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The electronic correlation strength is a basic quantity that characterizes the physical properties
of materials such as transition metal oxides. Determining correlation strengths requires both precise
definitions and a careful comparison between experiment and theory. In this paper we define the
correlation strength via the magnitude of the electron self-energy near the Fermi level. For the case of
LaNiO3, we obtain both the experimental and theoretical mass enhancements m?/m by considering
high resolution angle-resolved photoemission spectroscopy (ARPES) measurements and density
functional + dynamical mean field theory (DFT + DMFT) calculations. We use valence-band
photoemission data to constrain the free parameters in the theory, and demonstrate a quantitative
agreement between the experiment and theory when both the realistic crystal structure and strong
electronic correlations are taken into account. In addition, by considering DFT + DMFT calculations
on epitaxially strained LaNiO3, we find a strain-induced evolution of m?/m in qualitative agreement
with trends derived from optics experiments. These results provide a benchmark for the accuracy of
the DFT+DMFT theoretical approach, and can serve as a test case when considering other complex
materials. By establishing the level of accuracy of the theory, this work also will enable better
quantitative predictions when engineering new emergent properties in nickelate heterostructures.

I. INTRODUCTION

Strongly correlated electron materials such as
transition metal oxides display a rich variety of
phenomena, including superconductivity, magnetism,
and charge and orbital orders.1 Electron-electron
interactions (among the electrons in partially filled
transition metal d-orbitals in the transition metal
oxide case) are a key source of this richness, but other
factors including the crystal structure2 and the relative
energies of other orbitals3 also are important. A defining
property of a strongly correlated electron material is the
“correlation strength” which characterizes the degree
to which a measured property of the material differs
from that predicted by a reference calculation in which
electron-electron interactions are neglected or treated
in a mean-field manner. While the qualitative meaning
of the term “correlation strength” is intuitively clear, a
precise definition of correlation strength requires choices
of a reference calculation and a physical property.
The most widely used reference calculation is density
functional theory (DFT) while the most basic property
is the electron mass enhancement m?/m, which can
be accessed by a variety of experimental probes. An
important test of a theoretical method is whether it
reproduces the correlation strength of a given material.

In this paper we investigate the mass enhancement
of LaNiO3 both experimentally, via angle-resolved
photoemission spectroscopy (ARPES)4 and theoretically,

via density functional + dynamical mean field theory
(DFT + DMFT) calculations. By comparing the
experiment and theory at precisely the same points
in momentum space, and to the same reference
DFT bandstructure, we seek to quantify how well
DFT + DMFT can reproduce the experimental mass
enhancement. LaNiO3 is an appropriate test case for
this study because it has strong electronic correlations,
yet remains a Fermi liquid down to low temperatures.
In addition, there has been a great deal of interest in
potential exotic physics in LaNiO3, including engineering
orbital polarization with epitaxial strain5–7 and a
cuprate-like Fermi surface via heterostructuring,8 and a
precise knowledge of the predictive capabilities of theory
will aid in engineering new emergent properties in the
nickelates.

LaNiO3 is also an interesting choice for this study
because there is a strong association between correlation
effects such as metal-insulator transitions (MIT) and
lattice distortions in the nickelates. Considering the
phase diagram of the rare-earth nickelate family RNiO3,
LaNiO3 is the only material that remains metallic to
lowest temperatures; upon cooling other RNiO3 undergo
a MIT accompanied by a large-amplitude structural
distortion.9 The MIT temperature is related to the
amplitude of the NiO6 octahedral rotations, which in
bulk materials is controlled by the size of the R cation.
In addition, studies of ultrathin films of LaNiO3 grown
epitaxially on different substrates 10–15 show that both



2

the critical film thickness for a MIT and the coefficient
of the T 2 term in the resistivity depend on the value
of the epitaxially-induced strain. We thus expect that in
LaNiO3 the correlation strength is determined by a subtle
interplay between a basic interaction parameter and the
precise crystal structure. A precise determination of the
correlation strength must untangle these two effects; this
issue is relevant for many transition metal oxides.

