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We theoretically study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between mag-
netic impurities in both Dirac and Weyl Semimetals (SMs). We find that the internode process, as
well as the unique three dimensional spin-momentum locking, has significant influences on the RKKY
interaction, resulting in both a Heisenberg and an Ising term, and an additional Dzyaloshinsky-
Moriya term if the inversion symmetry is absent. These interactions can lead to rich spin textures
and possible ferromagnetism in Dirac and time reversal symmetry-invariant Weyl SMs. The effect
of anisotropic Dirac and Weyl nodes on the RKKY interaction is also discussed. Our results provide
an alternative scheme to engineer topological SMs and shed new light on the application of Dirac
and Weyl SMs in spintronics.
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Three dimensional (3D) Dirac semimetals (SMs) [1] are
topological states of matter and can be seen as bulk ana-
logue of graphene. Their conduction and valence bands
with linear dispersion touch each other at a finite num-
ber of points, called the Dirac nodes, in the 3D Brillouin
zone. Dirac nodes are four-fold degenerate, protected by
both time reversal symmetry (TRS) and inversion sym-
metry. Breaking either symmetry in Dirac SMs leads
to Weyl SMs [2], which host Weyl nodes. These Weyl
nodes can be viewed as effective magnetic monopoles in
the momentum space [3], acting as the source and drain
of the Berry curvature field [4]. This nontrivial topol-
ogy can lead to exotic superfluid [5] and superconduct-
ing phases [6], unique Fermi arc state [7], helical spin or-
der [8], various novel electromagnetic responses, such as
the chiral anomaly [9, 10], the chiral magnetic effect [11],
negative magnetoresistance [12], and the chiral Hall ef-
fect [13].

Many aforementioned exotic phenomena rely on the
separation of Weyl nodes in momentum space due to
the intrinsic TRS breaking. So far, angle-resolved pho-
toemission spectroscopy and magnetotransport measure-
ments have identified (Bi1−xInx)2Se3 [14], Na3Bi [15],
and Cd3As2 [16] as Dirac SMs, and noncentrosymmet-
ric transition metal monosphides TaAs, NbAs, NbP and
TaP as Weyl SMs [17–22]. There are, however, few ex-
perimental realizations of TRS breaking Weyl SMs with-
out Landau quantization [23]. Even though a magnetic
field can break the TRS, it inevitably couples to both
the spin and orbital motion of electrons through Zeeman
splitting and Landau quantization, respectively. On the
other hand, magnetic doping technique has recently been
utilized in experimental implementation of the quantum
anomalous Hall effect in thin films of topological insula-
tors [24]. Thus, one may naturally wonder whether Weyl
SMs without TRS can emerge from Dirac and time re-
versal invariant Weyl SMs through introducing magnetic
dopants rather than applying a magnetic field.

Motivated by the above observation, in this paper we
study the Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teraction between magnetic dopants in both Dirac and
Weyl SMs. We find that the internode process, as well
as the unique 3D spin-momentum locking, has signifi-
cant influences on the RKKY interaction, resulting in
both a Heisenberg and an Ising term, and an additional
Dzyaloshinsky-Moriya term if the inversion symmetry is
absent. These interactions can lead to rich spin textures
and possibly ferromagnetism in Dirac and TRS-invariant
Weyl SMs. The effect of anisotropic Dirac and Weyl
nodes on the RKKY interaction is also discussed. Our
results provide an alternative scheme to engineer topolog-
ical SMs and shed new light on the application of Dirac
and Weyl SMs in spintronics.
In general, a pair of Weyl nodes of opposite chirality

can be described by the following Hamiltonian

H0 = χ
(

vFσ · (k − χQ) + σ0Q0

)

