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Fabrication of devices made by isolated graphene layers has opened up possibility of examining
highly correlated states of electron systems in parts of their phase diagram that is impossible to
access in their counterpart devices such as semiconductor heterostructures. An example of such
states are graphene double mono-layer electron-hole systems under strong magnetic fields where the
separation between layers can be adjusted to be as small as one magnetic length with interlayer
tunneling still suppressed. In those separations it is known that correlations between electrons and
holes are of crucial importance and must be included in determination of observable quantities.
Here we report the results of our full numerical Hartree-Fock study of coherent and crystalline
ground states of the interacting balanced electron-hole graphene systems in small and intermediate
separations with each layer occupying up to four lowest lying Landau levels. We show that in the
Hartree-Fock approximation the electrons and holes pair to form a homogeneous Bose-condensed
(excitonic) state while crystalline states of such exciton systems remain incoherent at intermediate
layer separations. Our results of calculation of capacitance of such states as a function of inter-layer
separation and filling factor provides quantitative and qualitative signatures that can be examined
in real experiments. We show that the capacitance of some crystallized states as well as uniform
coherent states are significantly enhanced compared to geometrical values solely due to Coulomb
interactions and quantum corrections.

I. INTRODUCTION

The study of electron gas in graphene systems has re-
cently taken a tremendous advantage from capacitance
measurements[1–3]. This is because transport measure-
ments are not able to reveal certain states of matter due
to disorder effects. In fact quantum corrections to ca-
pacitance of single layer graphene under the influence of
quantizing magnetic fields has been predicted and experi-
mentally shown[1–3] to result in large enhancement com-
pared to geometrical value among other features which
are not yet fully understood.

In a typical experiment to measure capacitance of an
electron gas, the system is placed near a parallel metal
electrode gate[3]. This system has been discussed previ-
ously by several authors[1, 2, 4] using the idea of image
charges: The two dimensional electron gas plus the elec-
trode gate can be thought of as a gas of dipoles made
out of electrons with their image charges[4]. According to
those authors dipoles in this gas interact more weakly and
as the result layers allow easier accommodation of charges
which means an enhancement of capacitance. Study of
phases and the capacitance of dipoles in an electron-hole
bilayer system is therefore the focus of this article.

Generally interaction between electrons in one layer
and holes in the other layer could result in non-trivial
quantum states with broken symmetries[5]. Historically
the problem of electron-hole bilayer system has not been
theoretically investigated as much as the problem of
electron-electron system. This has been partly because
of the difficulty of preparing such systems in semicon-
ducting heterostructures with identical electron and hole
properties. With graphene available we have now an ideal

material in which the polarity of carriers are adjustable
in situ and there is virtually perfect symmetry between
electron and hole bands at typical carrier densities. This
fact makes graphene an ideal candidate to study various
two dimensional quantum states formed by interacting
electron and hole layers. Experimental studies of those
states can be done for example by observation of the ca-
pacitance of the electrode-graphene sheet device[1–3] or
by forming double electron-hole graphene layers either
using electrostatic gates[3] or by optical excitations[6].

In studies of the electron-electron systems electron fill-
ing factor of the two layers are tuned to be the same or
different. The balanced electron-hole system in which the
electron filling factor is the same as the hole filling factor
is equivalent to the imbalanced electro-electron system if
one performs a particle-hole transformation in the hole
layer. It is now established[7, 8] that when the total elec-
tron filling factor in such system is equal to one the true
ground state is a uniform integer quantum Hall state.
In such case the effect of imbalance between the elec-
tron filling factor of the two layers has been studied[9].
It has been found out that the imbalance moves the
phase boundary between the coherent state and incoher-
ent state by enhancing the coherent state of the double
layer system. The coherence here means each electron
is in symmetric state between the two layers even at
the vanishing limit of tunneling. Early works[10] on bal-
anced electron-hole systems indicated the appearance of
roton minimum in the collective excitation spectrum of
the system as the layer separation is lowered. This sug-
gested the existence of an instability of the state of the
system toward the formation of a charge-density-wave
state or a Wigner crystal state. We will compare the
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ground states that we find in this article with those find-
ings. Also studies of the balanced electron-electron sys-
tem at total filling factor less than one were indicating
the existence of Wigner crystal ground states[11] how-
ever unfortunately full study of a crystal state of imbal-
anced electron-electron system was never performed to
the best of the author’s knowledge and is still missing.
That is another main motivation of this article. The
problem of Wigner crystal states in balanced electron-
electron system[12–14] and balanced electron-hole sys-
tem exactly match when the filling factor of electron and
hole layers are both at 1/2 and interlayer tunneling does
not exist. One must note however that even if there is
no tunneling between the layers in the electron-hole sys-
tem, there is still quantum coherence expected to happen
when excitons (we use dipoles and excitons interchange-
ably throughout this article) develop a non-zero average
phase throughout the system. This phase will be defined
when we introduce the density matrix of the system in
section II.