LaNiO3 has already been characterized experimentally
via ARPES,14–16 optical conductivity,17–19 and
thermodynamic measurements,20–22 as well as
theoretically with DFT,23–25 DFT+DMFT6,8,26–29

and model system30–32 calculations, and a variety of
measurements of m?/m have previously appeared (to
be discussed more later). ARPES offers a particularly
direct measure of a material’s mass enhancement via
momentum-resolved access to the electronic Green’s
function, which is the fundamental quantity that
characterizes electron propagation in a material:

G(k, ω) = (ω + µ−HDFT (k)− Σ(k, ω))
−1
. (1)

Here k is a momentum in the first Brillouin zone, µ
is the chemical potential and HDFT is the reference
calculation Hamiltonian (here labelled by DFT because
this is the reference used in this paper). The electron
self-energy Σ(k, ω) encodes the electronic correlations
by parametrizing the difference between the observed
electron propagation and that predicted by HDFT (k).
Below we briefly summarize the relevant theory for
extracting a mass enhancement of a Fermi liquid from
ARPES.

In a Fermi liquid at the lowest temperatures and
frequencies and small (k − kF ), the imaginary part
of the self-energy Σ′′(k, ω) may be neglected. In
this case, the physical Fermi surface is given by
the locus of momentum points k = kF for which
det [HDFT (kF ) + Σ′(kF , ω = 0)] = µ, while the DFT
Fermi surface is defined as points k = kF for which
det [HDFT (kF )] = µDFT , where µ and µDFT are
chemical potentials chosen so that the electron density
in each calculation is the same as that in the actual
material. Remarkably, in many cases including that
studied here, DFT correctly predicts the shape of the
Fermi surface; correlations are revealed only in the
excitation spectrum. Of particular interest is the physical
quasiparticle dispersion ωqp(k) of the correlated material,
given by the solution of

det [ωqp(k)−HDFT (k)− Σ′(k, ωqp(k)) + µ] = 0. (2)

While Eq. 2 is defined for all k the solution describes a
propagating Fermi liquid quasiparticle only for k near
kF . In this range of momenta, comparison of the
quasiparticle dispersion to the DFT dispersion ωDFT (k)
defined by

det [ωDFT (k)−HDFT (k) + µDFT ] = 0 (3)

gives a mass enhancement m?/m relative to DFT. This
mass enhancement is widely regarded as a key measure

of correlation strength. The mass enhancement can
in principle be momentum-dependent, either through
intrinsic momentum dependence of the electron self-
energy Σ(k, ω), which is ignored in the single-site
DMFT approximation, or if the orbital character varies
substantially around the Fermi surface (for example if the
Fermi surface has regions of both predominantly strongly
correlated d and weakly correlated p character).

The plan for the rest of the paper is as follows. We
describe our methods in Sec. II, and then consider the
choice of the free parameters in the DFT + DMFT
calculation (via comparison to high-energy features in the
experimental angle-integrated photoemission spectra)
and the choice of the reference DFT bandstructure in
Sec. III. We present the results of our study in Sec. IV,
and discuss our results in the context of the literature
and conclude in Secs. V and VI.

II. METHODS

Epitaxial thin films of LaNiO3 are grown on
(001) oriented pseudocubic (pc) LaAlO3 substrates
using reactive-oxide molecular-beam epitaxy and then
transferred and measured under ultra-high vacuum with
in situ ARPES via the methods described in Ref. 14.
All ARPES data reported here were obtained with a VG
Scienta R4000 electron analyzer using He Iα radiation
(hν = 21.2 eV) at a measurement temperature of T = 20
K and with 8 meV energy resolution. Because we are
interested in the correlated-metal properties here, we use
films with a 10 pseudocubic unit cell thickness where a
bulk-like Fermi surface has been observed, well away from
the previously reported thickness-driven MIT.14

