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The interaction between two topological objects, an X-ray beam carrying orbital angular mo-
mentum (OAM) and a magnetic vortex, is studied theoretically. The resonant X-ray scattering
intensity is calculated as a function of the relative position of the magnetic and X-ray vortices.
For a homogeneous system, the charge scattering is zero. For magnetic scattering, the intensity
profile strongly depends on the relative topological indices of the X-ray and magnetic singularities.
A strong enhancement in the intensity profile is observed for equal winding factors. Additionally,
the profile displays edge effects, which depend on the scattering conditions, the radial dependence
of the magnetic vortex, and the Laguerre-Gaussian mode of the OAM X-ray beam. The potential
of resonant OAM X-ray scattering from magnetic vortices opens the door to study the dynamics
and switching of magnetic vortices.

I. INTRODUCTION

Photons in singular electromagnetic beams with a
cork-screw-like phase distribution carry an orbital an-
gular momentum (OAM) of lh̄1. In the visible part of
the electromagnetic spectrum, this intriguing property
has led to a number of new applications, such as opti-
cal manipulation2,3, multiplexing of information for ter-
abit free-space data transmission4, and to generate an
atomic vortex state in a Bose-Einstein condensate5. In
the X-ray region, tremendous progress has been made
generating vortices. Initially, vortices were created us-
ing conventional methods of manipulating X-ray beams
such as apertures and zone plates6,7. More recently,
the attention has shifted towards the direct generation
of X-ray vortices. OAM X-ray beams are produced as
higher harmonics in a helical undulator8,9, through the
interaction of an electron beam with a seed laser in
a helical undulator10–12, or via echo-enabled harmonic
generation13. This has led to significantly more in-
tense OAM X-ray beams. Although the generation of
OAM beams is of great interest by itself, the potential
for applications using short-wavelength OAM beams has
been limited. Interest has focused on absorption14 and
photoionization15. In X-ray absorption, taking the differ-
ence between positive and negative OAM states can lead
to substantial dichroic effects14. Experimentally, the use
of orbital-angular momentum to induce dichroic effects
has been demonstrated for electron beams16.
In this Letter, we look at the interaction between an

OAM X-ray beam and another singular object, namely,
a magnetic vortex17,18. In a magnetic vortex, the mag-
netization curls around the center, see Fig. 1(a). As
OAM beams, they can be characterized in terms of a
topological index or winding number. These topological
magnetic states are not only of scientific interest, but also
have potential applications in spintronics if their topolog-
ical charges can be fully manipulated. These magnetic
vortices have been studied by, for example, magnetic-
force microscopy18, Kerr spectroscopy19, and photoemis-

sion electron microscopy20. Here, we discuss the unique
features resulting from the interaction between two singu-
lar objects by simulating the intensity of an OAM X-ray
beam that resonantly scatters of a magnetic vortex. A
strong dependence on their relative topological indices is
found and the appearance of a singularity in the scat-
tering intensity as a function of position is observed for
matching winding numbers.

II. THEORY

The vector potential for a linearly-polarized Laguerre-
Gaussian beam carrying orbital angular momentum
propagating in the direction of the wavevector k

1 can
be written as

Anl(r) = ǫAnl(ρr)e
ik·r+ilϕr , (1)

where ǫ is the polarization vector. The integer l is the
winding number or topological index describing the or-
bital angular momentum carried by the beam. The OAM
beam is defined in terms of coordinates with respect to
its center. The vector ρr = r−(r ·ek)ek is perpendicular
to the unit vector in the propagation direction ek = k/k.
The amplitude of the beam is a function of the distance
to the center of the beam ρr = |ρr|. In the long Rayleigh
range, the transverse amplitude is given by1,21
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The beam is normalized such that the strength only de-
pends on the factor anl,

∫ 2π

0

dϕ

∫ ∞

0
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The width of the beam is determined by r0 and Ll
n(x) is

an associated Laguerre polynomial of order n. The order
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FIG. 1: (a) Schematic diagram of the resonant X-ray scatter-
ing of a Laguerre-Gaussian beam carrying orbital momentum
(blue) on a magnetic vortex (green). The situation is shown
for π scattering where the incoming polarization ǫ is in the
scattering plane and the outgoing polarization is not mea-
sured. (b) The intensity of the beam |A0,±1(r)| at the sample
surface. (c) The magnitude |M| of the magnetic vortex in
the sample. (d) The intensity I101 of the resonant magnetic
X-ray scattering as a function of the relative displacement on
the sample surface RV of the center of the magnetic vortex
relative to the center of the Laguerre-Gaussian beam. The
calculations are done for π polarized light and an angle of
incidence of 60◦. (e) Density plot of I101. The colors for the
relative intensities are given in the bar on the right side.