Historically in a single layer gas of charged carriers at
zero magnetic field and at low enough densities it is well
known[15] that the carriers form a crystalline state known
as Wigner crystal assuming they are not massless. This
is because as a function of density n in two dimensions
kinetic energy of carriers behaves as n while Coulomb en-
ergy behaves as n1/2. This results in the Coulomb energy
being dominant at low enough densities and the carriers
find a low energy crystalline state. For low densities of a
dipole gas on the other hand where the Coulomb interac-
tion scales as r−3 (r being the distance between dipoles)
this argument breaks down and the crystallization seems
impossible. However application of a strong perpendicu-
lar magnetic field freezes electron’s and hole’s (therefore
the dipole’s) kinetic energy and localizes their wavefunc-
tion. In this case, quantum fluctuations are reduced and
formation of a crystal is indeed possible. This crystal is
characterized by two length scales, the magnetic length
`B =

√
h̄/eB and dipole arm length d or the electron-

hole layer separation. Magnetic length represents the av-
erage spatial separation between carriers, this time even
more controllable thanks to its dependance on the mag-
netic field.

In this article we systematically investigate all possi-
ble crystalline ground states of an electron-hole system
and calculate their associated capacitance. In a regime
where electrons or holes in separate isolated mono-layers
of graphene under strong magnetic fields form Wigner
crystal ground states we can ask the question of what
phases form in the ground state when the two such crys-
tals (one electron and the other holes) are brought adja-
cent to each other? In today’s state of the art technology
it is indeed possible to achieve such arrangement by fabri-
cating stacks of graphene layers with separations as small
as one magnetic length[16]. In the presence of magnetic

field, since only the ratio d/`B ∝
√
B is physically im-

portant tuning the magnetic field covers all desired inter-
layer separations. On the other hand in small separations

interlayer tunneling is still highly suppressed contrary to
semiconductor counterparts, thanks to the highly resis-
tive insulating barriers (such as hexagonal boron nitride).

At separations comparable to or smaller than a mag-
netic length (d ∼ `B) it is expected that electrons and
holes in the two separate layers form exciton pairs in
ground state. This exciton gas is then predicted to break
U(1) symmetry (associated with the phase of the pair
wave function) and the system undergo a phase transi-
tion into an excitonic condensate state[17] in which ex-
citons as bosons condense into the lowest lying bosonic
state. Therefore we need to consider crystallization as
well as U(1) symmetry breaking in ground state investi-
gations. Such analysis has been done in the past[10] only
for unidirectional states and only at lowest Landau level.

In this article we assume the electrons and holes with
the same filling factor (νe = νh = ν) are confined in
the lowest N = 0, 1, 2, 3 Landau levels with the last level
partially filled. We specifically consider dipolar states in
which electrons and holes gain the maximum attraction
energy by having the same local density. We show that
we recover the uniform excitonic state at small interlayer
separations, d < `B found previously[17]. Throughout
our calculations we ignore the inter-Landau level transi-
tions and layer thickness. We then use the Hartree-Fock
(HF) approximation to obtain the ground state density
matrix and associated energies as a function of layer sep-
aration and filling factor. The central findings of our
investigations are as follows:

Ground State Phase Diagram - In the phase space of
filling factor and layer separation the crystalline ground
states is formed at d >∼ `B and νT = νe + νh <∼ 0.8
and the crystal type becomes more and more anisotropic
in higher Landau levels. Also at higher Landau levels
the crystalline state phase boundary moves further to-
ward smaller separations. We also do not find states in
which crystals of excitons develop a uniform or modu-
lated phase (broken U(1) symmetry) in ground state in
our approximations. We will discuss this issue in the later
sections of this work.

Capacitance - Our calculations of capacitance associ-
ated with the crystalline states on the other hand indi-
cates a remarkable enhancement compared to geometri-
cal value specially for lower Landau levels while at higher
levels (N = 1, 2, 3) the corrections for some filling factors
reduce the capacitance. In all transitions from crystalline
state to uniform excitonic state, there is a jump (indicat-
ing a sharp change in reality) in capacitance value.

This paper is organized as follows: In section II we ex-
plain the basic formulation of HF approximation that has
been used to calculate the density matrix and energy of
the system at zero temperature. This section is brief and
only explains the main lines of argument in deriving the
HF equations because this method has been frequently
used in the past in the literature for single and double
layer electron systems in two dimensions under strong
magnetic field. In section III we explain our numerical
results for both phase diagram and capacitance. We also



3

explain in this section, the quantum corrections to capac-
itance obtained by HF approximation. Finally in section
IV we discuss our findings for both the phase diagram
and capacitance and briefly explain possible extensions
of the problem and open questions.

II. HARTREE-FOCK APPROXIMATION

A. Density and Energy

In this section we briefly explain the Hartree-Fock
approximation that we use to calculate the energies
and density matrices associated with different crystalline
states. We start by introducing the Hamiltonian for elec-
trons and holes in adjacent sheets of graphene around the
Dirac points under strong magnetic field. The low-energy
Hamiltonian for free electrons or holes in K valley of the
graphene sheet is given by[18]:

HK = v(pxτx + pyτy) (1)

where τx and τy are Pauli matrices in the space of sub-
lattices A, B within a unit cell[19]. The parameter v
is the Fermi velocity of electrons. We assume the val-
ley splitting to be negligible and since the inter-valley
scattering is small (of the order of a/`B where a is the
graphene lattice constant) in strong magnetic fields we
consider electrons and holes are simply in one valley and
ignore the valley degree of freedom. Also we assume Zee-
man splitting of Landau levels to be large enough that
the spins are completely polarized and the spin degree of
freedom is frozen.