DFT calculations are performed using the Perdew-
Burke-Ernzerhof (PBE) functional and the projector
augmented wave method as implemented in the Vienna
Ab-initio Simulation Package (VASP).33,34 We use a 600
eV plane wave cutoff, and for structural relaxations a
force convergence tolerance of 2 meV/Å. We consider
bulk LaNiO3 in both the rhombohedral (space groupR3̄c,
a−a−a− in Glazer notation) and idealized cubic (space
group Pm3̄m) structures. For the rhombohedral and
cubic structures we use 7 × 7 × 7 and 8 × 8 × 8 k-point
meshes, respectively. We also consider LaNiO3 under
biaxial strain, in which case the symmetry is reduced
from rhombohedral to monoclinic (space group C2/c, in
Glazer notation a−a−c−). For biaxial strain calculations
we use a 10 atom unit cell with lattice vectors (a, a, 0),
(a+ ∆, ∆, c) and (∆, a+ ∆, c). This choice of unit cell
imposes an epitaxial constraint to a square substrate with
in-plane pseudocubic lattice constant a. This cell allows
for relaxation of the out-of-plane lattice parameter c as
well as a monoclinic tilt β of the unit cell (tanβ = c/∆).
We relax β by manually setting ∆ to different values,
relaxing the resulting structure, and choosing the value
of ∆ that yields the minimum total energy. We make use
of VESTA35 to visualize crystal structures.
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DFT + DMFT calculations are performed using
the methodology described in Ref. 36 using structures
relaxed within DFT. DFT calculations are fit using
Wannier9037 over the full ≈ 10 eV range spanned by
the p-d manifold to obtain the correlated Ni-d subspace.
Interactions in the correlated subspace are taken to be
of the Slater-Kanamori form specified by the Hubbard
interaction strength U and the Hund’s couplings J .
As described below, the values of these parameters
are fixed by comparison to wide energy range angle-
integrated photoemission measurements. For the double-
counting correction required in DFT + DMFT38 we
use the parameterization U ′ = U − 0.2 eV, which
was found to correctly reproduce the pressure phase
diagram of the RNiO3 family.28 The filled t2g orbitals
are treated with the Hartree-Fock approximation while
the partially occupied eg orbitals are treated with single-
site DMFT. The DMFT impurity problem is solved using
the hybridization expansion version of continuous time
quantum Monte Carlo39,40 with temperature set to 0.01
eV ≈ 120 K. For analytic continuation to obtain the real
frequency spectral function and density of states (DOS),
we employ the Maximum Entropy Method.41

III. DETERMINATION OF INTERACTION
STRENGTH AND REFERENCE

BANDSTRUCTURE

In making a quantitative comparison between
experiment and theory, it is important to clarify the
relevant uncertainties. For our comparison of the
experimental and theoretical m?/m for LaNiO3, the
uncertainties arise from the free parameters in the DFT
+ DMFT calculation, and the choice of reference DFT
bandstructure. We explore both of these issues in turn
in this section.

A. Interaction parameters

We first fix the Hubbard U and Hund’s interaction
J interaction parameters by comparing experimental
angle-integrated photoemission spectra to the DFT +
DMFT DOS calculated with various choices of (U , J)
in Fig. 1. The DFT + DMFT calculations are performed
using a R3̄c crystal structure relaxed within DFT. The
experimental spectra show a peak at ∼ 1 eV binding
energy, arising from the Ni t2g states, and a broad higher-
energy feature with onset at ∼ 2 eV binding energy,
arising from the O 2p states. We note that the calculation
does not include matrix element effects, which are crucial
in determining photoemission intensities. As a result,
in comparing the measurement and the calculation, we
focus on peak positions and the onset of spectral weight,
rather than the precise shape and size of the peaks.

Fig. 1(a) compares our experimental spectrum to DFT
+ DMFT DOS calculations with different values of U (5,

7, and 9 eV), while keeping J fixed to 1 eV. From the DOS
in Fig. 1(a) we extract the onset of the O-2p feature (here
we define this as the midpoint of the rising edge) and the
location of the Ni-t2g peak and plot them in Fig. 1(c)
as a function of U . Both the U = 5 eV and U = 7 eV
calculations capture the energy of the O-2p feature at ∼ 2
eV binding energy, while the position of this feature is off
by ∼ 1 eV in the U = 9 eV calculation. Considering the
Ni t2g peak position, the U = 7 eV calculation correctly
reproduces this, while the U = 5 and 9 eV calculations
place this peak at too low and high binding energies,
respectively. As a result, only the U = 7 eV calculation
is able to correctly reproduce the energy scale of both
features observed in experiment.

Now constraining U to 7 eV, we consider the impact
of varying J in Fig. 1(b), and show the extracted O-
2p onset and Ni-t2g peak locations as a function of J
in Fig. 1(d). We find that the J = 1.4 eV calculation
captures the energy of the O-2p onset, while the J =
0.6 eV calculation places this feature at too low binding
energy. The Ni t2g peak is located at too high and low
binding energies, respectively, in the J = 0.6 eV and
1.4 eV calculations. From consideration of these DFT +
DMFT calculations with five different (U , J) parameter
sets, we find that only (U , J) = (7, 1) eV is able
to reproduce the experimental energy position of both
features, while the other calculations misalign either one
or both features. As a result we use this parameter set in
the rest of our calculations. In addition to constraining
the free parameters in our calculation, this comparison
in Fig. 1 also highlights the sensitivity of the energies of
features in the angle-integrated photoemission spectrum
to the electron interaction parameters used in DFT +
DMFT calculations. A previous study42 on bulk LaNiO3

extracted a value of U = 4.7 eV by comparing XPS and
Auger spectra, which is lower than our optimized value
of U . However, the extraction of U from XPS/Auger
spectra is indirect, requiring modeling of core-hole
excitonic corrections and hybridization effects, which
may be why this value is different from that obtained
from our photoemission/DMFT comparison.

