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Multipolar electromagnetic phenomena in sub-wavelength resonators are at the heart of metama-
terial science and technology. In this article, we demonstrate selective and enhanced coupling to
specific multipole resonances via beam engineering. We first derive an analytical method for deter-
mining the scattering and absorption of spherical nanoparticles (NPs) that depends only on the local
electromagnetic field quantities within an inhomogeneous beam. Using this analytical technique,
we demonstrate the ability to drastically manipulate the scattering properties of a spherical NP by
varying illumination properties and demonstrate the excitation of a longitudinal quadrupole mode
that cannot be accessed with conventional illumination. This work enhances the understanding of
fundamental light-matter interactions in metamaterials, and lays the foundation for researchers to
identify, quantify, and manipulate multipolar light-matter interactions through optical beam engi-
neering.

PACS numbers: 78.67.Bf, 42.25.Fx, 42.70.-a

Metamaterials derive their unique optical properties
from engineered multipolar resonances in sub-wavelength
structures. Understanding and quantifying the behavior
of these multipolar resonances is essential for a variety of
metamaterial applications, including optical antennas [1–
3], absorptive layers for solar cells [4–6], cloaking devices
[7, 8], superlenses [9, 10], and biosensors [11]. Typically,
researchers engineer multipolar light-matter interactions
by modifying the size, shape, and composition of the res-
onators [12–14]. Here, we instead demonstrate engineer-
ing of multipolar light-matter interactions by modifying
properties of the illuminating radiation. In this approach,
we exploit the incident illumination beam to gain infor-
mation about our multipolar system.

In this work, we rigorously derive a simplified, analyt-
ical method directly from Mie theory to quantify mul-
tipolar light absorption and scattering for a spherical
nanoparticle (NP) illuminated by any light source of in-
terest. First, we prove that dipolar and quadrupolar in-
teractions depend only on local fields or field gradients
respectively. Building from this local-field approach we
investigate scattering of NPs in linearly, azimuthally, and
radially polarized focused light beams. We demonstrate
selective suppression and enhancement of individual mul-
tipolar modes by manipulating beam symmetries and nu-
merical apertures. These calculations reveal a longitudi-
nal quadrupole mode, which is completely inaccessible
by conventional linearly polarized light. Additionally,
we achieve selective excitation of individual multipolar
modes. This work demonstrates a method for quanti-
fying multipolar interactions in sub-wavelength particles
and establishes beam engineering as a powerful method
for manipulating multipolar phenomena.

Conventionally, scattering and absorption of spherical
NPs is calculated with Generalized Lorenz Mie theory
(GLMT) [15], which involves expressing an incident beam

as a plane wave or spherical wave expansion [16]. These
expansions require knowing the electric field everywhere
on a planar [E (x, y, z = z0)] or spherical [E (θ, φ, r = r0)]
surface respectively. This approach is complete, and can
be used to describe interactions with spherical NPs of any
size or composition. However, NPs used in plasmonics or
metamaterials are typically in a size regime where only
dipolar and quadrupolar modes contribute to the optical
response. For these cases, we derive a greatly simpli-
fied approach for calculating scattering and absorption
in inhomogeneous fields, inspired by the multipolar in-
teraction Hamiltonian [17–22], given as,

H = −p ·E(rp)
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The light-matter interaction energy is described by a
collection of multipolar terms, corresponding to electric
dipole (ED), magnetic dipole (MD), electric quadrupole
(EQ), and magnetic quadrupole (MQ) interactions. Each
interaction term depends on a light-independent multi-
pole moment (p for ED, m for MD, etc.), as well as a
matter-independent electromagnetic field quantity (E is
the electric field, and H is the magnetic field) that only
depends on the local field at the NP center (rp), which
can be placed at any point of interest within the inho-
mogeneous field distribution.