n specifies the number of nodes in the beam in addition
to a (possible) node at the center of the beam. The vec-
tor ρr can be expressed in terms of the linear polarization
vectors of the vector potential ρr = cosϕreπ + cosϕreσ,
where eπ and eσ are perpendicular to k and in and per-
pendicular to the scattering plane, respectively, see Fig.
1(a). The orbital angular momentum appears in the de-
pendence of the X-ray beam on the phase ϕr. For the
case of nl = 0,±1, the vector potential reduces to

A0,±1(r) = ǫ
2√
π
ρre

−
ρ
2
r

r
2
0

+ik·r±iϕr

, (4)

giving a typical donut-like intensity distribution of the
magnitude of the vector potential, see Fig. 1(b).
The resonant scattering amplitude is given by22

Inl(ω) =
∑
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where Enl = iωAnl is the electric field. We make here
the assumption that the beam is much larger than the

size of the atomic orbitals, which allows us to neglect
variations of the vector potential across the atom. The
summation variable α is over the two outgoing polariza-
tion vectors ǫ′α. When the scattering satisfies the Bragg
condition, the transferred momentum equals a reciprocal
lattice vector, i.e. K = k − k

′ giving eiK·R = 1 at the
scattering centers. The local scattering amplitude in the
dipole approximation is given by the Kramers-Heisenberg
expression

FR(ω, α) =
∑

m

∑

ij

〈g|ǫ′α · rj |m〉〈m|ǫ · ri|g〉
h̄ω + Eg − Em + iΓm/2

, (5)

where |g〉 is the ground state and Γm is the intermediate
state lifetime broadening. The summation m goes over
the resonant x-ray scattering intermediate states and the
summations i and j are over the electrons at the site
where the scattering occurs.
By using a recoupling, we can separate the scattering

amplitude into a geometric term determined by the scat-
tering geometry and a fundamental scattering amplitude
related to the local electronic and magnetic properties22

FR(ω, α) =

2
∑

L=0

T
L(ǫ, ǫ′α) ·CL(M̂)FL(ω). (6)

The different ranks correspond to different types of scat-
tering: L = 0 is the resonant charge scattering, with
T

0(ǫ, ǫ′α) = 1
3ǫ

′∗
α · ǫ, and L = 1 is magnetic scattering,

with T
1(ǫ, ǫ′α) = − i

2ǫ
′∗
α × ǫ. The L = 2 scattering is

related to the local quadrupolar moments and usually a
result of the presence of orbital ordering. We assume this
latter term to be small and neglect it in the remainder.
Of importance is the relative orientation of the angular
dependence T

L(ǫ, ǫ′α) relative to the direction of the lo-

cal order, where C
L(M̂) is a renormalized spherical har-

monic in the direction M̂ of the local magnetization. In
particular, we have C

0(M̂) = 1 and C
1(M̂) = M̂. The

strength of the scattering is expressed in terms of funda-
mental scattering amplitudes FL(ω). Defining

Fq′q(ω) =
∑

m

〈g|D†
q′ |m〉〈m|Dq|g〉

h̄ω + Eg − Em + iΓm/2
, (7)

where Dq is q’th component of the dipole operator. If
the z axis of the coordinate system is parallel to the lo-
cal magnetization direction M̂ then, in most symmetries,
only the diagonal components q′ = q remain. The funda-
mental scattering amplitudes are then F 0 =

∑

q Fqq and

F 1 = F11 − F−1,−1.
Let us first consider the charge scattering. We take

a typical diffraction geometry where the angle θ of the
incoming and outgoing beam with respect to the sample
surface are equal, see Fig. 1(a). The incoming polariza-
tion ǫ = eπ lies in the scattering plane. The outgoing
polarization is not measured and a summation is made
over both polarization vectors ǫ′1 = e

′
π and ǫ

′
2 = eσ. The
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angular dependence is then T
0(ǫ, ǫ′α) =

1
3 cos 2θ δα,1. If

the beam size is significantly larger than the atomic dis-
tances, the summation over R can be replaced by an
integration, giving

I0nl(ω) =
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However, if the system is homogeneous, the integral is
zero due to the presence of the complex phase factor
of the angular momentum in the x-ray beam. There is
therefore no coherent charge scattering from an X-ray
beam carrying orbital angular momentum for a homoge-
neous system.
Let us now focus our attention to magnetic scattering.

Since the polarization is linear, let us switch to cartesian
coordinates. The nonzero scattering amplitude is then
F 1 = Fxy −Fyx, which is calculated with the magnetiza-
tion direction at a particular point inside the vortex as
the z axis. The change in scattering strength due to the
relative orientation of the magnetization is determined by
the angular dependence T

1(ǫ, ǫ′α) ·M̂. In cartesian coor-
dinates and for π-polarized incoming radiation, the po-
larization dependence is given by T

1(ǫ, ǫ′1) =
1
2e

′
π×eπ =

− 1
2ex sin 2θ and T

1(ǫ, ǫ′2) =
1
2e

′
σ × eπ = − 1

2ek.