In the presence of a magnetic field the free-particle
Hamiltonian includes a gauge potential p → p ± eA
where plus(minus) sign is for electrons (holes) and we as-
sume e > 0. In the case that we are considering through-
out this article we assume the magnetic field is uniform
across the sample B = ∇×A = Bẑ. In the Landau gauge
we have A = Bxŷ which results in the Hamiltonian (1)
to take the form:

HK =

√
2h̄v

`B

(
0 ck
c†k 0

)
(2)

where ck = −i[`B∂x + (x/`B − k`B)]/
√

2 is the lowering
operator for electrons and holes, k`2B is the guiding cen-
ter position which counts the degeneracy of each Landau

level and
[
ck, c

†
k′

]
= δk,k′ . The eigenvalues of this Hamil-

tonian are given by EN = ±h̄v
√

2|N |/`B in which N is
the Landau level index and the eigenfunctions are:

〈r|K, Nk〉 =
1√
2Ly

eiky
[

sgn(N)φ|N |−1(x− k`2B)
φ|N |(x− k`2B)

]
(3)

For N 6= 0. For N = 0:

〈r|K, 0k〉 =
1√
2Ly

eiky
[

0
φ0(x− k`2B)

]
. (4)

In the above φN (x) are the simple harmonic oscillator
eigenfunctions and Ly is the sample length in the y di-
rection. From now on we will use units such that h̄ = 1.
The two dimensional plane of the graphene sheet is de-
scribed by {x, y} coordinates and the center of top and
bottom sheets are located at z = +d/2 and z = −d/2.
In the limit of strong enough magnetic field it is experi-
mentally possible to concentrate the electron/hole system
in single or several lowest Landau levels. The Hamilto-
nian for the interacting electron-hole system consists of
kinetic and Coulomb energies. We use index σ = e(h)
for various functions to denote electrons(holes). In the
single particle basis after Fourier transformation the full
Hamiltonian including the Coulomb interactions is:

Ĥ = Nφ
∑
N,σ

EN ρ̂
σσ
NN (0) +

+
Nφ

4π`2B

∑
{N}

∑
{σ},q

Vσ1σ2(q)FN1N4(q)FN2N3(q)×

× ρ̂σ1σ1

N1N4
(−q)ρ̂σ2σ2

N2N3
(q) (5)

where Nφ = A/(2π`2B) is the number of flux quanta
in the area A of the sheet. The functions Vee(q) =
Vhh(q) = 2πe2/(εq) are the Fourier transform of intra-
layer Coulomb repulsion and Veh(q) = −Vee(q) exp(−qd)
is the inter-layer Coulomb attraction between electrons
and holes. The Fourier transform of density matrix ele-
ments are defined as:

ρ̂σσNN ′(q) =
1

Nφ

∑
k,k′

e−(i/2)qx(k+k′)`2Bc†σNkcσN ′k′δk,k′+qy

(6)

and for electron-hole pairing operator:

ρ̂ehNN ′(q) =
1

Nφ

∑
k,k′

e−(i/2)qx(k+k′)`2Bc†eNkc
†
hN ′−k′δk,−k′+qy

(7)

in which c†σNk(cσNk) creates (annihilates) an electron
(hole) in the Landau level N with the state |N, k〉. Recall
that single-particle wave function for holes are obtained
by complex-conjugating that of electrons. Finally the
form factors are defined as:

FNN ′(q) = δN,0δN ′,0FN,N ′(q) +

+
1√
2
δNN ′,0δN+N ′ 6=0FN,N ′(q) +

+
1

2
θ(|N |)θ(|N ′|)[F|N |,|N ′|(q) +

+ sgn(NN ′)F|N |−1,|N ′|−1(q)]

(8)

where θ(x) is the Heaviside function. This form factor
is a linear combination of contributions from the wave
functions of the two inequivalent lattice sites,
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FN≥N ′(q) =

[
N ′!

N !

]1/2 [
(−qy + iqx)`B√

2

]N−N ′

×

× exp

[
−q2`2B

4

]
LN−N

′

N ′

[
q2`2B

2

]
(9)

for N ′ ≤ N and LaN (x) is the generalized Laguerre poly-
nomial. Note that from the above we see that FNN ′(q) =
[FN ′N (−q)]

∗
.

The derivation of the Hamiltonian in HF approxima-
tion in terms of above density matrices has been dis-
cussed in great detail in the past literature[20]. Through-
out this article we ignore inter-Landau level transitions.
This is justified because the ratio of the Landau level gap
EN+1 − EN ≈

√
2v/ε`B to inter-particle Coulomb inter-

action energy e2/ε`B is larger than one (≈ 3.2 for values
of ε ≈ 2 − 5 taken from literature[21]). This along with
the HF approximation will simplify the Hamiltonian to
the following:

HHF =
Nφe

2

ε`B

∑
σ,Q

Wσ
N (Q)ρ̂σσN (Q) +

− Nφe
2

ε`B

∑
σ,Q

[
H σ̄σ
N (Q)ρ̂σσN (Q) +Xσσ̄

N (Q)ρ̂σ̄σN (Q)
]

(10)

where we have already assumed the density matrix is
nonzero only at certain wavevectors belonging to a group
of reciprocal lattice vectors (RLV) {Q} associated with
a crystal of choice. The Hartree-Fock potentials in the
above are obtained as:

Wσ
N (Q) =

[
EN

e2/ε`B
δQ,0 +Hσσ

N (Q)−Xσσ
N (Q)

]
(11)

Hσσ′

N (Q) =
1

Q`B
exp

[
−Q2`2B/2−Qdσσ′

]
×

× |FN,N (Q)|2ρσσ
′

N (−Q) (12)

Xσσ′

N (Q) =

∫ ∞
0

dx exp

[
−x2/2− xdσσ

′

`B

]
×

× |FN,N (x)|2J0(Q`Bx)ρσσ
′

N (Q) (13)

in which dσσ = 0, dσσ̄ = d, σ̄ = −σ and J0(x) is the
Bessel function of the first kind. Because of the existence
of a uniform neutralizing background charge density close
to both layers there is an extra uniform capacitive term:
Hσσ
N (0)−H σ̄σ̄

N (0) = dν`B and Hσσ
N (0)+H σ̄σ̄

N (0) = 0. Also

in the above ρσσ
′

N (Q) = 〈ρ̂σσ′

NN (Q)〉. In order to find the
density matrix self consistently one needs to introduce
the 2× 2 Green’s function matrix defined as follows:

GN (k1, k2; τ) = −〈TaNk1(τ)a†Nk2(0)〉 (14)

in which the vector a†Nk =
(
c†Ne,k, cNh,−k

)
. The Fourier

transform of such function is also obtained by:

GN (Q, iωn) =
1

Nφ

∑
k1,k2

∫ β

0

dτe−iQx(k1+k2)`2B/2+iωnτ

× δk2,k1−Qy
GN (k1, k2; τ) (15)

where ωn is a Matsubara frequency and β = 1/kBT in
the inverse temperature. Throughout this article we use
the limit of T → 0 for ground state. Using the HF Hamil-
tonian the equations of motion for Green’s functions can
be obtained. The electron and hole density matrices are
then determined from equal-time limit τ → 0− of the
Green’s function matrix. The equation of motion is as
follows:

δQ,0I =

[
iω + µ 0

0 iω − µ

]
GN (Q, iω) +

−
∑
Q′

M(Q−Q′)eiQ×Q
′`2B/2GN (Q′, iω) (16)

where the self energy matrix M is defined as follows:

M(Q) =

[
Σee(Q−Q′) Σeh(Q−Q′)
Σhe(Q−Q′) −Σhh(Q−Q′)

]
(17)

with the elements:

Σee(Q) = [Hee
N (Q)−Xee

N (Q)] ρeeN (−Q)

− Heh
N (Q)ρhhN (−Q) (18)

Σeh(Q) = −Xeh
N (Q)ρehN (−Q)

(19)

and the other two elements are obtained simply by e↔ h.
The solution to this equation can be obtained by diago-
nalizing the self-energy matrix and using the eigenvectors

λ†j(Q) =
[
V ∗j (Q), U∗j (Q)

]
and associated eigenvalues Ωj

as follows:∑
Q′

[M(Q−Q′)− µτzδQ,Q′ ] eiQ×Q
′`2B/2λj(Q

′) =

= Ωjλj(Q). (20)

The solution to the above equation will be:

GN (Q, iω) =
∑
j

λk(Q)λ†k(0)

iω − Ωj
(21)

The chemical potential is obtained during the self-
consistent calculation by the constraint that:

ρeeN (0) = νe = ρhhN (0) = νh = ν. (22)

From now on we will use ν instead of νe or νh and define
νT = νe + νh. After the density matrix solutions are
obtained the HF energy of that state can be calculated
using the expectation value of Hamiltonian (10). Finally
the real space profiles of the density matrix is obtained
as:

ρN (r) =
1

2π`2B

∑
Q

ρN (Q)FNN (Q)eiQ·r (23)
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Solutions to the above equations are of two general
types: crystalline and uniform states. For the crystalline
states translational symmetry of the original Hamiltonian
is broken. In this situation the density matrix ρ is non-
zero only at certain crystal points R or at corresponding
RLV’s Q: ρ(Q) 6= 0.

There is another symmetry associated with the state
of the electron-hole system: the energy of each state de-
pends only on absolute value of the density matrix. The
off-diagonal part of the density matrix ρeh can be in prin-
ciple a complex number. This element indicates the pair-
ing of the electrons and holes. A non-zero off-diagonal
density matrix element indicates excitons (electron-hole
pairs) have been formed. The energy of such state would
be invariant as the phase of the complex number changes.
This is called U(1) symmetry. Basically there is no rea-
son the phase is the same throughout the system. How-
ever because of the inter-particle interactions the exciton
gas may find a lower energy by breaking this symmetry
and choose a uniform or modulated phase throughout the
system. This is a state with broken U(1) symmetry.

We call the crystalline states with U(1) symmetry bro-
ken Coherent Wigner Crystal and denote them by WCC
irrespective of the type of the crystal. Those states are
crystals of excitons in which the excitons are part of a
condensate state as well. For such states ρσσ(Q 6= 0) 6= 0
and ρσσ(Q) 6= 0.

It is naturally expected to consider Incoherent Wigner
Crystals (WC) as states in which only the translational
symmetry is broken but not U(1) symmetry. In such
states ρσσ(Q 6= 0) 6= 0 and ρσσ(Q) = 0 where interacting
electron-hole dipoles have formed crystals.

