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Monolayers of semiconducting van der Waals solids, such as transition metal dichalcogenides
(TMDs), acquire significant electric polarization normal to the layers when placed on a substrate
or in a heterogeneous stack. This causes linear coupling of electrons to electric fields normal to the
layers. Irradiation at oblique incidence at frequencies above the gap causes interband transitions
due to coupling to both normal and in-plane ac electric fields. The interference between the two
processes leads to sizable in-plane photocurrents and valley currents. The direction and magnitude of
currents is controlled by light polarization and is determined by its helical or nonhelical components.
The helicity-dependent ballistic current arises due to asymmetric photogeneration. The non-helical
current has a ballistic contribution (dominant in sufficiently clean samples) caused by asymmetric
scattering of photoexcited carriers, and a side-jump contribution. Magneto-induced photocurrent is
due to the Lorentz force or due to intrinsic magnetic moment related to Berry curvature.

PACS numbers: 73.63.-b, 78.67.- n, 73.50.Pz, 72.15.Gd

Since the discovery of graphene1 a whole class of novel
two dimensional (2D) materials, called van der Waals
solids (vdWs), has been identified.2,3 In these materials
2D monolayers with strong in-plane bonding are coupled
by weak van der Waals interactions. Few-monolayer thick
structures of vdW materials have electronic and optical
properties that can differ drastically from those of the
bulk phases.4 vdW materials exhibit phenomena associ-
ated with valley degrees of freedom, such as valley Hall
currents5 and valley-selective carrier photoexcitation by
circularly polarized light6, related to topological proper-
ties of the bands, such as Berry curvature and valley-
dependent magnetic moment.7 Stacking of monolayers of
different vdW solids enables fabrication of novel artificial
structures with interesting electronic properties.2,3

In their natural form most vdW materials are nonpo-
lar. When monolayers of different vdW materials are
stacked in a heterostructure or placed on a substrate,
an electric dipole moment perpendicular to the layers
arises. This allows for photogalvanic effects (PGE): elec-
tric currents due to illumination by light in the absence
of external electric field. In particular, a photocurrent
arises between the top and bottom contacts of a het-
erojunction fabricated from monolayers of different vdW
solids.8 This current does not depend on the polariza-
tion of light, is caused by spatial separation of pho-
toexcited electrons and holes in a junction, and belongs
to a class of effects in which the direction of the pho-
tocurrent is governed by spatial inhomogeneities of the
sample or its illumination. Another class of effects, in
which the direction of photocurrent or photovoltage is
determined by the polarization of light9,10, occurs even
in uniformly illuminated spatially homogeneous solids.
Recently, polarization-sensitive photocurrents were ob-
served11 in a 2D conduction layer formed at the interface
of a WSe2 stack and the substrate was irradiated at fre-
quencies below the band gap.

Here we show that illumination of polar semiconduct-

ing vdW stacks above the band gap produces sizable po-
larization dependent photocurrents. The asymmetry of
elementary quantum processes resulting in photocurrents
is caused by the peculiar combination of Berry connection
and the presence of a permanent electric dipole moment
in polar vdW stacks. Asymmetric carrier photogenera-
tion arises from quantum interference between the con-
ventional coupling of electrons to the in-plane ac electric
field and the coupling of the permanent dipole moment
to the normal component of the ac field.

In 2D structures with a dipole moment normal to the
plane, polarization-dependent PGE in-plane current den-
sity, to linear order in light intensity, can be expressed
in terms of a polar vector d = (0, 0, dz) perpendicular to
the layers by the phenomenological relation

j = ξ d× i [E×E∗] + ζ [E∗(d ·E) + E (d ·E∗)]in . (1)

Here E is the complex electric field amplitude of a
monochromatic light, subscript in denotes the in-plane
component of a vector, E(t) = <(Ee−iωt), and the (real)
phenomenological parameters ξ and ζ describe, respec-
tively the circular and linear PGE. In Eq. (1) the elec-
tric field of the radiation is assumed spatially uniform and
the photon momentum is neglected. The in-plane pho-
tocurrent arises when the sample is illuminated at oblique
incidence, as shown in Fig. 1, and its direction and mag-
nitude are determined by the polarization of light.