These principles are combined with Mie Theory [23]
(which describes the interaction of a plane wave with a
spherical particle) to rigorously derive simple local-field
relations that fully describe the dipolar and quadrupo-
lar scattering interaction of NPs in inhomogeneous fields
[48]. The total power scattered via dipolar modes is given
by,
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P dip
sca =

3π

kωµ

{

|a1|
2|Einc (rp)|

2, electric (2)

Z2|b1|
2|Hinc (rp)|

2, magnetic (3)

where, Z, µ, and k are respectively the impedance, per-
meability, and wave number of the background medium.
an and bn are Mie coefficients, determined from stan-
dard plane wave illumination. Lastly, |Einc (rp)|

2 and
|Hinc (rp)|

2 are the electric and magnetic field inten-
sity at the center of the NP, in the absence of the
NP. In analogy with the multipolar interaction Hamilto-
nian, the scattering is proportional to a field-independent
“moment”, i.e., the Mie coefficient, and a particle-
independent driving term, i.e., the field intensity.
The power scattered by quadrupole modes is given by,
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where the driving term depends on a summation of field
gradients and is defined as,

Qij =
1

2

(

∂Ei

∂j
+

∂Ej

∂i

)

(6)

and i, j refer to the Cartesian coordinates x, y, z [24].
There are nine terms in this summation, but only six
unique terms, since Qij = Qji. The MQ field interac-
tion term Gij is defined similarly, replacing electric field
gradients with magnetic field gradients. These expres-
sions may be used to determine the power scattered by
a spherical particle at any location in an inhomogeneous
illuminating field.
Local-field based expressions may also be used to de-

scribe higher order multipole interactions; here we re-
strict discussion to the dipole and quadrupole modes that
dominate the response of typical plasmonic and metama-
terial NP constituents. Although we focus on scatter-
ing cross-sections in this work, expressions for the elec-
tromagnetic fields and absorbed power are included in
[48]. The local field approach confers a variety of advan-
tages over GLMT. It is particularly useful in cases where
the spatial electromagnetic field distributions are already
known – the need for spherical wave or plane wave decom-
positions is eliminated. Additionally, the local field ex-
pressions intuitively reveal opportunities for tuning mul-
tipolar light-matter interactions via beam engineering.
Below, we demonstrate significant modifications of mul-
tipolar scattering spectra and radiation patterns through
manipulation of illuminating beam symmetries.
First, the validity of this local field model is demon-

strated in Fig. 1 for the case of a Silicon NP with index

0.05 0.10 0.20 0.25
0.0

0.5

1.0

1.5

2.0

P
   

   
  /P

MD ED

MQ

EQ
LP (GLMT)

LP

AP

RP

S 
  (

a.
u

.)

x (μm)

sc
a

in
c

z

0.15
r

       
/λnp

Figure 1. Ratio of scattered power to incident power for a
spherical NP with refractive index n = 3.7 under linearly (LP,
blue line), azimuthally (AP, dashed green line), and radially
(RP, dot-dashed orange line) polarized illumination, as a func-
tion of normalized frequency. GLMT calculations for scatter-
ing by a LP beam (dashed red line) show excellent agreement
with the local field expressions derived in this work. Multi-
polar mode peaks are labeled, with E = electric, M = mag-
netic, D = dipole, and Q = quadrupole. Inset depicts the
normalization scheme in which the incident Poynting vector
is integrated over the main intensity lobe of the illumination
beam, as indicated by arrow, where Sz is the z-component of
the Poynting vector plotted as a function of distance along
the x-axis (shown for focused LP illumination).

n = 3.7 and radius rNP = 100nm. The ratio of scat-
tered power to incident power is plotted as a function
of a normalized frequency parameter: the radius of the
NP divided by the wavelength of the incident light. A
focused, linearly polarized beam (LP) is expressed as a
discrete summation of plane waves. Scattering spectra
determined via GLMT (dashed red line) and the local
field approach (blue line) are identical. The ratio of scat-
tered to incident power sometimes exceeds 1 due to the
normalization used. Because the incident beam is de-
scribed as a discrete superposition of plane waves, the in-
cident power transmitted through the xy-plane does not
converge [48]. Here we integrate the incident Poynting
vector over a circular area comprising the main intensity
lobe of the focused beam, as shown in the inset of Fig.
1.
Illumination by a LP beam results in excitation of

all multipole modes, since the relevant dipolar and
quadrupolar driving fields are all nonzero (Table I). In
contrast, a focused azimuthally polarized (AP) beam ex-
hibits a null in the electric field at the beam’s focus [25].
Additionally, although individual electric field gradients
are quite strong, the electric quadrupole moment depends
on a sum of gradients (equation 4) that cancel each other
at the beam’s focus. As such, the resultant scattering
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Table I. Electric and magnetic field magnitudes and gradients,
and orientations of each, under LP, AP, and RP illumination,
for ED, MD, EQ, and MQ modes.