Last but not least, uniform states where translational
symmetry is not broken are possible. For those states
ρ(Q 6= 0) = 0. In particular there are solutions in
which the pairing has indeed happened and U(1) sym-
metry is broken: ρeh(0) 6= 0. For those solutions ex-
citons have formed a condensate state. More precisely
for a uniform excitonic condensate state (UE) we have:
ρee(Q) = ρhh(Q) = νδQ,0 and ρeh(Q) = αδQ,0 in which
α can be determined self-consistently.

Later on we will present our HF numerical results in-
dicating that the WCC states are always slightly higher
in energy than WC states or uniform density states.

In section III we explain in details all the WC and
WCC states that we find from solving the HF equation
and we compare their energies at different parts of the
phase diagram (νT , d/`B) to find the HF ground state.

B. Capacitance

In order to calculate the capacitance of a system of
charged particles one needs to notice that the finiteness
of the density of states of the system must be taken into
account. In other words we need to be careful about the
change of the chemical potential of the system by chang-
ing the number of particles. This point is not relevant

in classical systems such as two perfect metal electrodes
where we approximately consider their density of states
is infinite. The capacitance of system of charged particles
is defined by the general formula:

C−1 =
d2U

dQ2
(24)

in which U is the thermodynamic internal energy of the
system. When we consider a system of electron gas ad-
jacent to a classical metal electrode the change in the
internal energy of the system at constant temperature
and pressure is:

dU = dUe + µdN (25)

in which Ue is the electrostatic energy, µ is the chemical
potential of the system and N is the number of particles.
Using the definition (24) we find the capacitance of the
system per unit area to be[4]:

c−1 =
d

ε
+

1

e2

dµ

dn
(26)

where n is the particle density. Note that the first term
will be correct only at the limit of perfectly screening
metal electrode where the electric field between electron
gas and the electrode is uniform otherwise one needs to
use the original equation (24) to obtain the total inverse
capacitance. In this article we indeed use this original
equation. With those considerations the Quantum Ca-
pacitance is defined as e2dn/dµ and represents all the
corrections for deviation from classical (uniform electric
field) standard value. Often in literature an effective
thickness is introduced d∗ = ε/c which can be written
as d∗ = d + dQ where dQ is called the quantum capaci-
tance length (QCL).

In the case of a low density electron gas in a quantum
well and zero perpendicular magnetic field it is very well
known that the thermodynamic density of states (dn/dµ)
can be negative[22] because of strong positional correla-
tions between electrons. This means a negative quantum
capacitance length or an enhanced capacitance compared
to geometrical value.

We can use our results for the HF energy of ground
state of the electron-hole system to calculate the quan-
tum capacitance length at N = 0, 1, 2, 3. Using the cal-
culated HF energies the quantum capacitance length can
be calculated as follows:

d∗ =
`B
2

d2

dν2

[
νE(ν)

e2/ε`B

]
. (27)

where E(ν) is the energy per electron-hole pair.
For UE states it is possible to find dQ analytically since

we know E(ν) analytically[17]:

E(ν;N) = dν − νVex(N)− (1− ν)V dex(N) (28)

in which the intra-layer and interlayer exchange energy
for filling factor ν in N -th Landau level are respectively:

Vex(N) =

∫ ∞
0

|BN (x)|2e−x
2/2dx (29)
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and:

V dex(N) =

∫ ∞
0

|BN (x)|2e−x
2/2−xddx (30)

where:

BN (x) =
1

2

[
L0
N

(
x2

2

)
+ L0

N−1

(
x2

2

)]
(31)

for N 6= 0 and B0(x) = 1. The first term in Eq. (28)
is the uniform contribution from direct Coulomb inter-
action. In the second part of the next section where we
present our numerical results for capacitance where we
will see how the enhanced capacitance of the electron-
hole system changes its behavior as a function of inter-
layer separation, filling factor and Landau level index.

III. RESULTS

In this section we present the results of our numerical
calculations based on the approximations explained in
the previous section. We first present examples of the be-
havior of HF energy of various ground state crystal struc-
tures and then present the overall phase diagram. After
that we present the quantum corrections to capacitance
of the electron-hole double layer system calculated using
the energies and densities presented in the first part.

Assuming the Fourier transform of density matrices
are only non-zero at points of reciprocal lattice space of
a crystal of choice we can calculate the self-energy matrix
M for a finite number of RLV’s. This approximation is
valid since the density matrix vanishes as we approach
scales close to lattice constant in real space. Depending
on the type of state we start with an initial guess for the
density matrices and we find the converged solutions of
the Eq. (16). We have realized that most of our calcula-
tions converge with 16 RLV shells.

The lattice types that we choose are square, triangular
and oblique lattices. In all these cases we choose the
unit vectors in a way that there is only one carrier per
unit cell. In the case of oblique lattice we choose the
primitive lattice vectors a1 = {a, b/2} and a2 = {0, b} in

which a =
√

2π/νγ and the ratio γ = b/a is a measure
of anisotropy of the lattice. Note that triangular lattice
is a special case for γ ≈ 1.15. The stripe states are in
principle obtained by γ → 0 or γ →∞.