B. Reference bandstructure

We now consider the choice of reference bandstructure.
LaNiO3 exhibits a rhombohedral structural distortion,25

which has been observed experimentally in our films
via superstructure in low-energy electron diffraction
measurements.14 We perform DFT calculations for two
structures: a hypothetical cubic structure (shown in
Fig. 2(a)) and the experimental rhombohedral (R3̄c)
structure, where the NiO6 octahedra rotate out of phase
about the [111] pseudocubic axis, which corresponds
to rotations of equal amounts about each of the three
pseudocubic axes, as shown in Fig. 2(b). In each case we
fully relax the structures; we find a Ni-O-Ni bond angle
of 161.6◦ and a Ni-O bond length of 1.95 Å when we relax
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FIG. 1. Comparison of experimental angle-integrated
photoemission spectra (thick lines, grey and green online) to
calculated DFT + DMFT partial density of states (thin lines,
blue and red online) for (a) J = 1 eV and U = 5, 7, and
9 eV (bottom to top), and (b) U = 7 eV and J = 0.6, 1.0,
and 1.4 eV (bottom to top). Due to the experimental photon
energy, the intensity of the Ni-t2g peak is weak compared to
the O-2p features, so the low energy part of the spectrum
enlarged by a factor of 10 (green) is shown for comparison
to the calculated Ni-t2g peak. Note that the spectra are
artificially offset along the vertical axis for clarity. (c) and
(d) plot the midpoint of the O-2p onset (blue squares) and
the Ni-t2g peak position (red triangles) extracted from the
DFT + DMFT calculations in (a) and (b) as a function of U
and J respectively. The dashed lines indicate the position of
these features in the experimental spectrum.

the rhombohedral structure with PBE. This compares to
experimental values of 164.8◦ and 1.93 Å for the bond
angle and length, respectively, for bulk LaNiO3 at 1.5
K.9

Fig. 2(c) shows a schematic of the LaNiO3 Fermi
surface computed for the hypothetical cubic structure.
It consists of two sheets with a small electron pocket
centered at the Γ point, and large hole pockets centered
at the Brillouin zone corners. In this work we study the
bandstructure along the momentum space cut (π/2apc,
ky, 0.7π/apc), which is shown as the black slab in the
lower part of Fig. 2(c) (this momentum space cut is
determined by our experimental photon energy). We
determine the value of kz corresponding to this photon
energy as described in Ref. 14. Due to surface sensitivity,
the photoemission measurements integrate over a range
of kz, which is represented by the finite height of the slab

along kz in Fig. 2(c). However, the electronic structure
has little kz-dependence in this range, so this should
minimally affect our results. We also consider calculated
bandstructures along high-symmetry cuts through the
Brillouin zone for comparison. LaNiO3 has a nominal
t62ge

1
g electronic configuration, so the bands crossing

the Fermi level have predominately eg character with
a sizeable O 2p component from hybridization. The
dominant orbital character of the bands crossing the
Fermi level is shown in Fig. 2(f-g).

The rhombohedral distortion present in LaNiO3 is
generally expected to reduce the bandwidth relative
to that of the cubic structure, because rotations of
the NiO6 octahedra distort the Ni-O-Ni bond angle
away from 180◦ and thus reduce the orbital overlap
between the Ni eg and the O 2p states. To clarify
how the octahedral rotations influence the specifics of
the near-Fermi level bandstructure needed for obtaining
m?/m from ARPES measurements, we compare DFT
bandstructures computed in the rhombohedral structure
and in the idealized cubic structure both along high-
symmetry Brillouin zone cuts (Fig. 2(d)) and along our
experimentally accessible momentum cut (Fig. 2(e)).

Focusing first on the bandstructure along high-
symmetry cuts in Fig. 2(d), the two prominent near-
Fermi level features are a band crossing the Fermi level on
the Γ-M cut (two bands in the case of the rhombohedral
bandstructure, due to zone folding), and a shallow band
bottom at the M point. The Fermi velocity vF of the Γ-
M band is reduced in the rhombohedral bandstructure
relative to that in the cubic bandstructure, and the M -
point band bottom moves to significantly lower binding
energy. Both of these changes are consistent with the
reduction of Ni-O hybridization due to the rhombohedral
distortion. However, the magnitude of these changes
differs substantially: while there is only a small difference
in vF along Γ-M between the rhombohedral and cubic
structures, the position of the band bottom at the M
point moves from ∼ 300 meV binding energy (cubic) to
∼ 30 meV binding energy (rhombohedral).