Dipoles Quadrupoles
Illumination Electric Magnetic Electric Magnetic

LP x y Qxz Qyz

AP z 0 Qxx=Qyy 0
=-2Qzz

RP 0 z 0 Qxx=Qyy

=-2Qzz
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Figure 2. Radiation patterns of ED (top row) and EQ (bot-
tom row) modes under LP (left column) and RP (right col-
umn) illumination, with corresponding field components that
drive each excitation. LP illumination results in (a) an x-
oriented dipole and RP illumination results in (b) a z-oriented
dipole. Due to incident field gradients, LP illumination cou-
ples to (c) a transverse quadrupole whereas RP illumination
couples to (d) a longitudinal quadrupole mode, which is typ-
ically thought to be non-radiating.

spectrum (Fig. 1, green line) for a NP at the focus of
an AP beam exhibits only magnetic modes. A focused
radially polarized (RP) beam exhibits identical symme-
tries to that of an AP beam, except that the electric and
magnetic fields are switched. Consequently, illumination
by a RP wave excites only electric modes. The selec-
tive excitation of magnetic (electric) modes [26, 27] via
azimuthally (radially) polarized illumination is explained
here by considering the appropriate local field quantities.
By changing symmetries of the illuminating radiation,
scattering spectra are strongly modified.

Changing the illumination condition affects not only
the scattering spectra of the NP, but also the orientation
of the excited multipolar modes. Although the individ-
ual multipole resonance frequencies are unchanged, the
associated radiation patterns vary with illumination con-
ditions. For example, an x-polarized LP beam excites an
in-plane ED, with a dipole moment along the x-axis. The
associated radiation pattern is shown in Fig. 2(a). Con-

versely, the RP wave excites an out-of-plane ED, with
a dipole moment along the z-axis, as seen in Fig. 2(b).
Thus, changing illumination symmetries allows rotation
of the dipole orientation in space. Such modifications of
the multipolar radiation patterns are more significant for
the case of quadrupole modes, which are driven by field
gradients (see Table 1). The x-polarized LP beam only
exhibits a non-zero gradient for the x-component of the
electric field along the z-direction

(

∂Ex

∂z
6= 0

)

; Qxz = Qzx

are the relevant driving terms. This results in a charac-
teristic four-lobe radiation pattern, as shown in Fig. 2(c).
We refer to this as a transverse quadrupole. In contrast,
the RP beam has only nonzero longitudinal gradients:
∂Ex

∂x
=

∂Ey

∂y
= −2∂Ez

∂z
, and Qxx = Qyy = −2Qzz (Table

1). This results in excitation of a longitudinal quadrupole
mode. The associated two-lobe radiation pattern (Fig.
2(d)) is markedly distinct from the typical transverse
quadrupole mode. Interestingly, this type of quadrupole
excitation is typically referred to as a “dark” mode in
plasmonic dimer antennas [28, 29]. These results high-
light the fact that such modes are only “dark” because
they cannot be excited by conventional linearly (or circu-
larly) polarized sources. Thus, beam engineering allows
for excitation of new classes of multipole modes.
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Figure 3. Change in fraction of scattered power to incident
power (right axis) with increasing numerical aperture (i.e.,
focusing), for ED and EQ modes (on resonance) under (a)
LP illumination, and (b) RP illumination. The ED mode
generally dominates in LP beams, while the opposite is true
of RP beams. The ratio of quadrupole to dipole scattering
decreases in both cases (left axis).