We present our results for triangular and anisotropic
crystal states for few values of γ. We point out that
the energy of the square lattice has been found to be
higher than any other lattice type in almost all the phase
diagram.

For WC states as we mentioned before, although there
is still considerable attraction between electrons and
holes the interlayer coherence does not exist: ρeh = 0.
For such states we choose the density matrix so that elec-
trons and holes form dipoles that are positioned on the
chosen crystal sites: ρee(Q) = ρhh(Q) 6= 0 in which Q is
an RLV. In this way the attraction between the electrons

0.5 1 1.5 2
−1
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−0.6
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−0.2

d/�B

ε/
ε 0

 

 

TRWC
TRWCC
UE

(a)

0.5 0.6 0.7 0.8 0.9 1
−0.4
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−0.1

0

d/�B
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ε 0
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AWCC
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(b)

FIG. 1. Comparison of energies per pair (in units of ε0 =
e2/ε`B) at two different Landau levels and filling factors as
a function of interlayer separation. (a) The energy of tri-
angular Wigner Crystal (TRWC) state vs. Triangular Co-
herent Wigner Crystal state (TRWCC) and uniform density
excitonic state (UE) at Landau level N = 0 and νT = 0.05.
(b) The energy of Anisotropic Wigner Crystal State (AWC)
compared with Coherent Anisotropic Wigner Crystal State
(AWCC) and UE at N = 2 and νT = 0.55. Here the
anisotropy parameter is γ = 0.6.

and holes will be maximum and the state would be lowest
in energy.

For WCC states electrons and holes are paired and
there is a quantum coherence between the two layers:
ρeh(Q) 6= 0. For such state we also choose to consider
coherent states in which ρee = ρhh again to achieve lowest
energy.

The structure of lattices then categorizes all states
into incoherent triangular Wigner crystal (TRWC), co-
herent triangular Wigner crystal (TRWCC), incoherent
anisotropic Wigner crystals (AWC) and finally coherent
anisotropic Wigner crystal (AWCC).

Particle-hole symmetry maps double layer electron-
hole system with total filling factor νT into another dou-
ble layer with 2 − νT . This implies the phase diagram
to be symmetric around νT = 1 which is satisfied by our
numerical results. Also based on Eqs. (20) and (21) the
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following sum rule holds:∑
Q

[
|ρee(Q)|2 + |ρeh(Q)|2

]
= ρee(0) = ν. (32)

which is also satisfied for all our solutions up to order
10−7.

Phase Diagram: We find the states that minimize the
HF energy. In general for most of the separations d <∼ `B
we find that the UE state has the lowest energy compared
to any crystalline state. In other parts of the phase dia-
grams we have not been able to find any type of coher-
ent crystal that is lowest in energy throughout the whole
phase diagram for N = 0, 1, 2, 3. We are demonstrating
this in Fig. 1 which show a comparison of the energies
of three UE, WC and WCC states with various crystal
structures for sample partial filling factors and Landau
levels (see below).
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d
/
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0  0.1 0.3 0.5 0.7 0.9
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2
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0
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N=0 N=1

N=2 N=3

FIG. 2. Phase diagram for double sheet electron-hole
graphene system at Landau levelsN = 0, 1, 2, 3 as indicated in
the plots. States are uniform excitonic condensate (open cir-
cles), triangular Wigner crystals of dipoles (open squares) and
anisotropic wigner crystals (filled squares). The anisotropic
states vary as a function of filling factor and Landau level,
not distinguished in this pictures (See Fig.3).

At N = 0 most of the WC states occur at d/`B >∼ 1.2.
Fig. 2, upper left shows the ground state phase diagram
at lowest Landau level. Inside WC region and for νT >∼
0.5 we see that there is a change from triangular into
anisotropic (AWC) state. Inside the anisotropic state
our method is not capable of finding the exact value for
γ that minimizes the HF energy however sampling of a
wide range of values 0.2 ≤ γ ≤ 2 shows the ground state
anisotropy is of the order of γ ≈ 0.6 for 0.5 < νT < 0.8
at d/`B = 1.2. The value of γ for interlayer separations
close to this value does not change within our sample
point accuracy. This behavior is the same in all the phase
diagram. In Fig. 3 we show the approximate value of γ
for ground states in different Landau levels at d/`B = 1.2.

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

νT

γ

 

 

N=3
N=2
N=1
N=0

FIG. 3. Values of anisotropy parameter minimizing the energy
of anisotropic wigner crystal state of dipoles (AWC) as a func-
tion of filling factor for different Landau levels (d = 1.2`B).

1.5 2 2.5

−0.65

−0.6

−0.55

d/�B
ε/
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−
ν
d
/
� B

 

 

UE
AWCC
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FIG. 4. Comparison of energy of the HF states (in units
of ε0 = e2/ε`B) for νT = 2 × 0.23 at lowest Landau level
as a function interlayer separation. The states are uniform
excitonic (UE), coherent crystalline with high anisotropy (γ ≈
12) indicated by AWCC and incoherent anisotropic (AWC)
with the same value of anisotropy parameter.