Now turning to the momentum space cut accessed
by our experiments (Fig. 2(e)), we find that both vF
and the binding energy of the band bottom are reduced
by approximately a factor of 2 in the rhombohedral
structure relative to the cubic one. (Note that the slight
offset of the rhombohedral band relative to the cubic
one is due to the lower symmetry of the rhombohedral
structure). In summary, the comparison in Fig. 2(d-
e) illustrates that the rhombohedral distortion present
in LaNiO3 has a significant influence on the low-energy
bandstructure, but the precise magnitude of this effect
varies significantly in momentum space. Therefore, a
quantitative determination of m?/m depends sensitively
on the correct details of the crystal structure, and
requires a comparison of theory and experiment at the
same locations in momentum space.
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FIG. 2. Bulk DFT LaNiO3 bandstructure in cubic and
rhombohedral structures. Comparison of cubic (a) and
rhombohedral (b) structures: in the rhombohedral structure,
the NiO6 octahedra rotate out of phase about each of the
pseudocubic axes. (c) Fermi surface for LaNiO3 in the cubic
structure. The black slab indicates the momentum space
cut (π/2apc, ky, 0.7π/apc) that we measure in our ARPES
experiment. (d) and (e) compare the cubic and rhombohedral
bandstructures (thick red and thin black lines) along high-
symmetry cuts and along the experimental cut, respectively.
Note that in (d) we label high-symmetry points using notation
for the cubic structure. (f) and (g) show the dominant
orbital character (dx2−y2 or d3z2−r2) of the bands crossing
the Fermi level (for the rhombohedral structure) for the same
momentum space cuts as shown in (d) and (e).

IV. RESULTS

A. Bulk-like rhombohedral structure

Fig. 3(a) compares the rhombohedral DFT
bandstructure from Fig. 2(e) to spectra measured
by ARPES and calculated by DFT + DMFT. The
experiment and calculations consider exactly the
same momentum cut (π/2apc, ky, 0.7π/apc). In both
experiment (left side) and DFT+DMFT (right side),
there is a shallow band crossing the Fermi level with a
band bottom at ∼ 50 meV and a Fermi level crossing at
ky = −0.2π/apc. This band is substantially renormalized

by electron correlations relative to the rhombohedral
DFT bandstructure, and the renormalization predicted
by DFT+DMFT is in good agreement with that seen
in experiment. It is important to emphasize that the
DFT + DMFT calculation used the values of U and
J obtained from matching features in the high-energy
spectrum in Fig. 1, we do not further optimize these
parameters to obtain the present comparison of the
low-energy spectra.

We obtain a mass renormalization of m?/m = 3.1±0.5
by comparing the DFT and experimental / DFT+DMFT
band bottom energies, and m?/m = 3.4 ± 0.5 by
comparing Fermi velocities vF . An earlier report of
m?/m of 7 in this system from some of the present
authors arose from using DFT calculations in the
idealized cubic structure14 which, as can be seen from
Fig. 2(e), are about a factor of two more dispersive.

Alternatively, the theoretical mass renormalization can
be obtained by considering the frequency derivative of
the electron self-energy ∂Σ′(ω)/∂ω|ω=0 (in the single-
site DMFT approximation considered here, the self-
energy has no k-dependence). This is related to the
physical mass enhancement discussed in the previous
paragraph by factors of the relative d and p content of
the near-Fermi surface wave functions.43,44 In the Fermi
liquid regime relevant here, the imaginary part of the
real-axis self-energy is negligible at low frequencies and
one may estimate ∂Σ′(ω)/∂ω|ω=0 from the imaginary
part of the self-energy on the Matsubara axis Σ′′(iωn),
shown in Fig. 3(b). We fit the five lowest Matsubara
points to a fourth order polynomial to obtain m?/m =
(1 − ∂Σ′′(iωn)/ωn|ωn→0) = 3.5. We also calculate the
mass renormalization from the analytically continued
self-energy, m?/m = (1 − ∂Σ′(ω)/∂ω|ω=0) (not shown)
and obtain the same value, thus lending confidence to
our analytic continuation procedure. The estimate we
obtain is in good agreement with the experimentally
determined value, and consistent with the observation
that in this region of the Brillouin zone the states are of
primarily Ni-d character. This quantitative comparison
between experiment and theory in Fig. 3(a) demonstrates
that DFT + DMFT is able to accurately describe
correlated physics in LaNiO3. However, it also highlights
the importance of considering realistic crystal structure,
correct interaction parameters, and precisely the same
momentum space points in experiment and theory.