Determination of the physical mechanism of the pho-
tocurrent and evaluation of the phenomenological param-
eters d, ξ and ζ in Eq. (1) requires a microscopic theory.
The photocurrents arise due to: i) asymmetric photoelec-
tron generation (with different generation rate for oppo-
site electron momenta),12–14 and ii) asymmetric kinetics
(when light-induced symmetric momentum distribution
leads to the current due to asymmetric scattering, due
to side jumps, spin relaxation, or evolution in magnetic
field).15–21 These mechanisms describe well experiments
detecting polarization-dependent currents in bulk semi-
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FIG. 1. (color online) Schematic representation of the system.
Irradiation of a semiconducting polar TMD monolayer by he-
lical light at oblique incidence, θ 6= 0, generates a helicity-
dependent net photocurrent perpendicular to the plane of in-
cidence yz. For linear polarization, a net current is generated
in the plane of incidence.

conductors, such as Te22 and GaAs,23–25 and photocur-
rents in III-V type heterostructures.26 Both asymmetric
photogeneration and kinetics play an important role in
the discussion below.

When the mean free path of the photoexcited carriers
exceeds their de Broglie wavelength, the photocurrent
(1) can be expressed in terms of the electron distribution
function fl(p, r) as17,27,28

j = e
∑
p,l

[vl(p) + δvl(p)] fl(p). (2)

The first term here with the group velocity in a band l
vl(p) = ∂εl(p)/∂p describes the ballistic current. The
second term is the side jump (shift) current due to the
displacement Rl′,l(p

′,p) of the center of mass of the wave
packet during a transition from state l,p to state l′,p′

(as a result of scattering29,30 or photoabsorption17,18).
The correction to the velocity is expressed in terms of
the transition probability Wl′,l(p

′,p) as

δvl(p) =
∑
l′,p′

Wl′,l(p
′,p)Rl′,l(p

′,p). (3)

The magnitude of the side jump is expressed in terms of
the phase of the transition matrix element Tl′,l(p

′,p) as

Rl′,l(p
′,p) = Ωl′(p

′)−Ωl(p)−(∂p + ∂p′)= lnTl′,l(p
′,p),

(4)
where Ωl(p) is the Berry connection in band l. Gauge
invariance of (4) is obvious: When Ωl(p) → Ωl(p) −
∂pχl(p), Tl′,l(p

′,p)→ Tl′,l(p
′,p) eiχl(p)−iχl′ (p

′).
In a spatially uniform steady state, and in the ab-

sence of static external electric and magnetic fields, the
nonequilibrium part δfl(p) of the electron distribution
function is determined by the balance between the photo-
generation due to direct interband transitions Jl(p) and

relaxation and recombination of photoexcited carriers,∑
l′,p′

wl′,l(p
′,p) [δfl′(p

′)− δfl(p)] + Jl(p) = 0, (5)

where wl′,l(p
′,p) is the probability of momentum relax-

ation31. Below we apply Eqs. (2) and (5) to the study
of polarization-dependent currents (1) in polar stacks of
semiconducting TMDs, such as MoS2 and WSe2.
Asymmetric photogeneration. Semiconducting TMD

at low number of monolayers are direct band semicon-
ductors with strong coupling to light and sizable charge
carrier mobility.4,7,34 The inter-layer tunneling is weak
and we neglect it. Since in this approximation the to-
tal in-plane photocurrent is the sum of contributions of
individual layers, we consider the photocurrent in a sin-
gle layer of TMD either placed on a substrate or in a
polar stack. We assume that photon energy is not too
far from the absorption threshold. In this case only elec-
trons with momenta near the K and K ′ points of the
hexagonal Brillouin zone absorb light and produce pho-
tocurrent, see left panel in Fig. 2. The effective two-band
Hamiltonian for such low energy electrons is5,6,35

H = v(τzσxpx + σypy) + ∆σz, (6)

where the momentum p is measured from the K or K ′

point, v has dimensions of velocity, and ∆ is half the
bandgap between the spin-nondegenerate conduction and
valence bands. The Pauli matrices σi act on the band
pseudospin, and τz acts on the valley pseudospin.