Even when the beam symmetries are unchanged, the
multipole spectra depend strongly on other beam prop-
erties such as the focused spot size, determined here by
changing the numerical aperture (NA = sin(α)). Previ-
ously, the focusing angle was fixed to 0.86 (α = ±60◦).
Varying the NA changes the relative weight of dipole
and quadrupole driving terms. This effect is shown in
plots of the fraction of incident power scattered by dipole
(red) and quadrupole (green) modes, as well as their ra-
tio, under LP (Fig. 3(a)) and RP (Fig. 3(b)) illumi-
nation. For the LP beam, the EQ response is generally
weaker than the ED response at higher focus, and in-
creases much more slowly with focusing. As a result, the
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Figure 4. Scattering cross-section as a function of normalized
frequency. Standing wave (SW) illumination by an AP with
a π phase shift between the two beams (dashed red line), RP
with a π phase shift (dashed blue line), AP (dashed green
line), and RP beam (dashed orange line) beam results in se-
lective excitation of the MD, ED, MQ, and EQ modes, re-
spectively. Inset depicts illumination scheme for RP SW illu-
mination.

ratio of EQ:ED scattering decreases with tighter focus-
ing. The scaling for RP illumination is quite different:
the EQ response is always larger than the ED response
(EQ:ED ratio> 1), although the ratio also decreases with
tighter focusing. The behavior for the magnetic modes
is identical when illuminated by AP beams. Beam engi-
neering not only allows for selective excitation of electric
vs. magnetic modes, but also the tuning of the relative
weight of quadrupoles vs. dipoles.

Previous methods for directly quantifying multipo-
lar light-matter interactions have relied on decompos-
ing output light from e.g., photoluminescence [30, 31] or
Rayleigh scattering [32, 33]. More recently, researchers
have proposed [26, 34–42] and experimentally demon-
strated [43–47] enhancement or suppression of multipo-
lar scattering in engineered light beams. In general, se-
lecting out individual multipolar modes requires light
beams in which all other multipole orders have been sup-
pressed. Taking advantage of the previously discussed
beam symmetries, we achieve selective excitation of in-
dividual dipole and quadrupole modes using standing
wave illumination–i.e., by illuminating from both the top
and bottom. Selective excitation of dipole modes re-
quires that all field gradients in the cross terms cancel.
This can be achieved by illuminating with two counter-
propagating focused RP beams that are π out of phase
with each other, enabling complete suppression of the
magnetic field and both field gradients. A NP placed at
the beam focus exhibits only a z-oriented ED mode (see
Fig. 4). Similarly, selective excitation of a z-oriented MD

mode is achieved via standing wave (SW) illumination
comprising of two counter-propagating AP beams that
are π out of phase with each other. Similarly, selective
excitation of the quadrupole modes is achieved by remov-
ing the phase difference between two counter-propagating
beams. A longitudinal EQ (MQ) mode is excited by SW
illumination of two counter-propagating RP (AP) beams.
The scattering spectra resulting from these SW illumina-
tion profiles is shown in Fig. 4, where the inset depicts
the illumination condition for a RP standing-wave with-
out any phase shift. Since these standing waves produce
zero power flux (the power from one beam is canceled
by the counter-propagating beam) we plot the scattering
cross-section: the scattered power divided by the incident
intensity. As seen in Fig. 4, individual multipolar res-
onance spectra are clearly resolved by this illumination
method.

In summary, we have derived a simplified method for
determining the multipolar scattering of NPs in inho-
mogeneous beams. Our approach only requires know-
ing the local electromagnetic fields and their gradients at
one point in space, obviating the need for plane wave or
spherical wave decompositions. Using this method, we
demonstrate the manipulation of multipolar spectra via
beam engineering. We show selective excitation of elec-
tric and magnetic modes and the emergence of a “bright”
longitudinal quadrupole. We subsequently demonstrate
how to tune the relative weight of dipole and quadrupole
contributions by manipulating the beam focusing con-
ditions. We conclude by demonstrating selective exci-
tation of individual multipole modes in standing wave
configurations. This work establishes beam engineering
as a powerful approach for manipulating the multipolar
scattering properties of nanostructures, and for study-
ing the multipolar light-matter interactions in nanoscale
elements.
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