During the past investigations excitonic (coherent)
states with broken translational symmetry states have
been found to be the ground states[10] in lowest Landau
level in mean-field approximation. At first glance this
seems to contradict our results however in those mean-
field approximations only unidirectional (stripe) states
were considered. In our calculations it is technically im-
possible to find those exactly unidirectional states how-
ever we have found out that for highly modulated stripe
states indeed we obtain the excitonic states to lower the
energy of the same state without coherence (see Fig. 4).
This indicates the fact that those findings in the past
were only limited to a smaller selection of crystal struc-
tures. What we find out here is that those states are in-
deed higher in energy than certain incoherent crystalline
structures.

For N = 1 the anisotropy in the dipolar Wigner crystal
ground state become more frequent in the phase space as
can be seen in Fig. 2, upper right. The phase boundary
clearly has moved to smaller d/`B compared to the N = 0
phase diagram. For filling factors νT <∼ 0.6 and d/`B >∼
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FIG. 5. Electron density (in units of 1/2π`2B) profile for
anisotropic incoherent Wigner crystal state (AWC) at νT =
0.8 and d = 1.2`B in Landau level N = 3. Here the anisotropy
parameter is γ = 0.2.

0.8 the ground state is a triangular Wigner crystal. The
crystal states become more anisotropic for νT >∼ 0.6. A
careful comparison between energies of various WC and
WCC crystal structures also shows no WCC state is a
ground state in our HF approximation.

For N = 2, 3 the anisotropic WC state continues to
advance into smaller filling factors and layer separations
in phase diagram as can be seen in Fig. 2, lower left and
right. Also as illustrated by a sample filling factor in Fig.
1(b) the WCC states do not show lower energy compared
to WC states anywhere in our phase diagram. On the
other hand for this high Landau levels WC ground states
show more anisotropy in wider range of filling factors and
layer separations.

The AWC ground state anisotropy at higher Landau
levels is to the degree that they almost resemble stripe
states or more accurately modulated stripe states. In
these states stripes have periodic modulations. An ex-
ample of such state is presented in Fig. 5 for γ = 0.2.

Throughout our investigations we found that states
with both broken translational symmetry and U(1) sym-
metry are higher in energy than states with only one sym-
metry broken. This means in mean-field approximation
those two symmetries break in crossing one single bound-
ary, from one region to the other (by changing d/`B).
Note that this result means the translational symmetry
breaks but U(1) symmetry is restored upon crossing the
boundary in one direction (increasing d/`B), that is why
”breaking of both symmetries at the same time” is not an
accurate description of the situation here. On the other
hand quenching of the kinetic energy of charged particles
into one Landau level is well known to affect their dynam-
ics in a peculiar way[23]. In our electron-hole system this
translates to the fact that local exciton phase change and
local density change are not completely independent. At
small layer separation inside the UE phase, the excitons
have established a uniform phase throughout the whole
system which requires a uniform density development as
well. This signals the fact that in low lying Landau levels

a non-uniform density requires a non-uniform profile of
the phase of the excitons. This modulation of the phase
then will cost exchange energy compared to incoherent
state where the phase is zero. We speculate the root of
our numerical findings is connected to this fact although
further investigation is necessary which is out of the scope
of this work.
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FIG. 6. Ratio of Quantum Capacitance Length to interlayer
separation (dQ/d) for different Landau levels N, νT . This ra-
tio can be calculated analytically for uniform excitonic state
(UE, Dashed line). All the numerically calculated values for
UE state agree with the analytic results. Solid lines are only
for guide.
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FIG. 7. Ratio of Quantum Capacitance Length to interlayer
separation (dQ/d) for different Landau levels N, νT . This ra-
tio can be calculated analytically for uniform excitonic state
(UE, Dashed line). All the numerically calculated values for
UE state agree with the analytic results. Solid lines are only
for guide.

Quantum Capacitance: As ground state evolves across
the phase diagram the quantum capacitance length cal-
culated using Eq. (27) also shows a change in behavior.
Figures 6 and 7 show our main numerical results for few
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sample filling factors. In all these results we see a jump in
the value of dQ/d ratio as the layer separation increases
due to the ground states changing from UE to WC state.
The overall accuracy of our results are of the order of
10−6.

For states in lowest Landau level we see in almost all
filling factors QCL is negative indicating the enhance-
ment of capacitance. Note that for stability reasons
d∗ ≥ 0 which means dQ/d ≥ −1 must hold. At dilute
filling factor of νT = 0.1 in LLL (Fig. 6, left) and inside
the crystalline phase d∗ is reduced to values close to -0.8!
which means a reduction by about 70 to 60 percent de-
pending on the layer separation. This indicates a giant
capacitance compared to geometrical value.

The fate of the QCL at LLL at very small separations is
determined by an analytic calculation based on equations
(27)-(31) which gives a finite negative value dQ/d→ −1
or infinite capacitance as d→ 0. This is because for two
overlapping layers of opposite charges the dipole-dipole
interaction vanishes. At separations close to zero as can
be seen in all figures 6 and 7 our numerical results inside
the UE phase are very close to analytic results. This is
because in an exact solution of HF equations for such
uniform state at finite layer separations the self-energy
matrix elements are all zero except for Q = 0.