At normal incidence of the radiation, electrons couple
to the in-plane component of the ac electric field. The
corresponding coupling Hamiltonian is obtained from
Eq. (6) by the usual substitution p → p − eA/c, where
A is the vector potential and e is the electron charge.
This results in valley-selective transitions for circularly-
polarized light;6Application of an in-plane dc electric
field results in valley current.5 At oblique incidence, elec-
trons in a polar stack also couple to the normal compo-
nent of the ac electric field, Ez(t). The full coupling of
electrons to the (uniform) ac electric field is given by

V = −ev
c

(τzσxAx + σyAy) +
1

c
dzȦzσz, (7)

where the electric field enters through the time derivative
of the vector potential, E = −Ȧ/c, and dz is the differ-
ence between the dipole moments of electron states in the
conduction and valence bands, which arises as follows. If
Ebz is a built-in electric field in a polar TMD stack, the to-
tal z−component of the electric field is Etz = Ebz +Ez(t).
This electric field couples orbitals even in z, that form the
conduction and valence bands described by (6), to odd
in z higher and lower band states with energies εs, with
s labeling odd bands. Then the energies of the bottom
of the conduction band and the top of the valence band
ε0c(v) change: δεc(v) =

∑
s |(eEtzz)c(v)s|2/(ε0c(v)−εs). Thus

a coupling of charge carriers to light linear in electric
field Ez(t) arises, and the dipole moment difference dz =
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FIG. 2. (Color online). Left: Direct transitions (red arrow)
between electron states in the valence and conduction bands
shown for one of the valleys by black circles. Right: Asym-
metric photogeneration rate.

e2
∑
s[(E

b
zz)cszsc/(ε

0
c − εs)− (Ebzz)vszsv/(ε

0
v − εs)]. This

coupling plays a crucial role in generation of polarization-
dependent photocurrent in vdW materials. The value of
dz can be estimated from the measured8 dependence of
the band gap on the applied external electric field per-
pendicular to the layers, dz = −d∆/dEz.

Optical transitions between the valence (-) and con-
duction (+) band in the K-valley are described by the

matrix elements V K−+(p) = ΨK
+ (p)

†
VΨK
− (p), where the

wavefunctions ΨK
± (p) corresponding to energies ±ε =

±
√

(vp)2 + ∆2 are(
ΨK
± (p)

)T
=
(
±vp−/

√
2(ε∓∆)ε,

√
ε∓∆/2ε

)
. (8)

Here p± = px ± ipy, and the superscript T indicates a
matrix transposition. For the K ′-valley, the wavefunc-
tions are obtained by replacing p− in Eq. (8) with −p+.
The rate of direct optical transitions, see Fig. 2, in theK
(j = 1) or K ′ (j = 2) valley, assuming fully occupied
valence band and empty conduction band, can be deter-
mined using the Fermi golden rule, J+,j = −J−,j = Jj =
2π
~ |V

j
−,+|2δ(~ω − 2ε), and is given by

Jj(p)=
2π

~

(
e|E|v
ω

)2

Z(p)δ(~ω − 2ε)×[
1− |ez|2

2

∆2 + ε2

ε2
− (−1)jκz

∆

ε
+ |ez|2

(ωdzp)
2

e2ε2

− v2

2ε2
[
(|ex|2 − |ey|2)(p2x − p2y) + 2Sxypxpy

]
+

ω

eε
p ·
(

∆

ε
[κ× d] + (−1)j [ẑ × Ŝd]

)]
. (9)

Here ẑ is the z-axis unit vector, e = E/|E| is the light
polarization vector, and the pseudovector κ = ie × e∗

and the tensor Ŝ, Sij = eie
∗
j + e∗i ej , characterize, re-

spectively, the helical and the non-helical components of
light polarization, with (Ŝd)T = (Sxz, Syz, Szz)dz. The

Sommerfeld factor36 Z(p) accounts for the Coulomb in-
teraction between the photogenerated electron and hole.
In the 2D case for a quadratic energy dispersion, Z(p) =

2 [1 + exp (−2π~/paB)]
−137, where aB = ~2ε/µe2 is the

exciton Bohr radius, ε is the dielectric constant, p is the
electron or hole momentum, and µ is the reduced effec-
tive mass. In our model, p =

√
ε2 −∆2/v, µ = ∆/v2.