B. Strained films

LaNiO3 grown on LaAlO3 is under ∼ 1% compressive
strain, so it is important to consider how this strain
impacts our results, given that strain couples to
octahedral rotations. Here we define strain as (a−a0)/a0,
where a0 is the in-plane lattice constant at which the
total energy of the C2/c structure is a minimum, and
apply strain in the xy plane. As discussed in Sec. II, the
structure becomes monoclinic (C2/c) under the epitaxial
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FIG. 3. (a) Comparison of ARPES spectrum (left side) and
DFT + DMFT spectral function (right side), both along the
momentum space cut (π/2apc, ky, 0.7π/apc) to the DFT
bandstructure, calculated in the bulk R3̄c structure (white
line). (b) Imaginary part of the Matsubara axis DFT +
DMFT self-energy, used to calculate the theoretical value of
m?/m.

constraint, which changes the pattern of octahedral
rotations. The NiO6 octahedra still rotate out of phase
about [111]pc, but there are now two distinct Ni-O-Ni
bond angles θxy and θz, which lie in and out of the plane
of applied strain, respectively. In addition, there are also
two distinct Ni-O bond lengths, rxy and rz lying in (out
of) the strain plane. The crystal structure accommodates
this biaxial strain via changes to both the Ni-O-Ni bond
angles and the Ni-O bond lengths, as shown in Fig. 4(a-
b). Upon moving from compressive to tensile strain, θxy
moves closer to 180◦ and rxy expands to accommodate
the stretching of the crystal in this plane, while θz moves
further from 180◦ and rz contracts.

Experimentally, an asymmetry in the response of the
in-/out-of plane bond angles and lengths is observed
in LaNiO3: the out-of-plane bond angle changes more
with biaxial strain than the in-plane bond angle, while
the in-plane bond length changes more than the out-
of-plane bond length25 (the same asymmetric response
also is observed in strained LaAlO3

45). We find that
our calculated bond angles in Fig. 4(a) reproduce this
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FIG. 4. Influence of biaxial strain on DFT bandstructure.
The evolution with strain of (a) the Ni-O-Ni bond angles and
(b) the Ni-O bond lengths that lie in (purple) and out (blue)
of the plane in which biaxial strain is applied. Here negative
(positive) values correspond to compressive (tensile) strain.
The bandstructure at -1, 0, and +1% strain is shown in (c)
along high symmetry cuts, and (d) along the experimental
ARPES cut. Note that LaNiO3 grown on LaAlO3 (the
experimental setup) corresponds to 1% compressive strain.

asymmetric trend, while the bond lengths in Fig. 4(b) do
not (rxy and rz change by roughly the same amount).
Improved agreement with experiment regarding these
structural changes can be obtained by performing
structural relaxations within DFT + U .25

We compare the bandstructure at -1, 0, and +1%
biaxial strain along high symmetry cuts and along our
experimental cut in Fig. 4(c) and (d). Focusing on the
near-Fermi level bandstructure features, in Fig. 4(c), vF
of the band crossing the Fermi level on the Γ-M cut is
essentially unchanged for the strains we consider, while
the position of the near-Fermi level band bottom at the
M -point changes substantially (note that the 0%-strain
C2/c bandstructure does not need to agree precisely
with the bulk R3̄c bandstructure due to the different
symmetries of these structures). For our experimental
momentum cut in Fig. 4(d), the band displays moderate
changes with strain. Interestingly, the response of
the bandstructure to strain is remarkably different at
different momentum points: compressive strain pushes
the the band bottom at the M point to higher binding
energy in Fig. 4(c), while the band bottom in Fig. 4(d)
moves to lower binding energy. These differences can be
understood in light of the fact that biaxial strain lifts the
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FIG. 5. Strain-dependence of calculated DFT+DMFT
mass enhancement in the a−a−c− structure. Because biaxial
strain breaks the degeneracy of the eg orbitals, we show here
orbitally-resolved mass enhancements for dx2−y2 (green) and
d3z2−r2 (blue).

degeneracy of the eg orbitals, and bands derived from the
d3z2−r2 and dx2−y2 orbitals respond differently to biaxial
strain (both in terms of changes to the bandwidth and the
band’s center of mass).6 As can be seen in Fig. 2(f-g), the
band bottom at M is predominantly of d3z2−r2 character,
while the band on our experimental cut is predominantly
dx2−y2 character, so it is not surprising that these bands
display opposite trends with strain.