III. RESULTS

In order to better understand the interaction of the
OAM X-ray beam with a topological magnetic state, let
us study the example of a planar magnetic vortex with
cylindrical symmetry rotating clockwise with respect to
the surface normal, see Fig. 1(a). The magnetization is
then given by

M = M(ρ′)M̂(ϕ′), with M̂(ϕ′) = sinϕ′
ex − cosϕ′

ey,(9)

where the cylindrical coordinates of the magnetic vortex
r
′ = r − RV , where RV is the center of the vortex, are
shifted with respect to the origin which is determined by
the position where the center of the X-ray beam hits the
sample, see Fig. 1(a). For the radial function, we take
M(ρ′) = 1

2 [1 − tanhα(ρ′ − rv)], where rv is the radius
of the magnetic vortex. This is essentially a smoothened
step function. Unless noted otherwise, α = 5. The mag-
nitude of the magnetization is shown in Fig. 1(c). The
angular dependence is then given by

f1(θ, ϕ
′) = T

1(ǫ, ǫ′1) · M̂(ϕ′) = −1

2
sinϕ′ sin 2θ(10)

f2(θ, ϕ
′) = T

1(ǫ, ǫ′2) · M̂(ϕ′) =
1

2
cosϕ′ cos θ. (11)

If the incoming light has a polarization ǫ = eσ, then
f1 changes sign and f2 = 0. The magnetic scattering
intensity is given by

I1nl(ω) =
∑

α=1,2
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FIG. 2: The intensity of I101 of the resonant magnetic X-ray
scattering as a function of the relative displacement on the
sample surface RV of the center of the magnetic vortex rela-
tive to the center of the Laguerre-Gaussian beam for different
relative sizes rv/r0, where rv (indicated as a white circle) is
the size of the magnetic vortex and r0 the width of the X-ray
beam (indicated by a red circle with a radius r0/

√
2, where

the intensity is maximum) . The calculations are done for π
polarized light and an angle of incidence of 60◦.

A typical calculation of the magnetic scattering is given
in Figs. 1(d) and (e), where the intensity is plotted as a
function of the relative displacement RV of the centers of
the X-ray and magnetic vortices. The Laguerre-Gaussian
mode is nl = 01, which has the same topological index as
the magnetic vortex. The angle of incidence θ is 60◦ and
the incoming polarization vector is eπ. The relative sizes
of the vortices are determined by the ratio rv/r0, where

the maximum of the Laguerre-Gaussian beam at r0/
√
2

is indicated by the red circle in the Figure. The most
noticeable feature is the strong singularity for RV = 0,
when there is a constructive interference in the resonance
scattering. Additional intensity can also be observed due
to edge effects when the two vortices do not entirely over-
lap and resonant scattering intensity from one side of the
OAM beam is not cancelled by that on the opposite site.

Figure 2 shows the dependence of the resonant X-ray
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FIG. 3: The changes in intensity of I1nl of the resonant mag-
netic scattering as a function of the relative displacement on
the sample surface RV of the magnetic vortex relative to the
Laguerre-Gaussian beam when changing the experiment from
a π-polarized nl = 01 Laguerre-Gaussian beam at a 60◦ angle
of incidence with rv/r0 = 2: (a) 30◦ angle of incidence, (b) σ-
polarization, (c) nl = 00, (d) a more slowly varying magnetic
vortex (α = 0.5, see text) (e) nl = 02, (f) nl = 11 (note that
there are now two maxima in the Laguerre-Gaussian beam).

scattering intensity as a function of their relative dis-
placement for different relative sizes rv/r0 of the vortices
for identical scattering conditions. All intensity profiles
have the singularity in the intensity for RV = 0. Addi-
tional intensity is observed resulting from the variations
in the overlap in the radial dependence of the X-ray and
magnetic vortices. An interesting situation occurs for
large rv/r0, where the intensity strongly drops when the
OAM beam is inside the magnetic vortex but not close to
the center or the edge. In this region, the magnetization
in the beam can be considered almost constant since the
size of the X-ray beam is small relative to the size of the
magnetic vortex. However, due to the presence of a phase
in the X-ray beam, the resonant scattering amplitude is
very small.