The momentum dependence of the photogeneration in
Eq. (9) is illustrated in the right panel of Fig. 2. The
asymmetry of photogeneration responsible for the in-
plane photocurrent arises from the interference between
coupling of electrons to the in-plane electric field of light
and the linear Stark coupling to the normal field Ez
caused by the dipole d. It is described by the two terms
linear in the electron momentum in last line of Eq. (9).

The different angular harmonics of the nonequilibrium
distribution function relax independently. Therefore for
the photocurrent it is sufficient to consider the first angu-

lar harmonic δf
(1)
l (p) of the nonequilibrium distribution

function, δf
(1)
l (p) = (Al + τzBl) · p̂, where Al and Bl

characterize valley-even and odd asymmetry of momen-
tum distribution, respectively, and p̂ = p/|p| is a unit
vector along the electron momentum. The relevant scat-
tering probability in Eq. (5) is given by

wl′,l(p
′,p)→ δl,l′

[
1

τl
p̂ · p̂′ + τz

1

τskl
ẑ · p̂× p̂′

]
, (10)

where 1/τl and 1/τskl are respectively the transport and
skew momentum relaxation rates in band l.
Ballistic photocurrent. The first term in Eq. (2) for the

photocurrent describes charge transfer during ballistic
motion of electrons, and is characterized by the asymmet-
ric in momentum part of the distribution function. The
latter is caused by asymmetric photogeneration or subse-
quent asymmetric scattering. The ballistic circular PGE
arises directly due to the valley-even asymmetric photo-
generation (first term in the last line of Eq. (9)). We find
that the dominant ballistic linear PGE requires a conver-
sion, via skew scattering, of the valley-odd photogenera-
tion (last term in Eq. (9)) into a valley-even asymmetric
momentum distribution. Skew scattering arises only in
the second Born approximation. As a result, although
both transport and skew scattering rates are proportional
to the impurity concentration, the skew scattering rate
is smaller in the parameter τl/τ

sk
l ∼ δl � 1, where δl is a

phase shift of electron scattering off impurities in a band
l. The ballistic contribution to linear and circular PGE
coefficients ξ and ζ in Eq. (1) are given by

ξbal =
( e
~

)2 Z(pω)
[
(~ω)2 − (2∆)2

]
∆

(~ω)3
(τc + τv),(11a)

ζbal = ξbal
~ω

∆ (τc + τv)

(
τ2c
τskc

+
τ2v
τskv

)
. (11b)

Here τc and τv are the momentum relaxation times
in the conduction and valence bands, and pω =
~
√
Eexc/(~ω − 2∆)/aB with Eexc = µe4/(2~2ε2) being

the exciton binding energy in three dimensions.
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Taking dz ∼ 0.1 eÅ, τc ∼ τv ∼ 10−13 s (from the
reported mobility 200 cm2/(V· s)34), and the helicity κ =
0.7, we find the strength of the one monolayer circular
PGE signal ∼ 10−8A/W for ∆ = 0.9 eV, ~ω = 1.95 eV.
This value exceeds the helicity-dependent spin-galvanic
signal in 2D GaAs26. The ratio of the net linear PGE
and circular PGE is small as τ/τ sk.

Side jump photocurrent. Since the leading ballistic lin-
ear PGE, Eq. (11b), is inversely proportional to the impu-
rity concentration, in sufficiently high mobility samples it
dominates the side jump current. The side jump current,
e.g., due to direct optical transitions to ζ is obtained us-

ing Eqs. (3), (4) and the expressions for V
K(K′)
−+ (p). The

result is

ζdirsj = 8
( e
~

)2 Z(pω)∆3

(~ω)3ω
.