While these results reveal a complex evolution of the
bandstructure with strain, the key observation for our
chosen system of LaNiO3/LaAlO3 is that in Fig. 4(d)
the band under 1% compressive strain is quite similar to
the bulk R3̄c band used to obtain m?/m in Fig. 3 (both
in terms of band bottom energy and vF ). Therefore
our use of the bulk R3̄c structure rather than the 1%
compressively strained C2/c structure for the particular
strain and momentum space cut considered in this work
does not introduce significant errors in our determination
of m?/m. However, as illustrated in Fig. 4, the bands at
other strain values and momentum space cuts can be
significantly different from the bulk bandstructure, so
in general using a bandstructure computed at the strain
imposed by the experimental substrate may be necessary
to obtain a quantitative comparison between experiment
and theory.

Finally, Fig. 5 shows the strain-dependence of the
mass renormalization m?/m calculated with DFT +
DMFT. These values of m?/m were obtained from fitting
Matsubara self-energies, using the same procedure as in
Sec. IV A. Because biaxial strain breaks the degeneracy
of the eg orbitals, there are now distinct self-energies
corresponding to the dx2−y2 and d3z2−r2 orbitals, so
Fig. 5 shows the orbitally-resolved mass enhancements.
We find that the dx2−y2 mass enhancement increases
upon stretching the in-plane lattice constant (moving
from compressive to tensile strain), while the d3z2−r2

mass enhancement decreases slightly. Because the
dominant orbital character of the bands crossing the
Fermi level varies in momentum space, as shown in
Fig. 2(f-g), at large compressive or tensile strains we
would therefore expect a momentum-dependent mass
enhancement if ARPES measurements were made at
points around the Fermi surface with different dominant
orbital characters.

The strain dependence of the orbitally-resolved m?/m
can be understood in light of the changes to the Ni-
O-Ni bond angles and Ni-O bond lengths presented
in Fig. 4(a-b), which both couple to the electronic
bandwidth W . Assuming strain does not strongly
influence the electron-electron interaction strength U ,
strain-induced bandwidth changes will tune the ratio
U/W , which controls the correlation strength.1 Thus
the increase (decrease) in the dx2−y2 (d3z2−r2)-orbitally
resolved m?/m with tensile strain would arise from a
decrease (increase) in bandwidth Wx2−y2 (W3z2−r2). For
bands formed by hybridized eg and O 2p orbitals, W is
related to the Ni-O bond length r and the Ni-O-Ni bond
angle θ via the expression46 W ∼ | cos θ|/r3.5. Here, the
bandwidth Wx2−y2 is controlled by rxy and θxy, while
the bandwidth W3z2−r2 is controlled by rz and θz.

The expression for W above reveals that strain-
induced changes to r and θ shown in Fig. 4(a-b) will
generally affect the bandwidth in opposite ways. Taking
the example of Wx2−y2 , tensile strain increases rxy
and θxy relative to the unstrained values, which will
decrease (increase) the bandwidth, respectively. As a
result, the net bandwidth response to strain depends
on whether changes in bond angle or bond length are
the primary mechanism for strain accommodation, and
to what extent the changes cancel each other out.
Comparing Fig. 4(a-b) and Fig. 5, it is clear that the
changes to the orbitally resolved m?/m with strain
follow the trends that one would expect from the Ni-O
bond distance changes, rather than the Ni-O-Ni bond
angle (an increasing dx2−y2 mass enhancement arises
from increased rxy, while a decreasing d3z2−r2 m?/m
arises from a decreasing rz). The fact that the dx2−y2

mass enhancement changes more with strain than the
d3z2−r2 mass enhancement can be understood because
θxy responds less to strain than θz as shown in Fig. 4(a),
so there is less cancellation of the bond length/angle
changes to the bandwidth.

While this analysis describes the strain induced
changes to m?/m solely in terms of bond angle and
bond length changes, the evolution of correlation
strength with strain may be more complex, due to
the strong coupling between electronic correlations
and the lattice in the RNiO3 family. For example,
structural relaxations within DFT+U 24,25,47 predict
that tensile strain will induce a bond length
disproportionation phase in LaNiO3, similar to the
correlation-induced disproportionation observed in
the bulk insulating RNiO3 compounds.48,49 However,
DFT+U generally overpredicts the tendency towards
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bond disproportionation (while DFT underpredicts
it), and structural relaxations within DFT + DMFT
are needed to correctly reproduce the structural and
pressure phase diagram of the bulk nickelates.28 On the
experimental side, there is mixed evidence regarding
bond disproportionation in strained LaNiO3 films.5,24