The scattering profile can be changed by varying the
scattering conditions or the Laguerre-Gaussian modes,

see Fig. 3. Figure 3(a) shows the effect of changing the
angle of incidence from 60◦ to 30◦, for the same scatter-
ing conditions as in Fig. 2 and rv/r0 = 2. Due to the
more grazing angle of incidence, the intensity profile sim-
ply becomes more elongated. For σ-polarized light and
θ = 60◦, see Fig. 3(b), f2(θ, ϕ

′) is zero and the scatter-
ing profile becomes strongly asymmetric with the largest
intensity in the direction of the scattering plane.
Let us now look at different Laguerre-Gaussian modes.

For n = 0 and l = 0, the beam has a simple Gaussian
radial dependence with no phase dependence. When the
centers of the vortices are at the same position (RV = 0),
the intensity goes to zero and no center singularity is ob-
served, see Fig. 3(c). The phase of the magnetic vortex
cancels the scattering amplitudes coming from opposite
sides of the Laguerre-Gaussian beam. However, when the
vortices are displaced with respect to each other, a finite
magnetic scattering intensity is observed since the can-
cellation is not complete. However, since these are edge
effects, the strenghth of this scattering is relatively weak.
Additionaly the scattering intensity due to edge effects
depends on the sharpness of the edge of the magnetic vor-
tex. If the magnetization changes more smoothly then
the edge effects are less prominent, see Fig. 3(d), which
is calculation using α = 0.5 in the radial dependence
M(ρ′) of the magnetization. The mode is nl = 01 and
3(d) should be compared with Fig. 1(e).
Interesting effects occur when increasing the n and l

values. For n = 0 and l = 2, the radial intensity of A02 is
comparable to A01 with its maximum shifted to a slightly
larger ρ. However, the winding number l has increased
by 1, leading to the disappearance of the singularity at
RV = 0 due to the different topological indices of the
X-ray and magnetic vortices, see Fig. 3(e). Increasing
n has a less drastic effect. The Laguerre-Gaussian beam
with n = 1 and l = 1 has two maxima in the radial
dependence, indicated in red in Fig. 3(f). Although the
detailed dependence is different, the general behavior of
the scattering intensity is comparable to that in Fig. 1(e)
with nl = 01.

So far, the focus was on the possibility of detecting
magnetic vortices using X-ray beams carrying orbital an-
gular momentum (OAM). Here, we take a closer look at
the effects of chirality. For a planar magnetic vortex, the
direction of the magnetization is given by

M̂(ϕ) = cosϕ′
ex + sinϕ′

ey. (12)

where ϕ is the polar angle on the sample surface. The
value of ϕ′ is given by23,24

ϕ′ = nϕ+ c
π

2
(13)

where n = ±1 for vortices and antivortices, respectively;
c is the chirality. For a vortex (n = 1), the stable val-
ues for the chirality are c = ±1. In the main text, the
vortex rotated clockwise and has a chirality of c = −1.
In resonant X-ray scattering, the square of the magnetic



5

c=1 c=5�4
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FIG. 4: The intensity of I101 of the resonant magnetic X-
ray scattering as a function of the relative displacement on
the sample surface RV of the center of a magnetic antivor-
tex (n = −1) relative to the center of the Laguerre-Gaussian
beam for different chiralities c. The radii of the magnetic
vortex (rV ) and the X-ray beam (r0/

√
2) are indicated by the

white and red circles, respectively. The calculations are done
for σ-polarized light and an angle of incidence of 60◦.

scattering amplitude is measured and the signal is inde-
pendent of the sign of the chirality. The situation is more
interesting for antivortices (n = −1), where the allowed
values are −2 < c ≤ 2. The additional possibilities occur
because an antivortex is not invariant with respect to ro-
tations around the center of the vortex and the change
in chirality corresponds to a rotation around this center.
Figure 4 shows the dependence of the resonant scatter-
ing on the chirality of the antivortex. The sensitivity to
the chirality comes from the presence of the scattering
plane defined by the incoming and outgoing polarization
vectors. Note that the intensity profile is not entirely

cylindrically symmetric due to the presence of the scat-
tering plane defined by the propagation and polarization
vectors. Apart from some differences due to the scatter-
ing conditions, the intensity profile follows the rotation
of the magnetic vortex due to the change in chirality.

IV. CONCLUSIONS

It has been shown that the interaction between the
topological phases of X-ray and magnetic vortices lead to
a finite resonant X-ray scattering amplitude. For equal
winding numbers, the strongest intensity occurs when the
centers of the vortices coincide. Additionally, off-center
intensity can occur due to an incomplete cancellation of
the resonant scattering. The increased flux and flexibility
of OAM X-ray beams created using undulator techniques
can provide interesting opportunities in the field of topo-
logical physics. Possible application could occur in the
area of vortex dynamics and switching between different
topological indices. Whereas this initial study focused
on the scattering amplitude of a single planar magnetic
vortex, more study needs to be done on the interaction
with magnetic vortex lattices and the possible interaction
between OAM X-ray beams and magnetic skyrmions.
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