Other contributions to ζ stem from the asymmetry of
impurity-assisted photoabsorption or from the side jumps
of photogenerated carriers due to scattering off impuri-
ties, and are of the same order of magnitude as ζdirsj .
Valley photocurrent. In addition to the net current,

the asymmetric photogeneration leads to the valley cur-
rents equal in magnitude but oppositely directed in the K
and K ′ valleys, defined by jbalv = e

∑
p,l(−1)jvp,lδfl(p).

The dominant ballistic contributions to circular and lin-
ear valley PGE can be found using Eqs. (5), (9) and (10):

jbalv = |E|2
[
ξbal

~ω
∆

(
ẑ × Ŝd

)
+ ζbal

∆

~ω
ẑ × [κ× d]

]
,

(12)
where ξbal and ζbal are given by Eq. (11). The linear
and circular valley PGE are related, respectively, to the
net circular (ξbal) and linear (ζbal) PGE. Therefore at
τl/τ

sk
l ∼ δl � 1 the linear valley PGE is the dominant

valley current that exceeds the net linear PGE valley
currents flow perpendicular to the currents (1), similar
to spin currents in the spin Hall effect. Linear valley
PGE leads to accumulation of K-valley electrons at the
left boundary of the monolayer with respect to the di-
rection of the net linear PGE, and K ′-valley electrons on
the right. If intervalley scattering is weak, this accumula-
tion can be measured in transport experiments38. Valley
currents can be possibly also captured experimentally in-
vestigating non-local transport42 or non-linear phenom-
ena43. We note that polarization-dependent valley cur-
rents have been recently studied for various 2D systems
including silicon channels41 and graphene39,40. In these
studies, the valley currents in 2D crystals stemmed from
the trigonal warping of the electron spectrum in the val-
leys. In our work, the mechanism of the valley current
formation is based on the interference of optical tran-
sitions induced by the in-plane and out-of-plane com-
ponents of the electric field of the incident light in the
presence of dipole moment, and promises to yield much
stronger signal.

Magneto-induced photocurrent. Magnetic field perpen-

dicular to the layers, H = Hẑ, induces a Hall-like current

jbalH = |E|2ẑ ×
[
ξHκ× d + ζH Ŝd

]
. (13)

One obvious contribution to (13) arises from the Lorentz-

force term e
cvl(p)×H · ∂δfl(p)∂p included into the left hand

side of the Boltzmann equation (5). The corresponding
ballistic contributions ξbalH and ζbalH to the coefficients ξH
and ζH are related to ξbal and ζbal in Eq. (11) by

ξbalH = ξbalωH(τc − τv), ζbalH =
ζbalωH

(
τ3
c

τsk
c
− τ3

v

τsk
v

)
τ2c /τ

sk
c + τ2v /τ

sk
v

,

(14)
where ωH = 2eHv2/~ωc is the cyclotron frequency.

A more interesting mechanism of magneto-induced
photocurrent arises from the opposite magnetic field de-
pendence of the band gap in the K and K ′ valleys;
∆ → ∆ ±M ·H, where M is the orbital magnetic mo-
ment in the Bloch state44 at the K or K ′ points in the
Brillouin zone. The latter is related to the Berry curva-
ture44 F jz (p) = ∂pxΩjy(p)− ∂pyΩjx(p) and in our system

is given by5,6

M j
z =

eF jz (p)
√

∆2 + v2p2

~c
= (−1)j

ev2∆

2~c (∆2 + v2p2)
.

