction-
band states with and without a boson present. The
many-body Hamiltonian is then diagonal in crystal mo-
mentum, and each 4× 4 block has the form

Hn=1 =

(
Hqp M
M† Hqp + ~ω

)
. (13)

For electron-magnon interactions the spin-dependent
quasiparticle-boson interaction matrix32

M = ~Ω

(
M11 M12

M21 M22

)
(14)

has only one non-zero element since magnon creation is
accompanied by spin-flip from ↑ to ↓:

ΩM21 =
m

2
√
M0

(15)

where m is the quasiparticle mass, and M0 is spin per
unit area of the thin film.

To calculate the Hall conductivity correction we sepa-
rate Hn=1 into Hn=1

0 and Hn=1
pert with

Hn=1
0 =

(
Hqp 0

0 Hqp + ~ω

)
,Hn=1

pert =

(
0 M
M† 0

)
. (16)

For m > 0, the unperturbed ground state at k = 0 is a
spin-↓ state. At finite k the unperturbed ground state
is a spin-coherent state with a finite in-plane component
with orientation χ = φ+ π/2. In order to use the Berry
phase formula for the Hall conductivity we must choose
the gauge in which the phase factor exp(−iχ) appears in
the spin-↑ component of the unperturbed ground state
spinor. The correction to the ground state due to in-
teractions with magnons can then be calculated using
first-order perturbation theory. At large wavevectors we
can ignore mixing between conduction- and valence-band
states because of the large vΛ energy denominator. In
this way we find that on ∂DP:

|0〉 ≈ |n = 0〉 ⊗ |v〉 − ΩM21 exp(iχ)

2ω
|n = 1〉 ⊗ |v〉, (17)

where

|v〉 =
1√
2

(exp(−iχ), 1) (18)

is the unperturbed valence band state on ∂DP. It then
follows from the Berry connection formula for the Hall
conductivity that

σxy ≈
e2

2h
sign (V)

[
sign(m)− 1

2

(
Ω

ω

)2

|M21|2
]
. (19)

In Eq. (19) we have generalized to the cases in which the
surface-state Dirac model is altered by changing the sign
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of the mass m and/or the vorticity of momentum-space
spin texture. (χ = sign (V)(φ+ π/2).)

Because the valence-band states on ∂DP vary with
momentum on the scale of Λ, the magnon-mode Hall
conductivity correction calculation at finite p is un-
changed relative to p = 0 provided that the momen-
tum magnitude |p| is much smaller than Λ. An ex-
pression for the Hall conductivity correction valid for
arbitrary quasiparticle-boson interaction vertex and ar-
bitrary surface-state band-structure model requires a
lengthy and detailed calculation, and is provided in
Sec. I B of the supplemental material. Note that the gen-
eral expression for the interaction correction to the Hall
conductivity is odd, as required, under time-reversal.

The contribution of a single magnon mode to the
Hall conductivity interaction correction is inversely pro-
portional to the surface area of the system. However,
the correction to the Hall conductivity varies slowly
with magnon momentum p provided p is close to the
Dirac point. Summing over magnons with momenta in-
side DP we predict an overall correction proportional to
(ADP/M0)(m/ω)2, where ADP is the area in momentum
space of the Dirac point region DP. Since the gap in the
magnon spectrum, due either to weak external fields used
to saturate the magnetization or to the perpendicular
magnetic anisotropy of magnetically doped TI thin films,
is typically smaller than the gap produced in the surface-
state quasiparticle spectrum, the interaction correction
can be large even when m � vΛ. A large interaction
correction to the magneto-electric coefficients of TI thin
films is present even when time-reversal symmetry break-
ing is weak when measured by the size of the surface-state
gap it produces. This result, which may seem surprising,
is in fact natural because of the strong spin-orbit coupling
inevitably present in TIs. A magnetic order parameter in
a magnetically doped TI will never be a good quantum
number. Quantum fluctuations of the magnetic conden-
sate interact with surface-state quasiparticles and cause
the system’s broken time-reversal symmetry to be mani-
fested even in quasiparticles that are far from the Dirac
point.

IV. MAGNETO-ELECTRIC COUPLING
MEASUREMENTS

Magneto-electric coupling is most easily detected33 by
examining the magnetic field dependence of dielectric
properties. These measurements require that the sample
under study is a reasonable good insulator. For a diluted-
moment magnetically ordered TI thin film, the quasipar-
ticle mass and the quasiparticle vorticity are both oppo-
site in sign on top and bottom surfaces. It follows that,
although the Hall conductivities of the top and bottom
surfaces both have corrections, they differ in sign. The
total Hall conductivity of the thin film is not altered by
the interaction corrections we have calculated. Verifica-
tion of our prediction requires a direct measurement of

magneto-electric coupling in TI thin films.
A TI differs from an ordinary insulator mainly via its

protected surface states, and these complicate34,35 the
task of measuring the magneto-electric effects discussed
here. In particular, electrical measurements of a mag-
netic field dependent film polarization are not possible
when the system has a non-zero total Hall conductivity,
because this is necessarily associated with edge states
which are localized on side walls and short the top and
bottom surfaces of the film. A magnetized TI thin film
is truly insulating at sufficiently low temperature if a do-
main wall is present between top and bottom surfaces.
Even though the domain wall energies of TI-based di-
luted magnetic semiconductors are not known and may
be quite small, this scenario seems difficult to achieve.
As recently discussed in Ref. 35, however, electrical mea-
surements should be feasible when the top half of the
thin film is doped with Cr ions and the bottom half with
Mn ions. These atoms have exchange interactions with
surface-state electrons that have opposite sign. When
they are aligned by a weak magnetic field, the sign of
the effective exchange field on top and bottom surface
Dirac cones is opposite.21,23,36 In terms of the massive
Dirac models we have studied in this paper, this circum-
stance implies that there are no side wall states and that
while the signs of the momentum-space vorticities on the
top and bottom surfaces are opposite, the masses have
the same sign. Because the total Hall conductivity is
zero in this case, there should be an energy range over
which there are no side wall states. The individual sur-
face Hall conductivities are non-zero however, and they
can be measured electrically by detecting current flow be-
tween top and bottom surfaces as magnetic field strength
is varied. We predict that this measurement will iden-
tify an interaction correction to the surface state Hall
conductivity. Similar interaction corrections which con-
tribute to the valley Hall effect but cancel out in the total
anomalous Hall effect occur in honeycomb lattice Dirac
systems4,37 when the quasiparticle-boson interaction is
sublattice dependent.

V. CONCLUSIONS

The surface Hall conductivity of an insulator is pro-
portional to its magneto-electric polarizability, i.e. to
the coefficient which describes how the polarization of
a film depends on magnetic field strength. By explic-
itly evaluating the surface Hall conductivity of surface
states described by a massive Dirac model, we have
shown that there is a non-universal interaction correc-
tion to the quantized magneto-electric coefficient of thin
films formed from TIs. Corrections to the top and bot-
tom surface Hall conductivities cancel, however, implying
that there is no correction to the quantized anomalous
Hall effect in magnetically doped TIs. The interaction
correction to the magneto-electric polarizability can be
measured electrically only when the total Hall conduc-
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tivity of top and bottom surfaces is made to vanish, for
example by aligning local moments with opposite signs
of exchange coupling to the Dirac surface states, for ex-
ample in a setup where the top half and bottom half of
the TI are doped by aligned local moments with opposite
signs of exchange coupling to the Dirac surface states.
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