V. DISCUSSION

To summarize the last sections, comparison of ARPES
spectra to the DFT bandstructure computed in the
rhombohedral structure establishes a mass enhancement
m?/m ≈ 3− 3.5 in LaNiO3, and DFT+DMFT using the
same structure, and interaction parameters fixed by high
binding energy features in the photoemission spectra,
give quasiparticle bands in very good agreement with the
data. This establishes LaNiO3 as a moderately correlated
Fermi liquid material. For context, this value of m?/m
is in the same regime as other correlated metallic oxides,
such as SrRuO3 (m?/m ∼ 4)50,51 and VO2 (m?/m ∼
2).52

Other measurements of m?/m for LaNiO3 have
previously appeared in the literature. Soft x-ray ARPES
measurements16 reported m?/m ∼ 3 and ∼ 0 on the
electron- and hole-like bands, respectively, by comparing
experiment to DFT calculations in the idealized cubic
structure (as noted earlier, we obtain a renormalization of
7 when comparing our data to cubic DFT calculations).
This difference of results could be due to measuring
at different momentum space points, or to the energy
resolution available with soft x-rays.

Optical conductivity experiments17,18 determine a
correlation strength from the integral of the optical
conductivity over a given frequency range.53–55 One
group17 found an optical mass enhancement m?/m ∼
3 for LaNiO3 grown on LaAlO3, in good agreement
with our results. They also reported that m?/m
increases from ∼ 3 to ∼ 5 as the strain moves
from compressive to tensile. As seen in Fig. 5 this
trend is consistent with the results of our DFT+DMFT
calculations, but the experimental variation is larger
than the calculated one. Other optical conductivity
experiments18 found the same strain-dependent trend,
but with larger mass enhancements. The differences,
both between experiments and between experiment
and calculation, could arise partly from the choice of
frequency range used in the analysis of optical data.

In bulk LaNiO3, thermodynamic studies20–22 report a
Fermi surface averaged mass enhancement of 10 relative
to free electrons at a density corresponding to one
electron per Ni site. Here we compare the experimental22

specific heat-based DOS at the Fermi level of g(EF ) =
(1.1− 1.3)× 1023 eV−1 cm−3 to the DOS obtained from
our DFT calculations in the rhombohedral structure,
gDFT (EF ) = 4.1 × 1022 eV−1 cm−3. Taking the ratio
of the experimental and DFT DOS, we obtain m?/m ∼
g(EF )/gDFT (EF ) = 2.7 - 3.2, in reasonable agreement

with the value we obtain from ARPES and DFT +
DMFT in this paper. (For comparison, for the idealized
cubic structure, we obtain gDFT (EF ) = 2.1× 1022 eV−1

cm−3 and thus m?/m = 5.2 - 6.2). The enhancement
of the Fermi level DOS in the rhombohedral structure
relative to the cubic structure is due to the flattening
of the bands in the vicinity of the Fermi level in the
rhombohedral structure as is visible in Fig. 2(d); this
was previously discussed in Ref. 6.

VI. CONCLUSION

In this paper, using ARPES measurements and DFT
+ DMFT calculations to study LaNiO3, we determine
the experimental and theoretical mass enhancement
m?/m, which is a defining property of any correlated
material, and demonstrate a quantitative comparison
between experiment and theory. This result establishes
LaNiO3 as a moderately correlated Fermi liquid, and that
DFT + DMFT can accurately describe this correlated
physics. We compare our value of m?/m to previous
reports in the literature, and discuss possible origins
of differences where appropriate; in particular, we find
that our results agree with those from thermodynamic
measurements, if we compare those measurements to our
DFT calculations.

We highlight the choices that must be made in
such a experiment-theory comparison, in particular,
the free parameters U and J in the DFT + DMFT
calculation, which we constrain using angle-integrated
photoemission spectra. We also emphasize the key role
played by the reference DFT bandstructure. Octahedral
rotations and biaxial strain can change the near-Fermi
level bandstructure features significantly, and there is
substantial variation in the magnitude of these changes
depending on the particular point in momentum space
under consideration. In general, octahedral rotations and
strain can “renormalize” the low-energy bands relative
to an idealized cubic bandstructure by the same amount
as electron correlations can, so it is key to consider the
realistic crystal structure and biaxial strain (and make
comparisons at the same momentum-space point) to
obtain a quantitative estimate of the mass enhancement
arising from electron correlations. These results provide
an important benchmark for the DFT + DMFT method,
and thus will enable future studies of other nickelates and
strongly correlated materials.
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