(15)
The corresponding contribution to the net ballistic
magneto-induced photocurrent may be expressed as

jm = MzHẑ ×
∂jbalv
∂∆

, (16)

where jbalv is the magnitude of the H = 0 ballistic valley
current (12). The magnetic moment contribution (16)
is ∼ jbalv ~ωH/(~ω − 2∆), while the Lorentz force con-
tribution to linear PGE (14) is ∼ jbalv ωHτ

2
l /τsk. The

ratio of jm to linear PGE in Eq. (1) at H = 0 is
~ωHτsk/[(~ω−2∆)τ ], which can easily reach ∼ ωHτ , usu-
ally defining the Lorentz force effects. The role of (16) is
further enhanced by the partial cancellation between the
Lorentz force contributions of electrons and holes to lin-
ear and circular PGE in Eq. (14), and the magnetic mo-
ment contribution may become the dominant magneto-
induced photocurrent in lower mobility samples.
Discussion. Besides polar TMD systems, our approach

based on Eqs. (6) and (7) may be used to study linear
and circular PGE induced by interband transitions in
polar boron nitride structures. Another interesting sys-
tem is a Bernal stacked graphene bilayer placed on a
substrate46, in which the photocurrents predicted here
can potentially be tuned by gating the system. Helicity-
dependent photocurrents in single layer graphene were
observed in Ref. 47. The existence of such photocur-
rents induced by an in-plane external magnetic field and
Rashba-like spin-orbit effects48,49 was recently suggested
in graphene.50 We expect that photocurrents in polar bi-
layer graphene, caused by the coupling of light to the
orbital dipole moment d, will be significantly larger.



5

ACKNOWLEDGMENTS

This work was supported by the U. S. Department of
Energy Office of Science, Basic Energy Sciences under

awards number DE-SC0010544 (YLG) and DE-FG02-
07ER46452 (S. L. and A. A.). We are grateful to David
Cobden, Vladimir Falko, Boris Spivak and Xiaodong Xu
for useful discussions.

1 A. K. Geim, Rev. Mod. Phys. 83, 851-862 (2011).
2 K. S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V. V.

Khotkevich, S. V. Morozov and A.K. Geim, PNAS 102,
10451 (2005).

3 A. K. Geim and I. V. Grigorieva, Nature 499, 419425
(2013).

4 K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys.
Rev. Lett. 105, 136805 (2010).

5 D. Xiao, W. Yao and Q. Niu, Phys. Rev. Lett. 99, 236809
(2007).

6 D. Xiao, G-B. Liu, W. Feng, X. Xu and W. Yao, Phys.
Rev. Lett. 108, 196802 (2012).

7 X. Xu, W. Yao, D. Xiao and T. F. Heinz, Nature Phys.
10, 343 (2014).

8 C. H. Lee et al., Nature Nanotech. 9, 676 (2014).
9 V. I. Belinicher and B. I. Sturman, Sov. Phys. Usp. 23,

199 (1980).
10 E. L. Ivchenko, Optical Spectroscopy of Semiconductor

Nanostructures, (Alpha Science International , 2005).
11 H. Yuan et al., Nature Nanotech. 9, 851 (2014).
12 E. L. Ivchenko and G. E. Pikus, JETP Lett. 27, 604 (1978).
13 V. I. Belinicher, Phys. Lett. 66A, 213 (1978).
14 E. L. Ivchenko. Yu. B. Lyanda-Geller, G. E. Pikus and R.

Ya. Rasulov, Sov. Phys. Semicond. 18, 55 (1984).
15 V. I. Belinicher, Sov. Phys. Solid State 24, 450 (1982).
16 N. S. Averkiev and M. I. Dyakonov, JETP Lett. 35, 241

(1982).
17 V. I. Belinicher, E. L. Ivchenko and B. I. Sturman, Sov.

Phys. JETP 56, 359 (1982).
18 Yu. B. Lyanda-Geller, JETP Lett. 46, 489 (1987).
19 E. L. Ivchenko, Yu. B. Lyanda-Geller and G. E. Pikus,

Solid State Commun. 69, 663 (1989).
20 E. L. Ivchenko, Yu. B. Lyanda-Geller and G. E. Pikus,

JETP Lett. 50, 175 (1989).
21 E. L. Ivchenko, Yu. B. Lyanda-Geller and G. E. Pikus, Sov.