Figure 7 shows the QCL at higher Landau levels.
In this figure specially for higher partial filling factors
(N = 2, 3 and νT = 0.5) we see that QCL becomes posi-
tive which indicates the capacitance is reduced compared
to classical values. In fact this behavior can be seen in
all four panels in figures 6 and 7. This indicates the re-
covering of the capacitance, by increasing the magnetic
field. The physical reason for such recovery in our model
can be understood by noticing the change of the ground
state configuration of the system. At higher Landau lev-
els and higher partial filling factors the many body state
is approaching a uniform density with modulations as we
explained in our earlier discussion of the phase diagram.
This tight configuration resists additional charges and so
its capacitance is lower.

Another important conclusion from our capacitance re-
sults is that the magnetic field gives us a control knob for
the capacitance of the graphene system. Whether the
experimental situations require higher or lower values of
capacitance the applied field strength can be tuned ac-
cordingly. This concept has been in fact proven useful
in recognizing various fractional quantum Hall states in
bilayer electron-hole systems[24].

Finally note that the behavior of capacitance with re-
spect to filling factor is non-monotonic. In all four Lan-
dau levels the QCL increases by increasing partial filling
factor to νT ≈ 0.3 before it starts reducing again. This
can be seen in figure 6, right panel. In this figure the
QCL for νT = 0.5 at N = 1 is higher than the curve
for νT = 0.65. Same behavior is seen in both panels of
Fig. 7. In Fig. 8 we see the same results as a function
of filling factor for N = 0. Unfortunately our numerical
procedure is not strong enough to be able to find stable
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FIG. 8. Ratio of Quantum Capacitance Length to interlayer
separation (dQ/d) for different layer separations at N = 0 as
a function of electron filling factor. Dashed lines are only for
guide.

solutions in all filling factors that is why we have been
limited to few layer separations and filling factors for such
curves. In this figure we can clearly see the peak of QCL
at νT ∼ 0.3. At higher filling factors and by transition to
UE state the QCL of course becomes flat. This flatness
is because in mean field theory of uniform excitonic state
the energy per dipole is only linearly dependent on the
filling factor (see Eq. 28). That is why deep into the UE
state at for example d = 0.5`B we find a constant value
for QCL as can be seen in Fig. 8.

The behavior of quantum capacitance length as a func-
tion of filling factor has been discussed before in Ref.[1].
In this work authors have derived the energy of the
ground-state of the system at low filling factor using
particle-hole symmetry and fitting to classical calculation
of the energy of the Wigner crystal with a mean-field type
first order quantum correction. The monotonic increase
in QCL at low filling factors derived in this work is to
some extent similar to the behavior seen in Fig.8. How-
ever at higher filling factors or at very low filling factors
where the crystal is expected to melt our results is clearly
different in behavior.

IV. CONCLUSION

In this paper we have systematically studied the
ground state of the balanced electron-hole double layer
of graphene in strong magnetic field and the associated
quantum corrections to its capacitance. We have focused
on coherent and crystalline states in which U(1) and
translational symmetries are broken respectively. By ig-
noring the inter-Landau level transitions we have approx-
imately found the ground states for carrier occupations
up to fourth lowest lying Landau levels in each layer.

In this article we showed that based on our calcula-
tions the anisotropic crystalline states take over a much
larger part of the phase diagram at higher Landau lev-
els (weaker magnetic fields). The anisotropic nature of
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these states is what one expects from the results of previ-
ous theoretical and experimental investigations[25] on the
nature of quantum Hall liquids in higher Landau levels.
According to those established theoretical results ground
state phase of a single layer electron(hole) system is a
stripe phase at higher Landau levels which may explain
why two interacting stripe phases of electrons and holes
form a stripe dipole state as is found in our numerical
work.

On the other hand we showed that the application of
strong magnetic field can tune the capacitance of the
electron-hole system (or graphene-electrode system) to
higher or lower than geometric values in agreement with
experiment. We have shown that this effect is solely due
to confinement of particles to lowest Landau levels and
Coulomb interaction between electrons and holes.

We have also determined the phase diagram of the sys-
tem and shown that the HF ground state energy of crys-
talline structures with exciton phase coherence is always
higher than that without coherence. We emphasize again
that there is no transfer of electrons between the two
layers. However the coherence in the phase of excitons
defined as the phase of off-diagonal element of density
matrix is still well defined and the energy of states with
different phase distribution or with average zero phase
can be different.

Conceptually one expects a non-monotonic behavior
in the phase of the system because at dilute regime, the
crystal phase disappears in the phase diagram as it is
melted by quantum fluctuations. On the other hand close
to νT = 1 the system is equivalent to an almost balanced
electron-electron bilayer system which is established as a
uniform νT = 1 quantum Hall state even at the limit of

zero interlayer tunneling[7].

We would like to note that the phase diagram and ca-
pacitance behavior of the electron-hole system obtained
here are valid only in the thermodynamic limit and zero
temperature. Finite size effects or presence of defects in
the dipole crystals may alter the energy of states and may
increase the possibility of some kind of coherent Wigner
crystal of excitons (meaning with average non-zero exci-
tonic phase). Also it is worth noting that HF approxima-
tion applied in this work has been proved in the past to
capture the majority of the quasiparticle lattice energies
in systems confined in the low Landau levels since this
confinement suppresses the screening. The above points
however must be investigated more carefully.

Finally it is important to note that states of electron-
hole system such as the topological texture lattice states
or more generally states with valley coherence may affect
the behavior of capacitance at certain filling factor range.
This is another question that is still open for investiga-
tion.
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