Phys. JETP 71, 573 (1990).
22 V. M. Asnin, A. A. Bakun, A. M. Danishevskii, E. L.

Ivchenko, G. E. Pikus and A. A. Rogachev, JETP Lett.
28, 74 (1978).

23 A. V. Andrianov and I. D. Yaroshetskii, JETP Lett. 40,
882 (1984).

24 A. A. Bakun, B. P. Zakharchenya, A. A. Rogachev, M. N.
Tkachuk and V. G. Fleisher, JETP Lett. 40, 1293 (1984).

25 A. V. Andrianov, E. V. Beregulin, Y B. Lyanda-Geller and
I.D. Yaroshetskii, Sov. Phys. JETP 75, 921 (1992).

26 S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms,
W. Wegscheider, D. Weiss and W. Prettl, Phys. Rev. Lett.
86, 4358 (2001).

27 R. Raimondi, P. Schwab, C. Gorini and G. Vignale, Ann.
Phys. 524, 3-4 (2012).

28 I. L. Aleiner and Y. B. Lyanda-Geller (unpublished).
29 J. Luttinger, Phys. Rev. 112, 739 (1958).
30 L. Berger, Phys. Rev. B 2, 4559 (1970).
31 We consider light as photons resulting in quantum tran-

sitions. Photogalvanic effects have been also discussed in
terms of classical high frequency electric field 15,32,33.

32 E. V. Beregulin, S. D. Ganichev, K. Y. Glukh, Y. B.
Lyanda-Geller and I. D. Yaroshetskii, Sov. Phys. Solid
State 31, 63 (1989).

33 S. A. Tarasenko, Phys. Rev. B 83, 035313 (2011).
34 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti,

and A. Kis, Nature Nanotech. 6, 147 (2011).
35 A. Kormnyos, G. Burkard, M. Gmitra, J. Fabian, V. Zly-

omi, N. D. Drummond and V. Fal’ko, 2D Materials 2,
022001 (2015).

36 L. D. Landau and E.M. Lifshitz, Quantum mechanics,
(Butterworth-Heinemann, 1981).

37 M. Shinada and S. Sugano, J. Phys. Soc. Jpn 21, 1936
(1966).

38 Y. Lyanda-Geller, ArXiv:1107.3121.
39 L. E. Golub, S. A. Tarasenko, M. V. Entin and L. I. Mag-

arill, Phys. Rev. B 84, 195408 (2011).
40 R. R. Hartmann and M. E. Portnoi, Optoelectronic Proper-

ties of Carbon-based Nanostructures: Steering electrons in
graphene by electromagnetic fields (LAP LAMBERT Aca-
demic Publishing, Saarbrucken, 2011).

41 J. Karch, S. A. Tarasenko, E. L. Ivchenko, J. Kamann, P.
Olbrich, M. Utz, Z. D. Kvon and S. D. Ganichev, Phys.
Rev. B 83, 121312(R) (2011).

42 R. V. Gorbachev et al., Science 346, 448-451 (2014).
43 W-Y. Shan, J. Zhou and D. Xiao, Phys. Rev. B 91, 035402

(2015).
44 E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics,

(Butterworth-Heinemann, 2013), Vol. 9.
45 C. Drexler et al., Nature Nanotech. 8, 104 (2013).
46 E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805

(2006).
47 C. Jiang, V. A. Shalygin, V. Yu. Panevin, S. N. Danilov,

M. M. Glazov, R. Yakimova, S. Lara-Avila, S. Kubatkin
and S. D. Ganichev, Phys. Rev. B 84, 125429 (2011).

48 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801
(2005).

49 H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman
and A. H. MacDonald, Phys. Rev. B 74, 165310 (2006);
Y. Yao, F. Ye, X. L. Qi, S. C. Zhang and Z. Fang, Phys.
Rev. B 75, 041401 (2007).

50 M. Inglot, V. K. Dugaev, E. Ya. Sherman,and J. Barnas,
Phys. Rev B 91, 195428 (2015).