, (1)

where k is the wave vector, vF is the Fermi velocity,
and χ = ±1 refers to the chirality of the Weyl nodes.
If (Q, Q0) = 0, the two Weyl nodes overlap with each
other and the Hamiltonian H0 describes Dirac SMs (see
Fig. 1(a)). For noncentrosymmetric Weyl SMs that pre-
serve the TRS, Q must be zero and Q0 can be nonzero.
As a result, the two Weyl nodes are located at the
same k-point but can have different energies as shown
in Fig. 1(b). Hence for a given carrier density, there are
two unequal Fermi wave vectors. On the other hand, for
Weyl SMs with broken TRS but with inversion symme-
try, we haveQ0 = 0 andQ 6= 0; the two Weyl modes have
the same energy but reside at different k-points ±Q in
the Brillouin zone [see Fig. 1(c)]. Here the Pauli matrices
σ = (σx, σy , σz) refer to the real spin degree of freedom
of electrons. They may also refer to pseudospin degree
of freedom, which will be discussed later.
We assume that the interaction between the 3D itin-

erant Weyl fermions and a magnetic impurity Si located
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FIG. 1. (Color online) Low energy spectra for Dirac SMs (a),
noncentrosymmetric Weyl SMs (b), and Weyl SMs without
TRS (c), respectively. The color of cone indicates the chirality
of Weyl nodes, while the blue plane is the Fermi level εF = 0.

at Ri can be expressed as the standard s-d interaction
Hamiltonian HI = (Jτ0 + λτx)Si · σδ(r −Ri), where J
and λ refer to the strength of the s-d exchange interac-
tion in the intranode process and the internode process,
respectively. The identity matrix τ0 and Pauli matrix τx
act on the chirality space.

According to the second order perturbation the-
ory [25], at zero temperature the RKKY interaction
between two magnetic impurities mediated by Weyl
fermions is given by HRKKY = − 1

π Im
∫ εF
−∞

dεTr[(Jτ0 +
λτx)S1 · σG(R; ε)(Jτ0 + λτx)S2 · σG(−R; ε)] with R =
R2 − R1, where εF is the Fermi energy and Tr means
a trace over the spin and pseudospin degree of freedom
of itinerant Weyl fermion. The Green function in the
energy-coordinate representation is given as G(R; ε) =
G+(R; ε) ⊕ G−(R; ε). After some algebra, we find the
RKKY interaction [26]

HRKKY =
∑

α,β,χ,χ′

[

J2δχχ′ + λ2(1 − δχχ′)
]

Sα
1 S

β
2

× Im

[

−
1

π

∫ εF

−∞

dεTr[σαGχ(R; ε)σβGχ′(−R; ε)]

]

, (2)

which includes contributions from both the intranode
process and the internode process.

We now apply the above formalism to study the RKKY
interaction in Dirac and Weyl SMs. We note that close
to the Weyl nodes, the effective Hamiltonian is propor-
tional to k · σ, which can be viewed as the 3D counter-
part of graphene in real spin space. It is in contrast with
the surface state of 3D topological insulators (TIs) [27–
29], in which spin and velocity are perpendicular to each
other. As we show below, this kind of hedgehog spin tex-
ture aroundWeyl nodes (spin is aligned with momentum)
can have significant effects on the magnetism of magnetic
impurities.

Let us first consider the isotropic Dirac SMs, described
by HD(k) = χvFk · σ with the energy dispersion εk =
±vFk. The effect of anisotropic energy dispersion will
be discussed later. The Green function corresponding to
HD(k) in momentum space takes the form G−1

χ (k; ε) =

(ε + iη)σ0 − HD(k), where η is a positive infinitesimal.
Gχ(±R; ε) can be obtained from Gχ(k; ε) through in-
tegrating over the momentum near the Weyl node χ,

Gχ(±R; ε) =
∫

d3
k

(2π)3Gχ(k; ε) exp (±ik ·R). Carrying

out the integration over k leads to (more details are pre-
sented in the Supplemental Material [30]) Gχ(±R; ε) =
σ0G0(R; ε)±χσjGR(R; ε), where the Green functions are
defined as G0(R; ε) = −ε

4πv2

F
R
exp[iξε] and GR(R; ε) =

−i
4πvFR2 (1− iξε) exp[iξε], with the dimensionless parame-
ter ξε = εR/vF . In the above calculation, we take R to
be aligned to the j-axis, i.e., R = Rej .
After lengthy but straightforward calculations, we ob-

tain the RKKY interaction for the Dirac SMs (the de-
tailed calculation can be found in the Supplemental Ma-
terial [30])

HD
RKKY = FD

H (R, ξF )S1 · S2 + FD
Ising(R, ξF )S

j
1S

j
2 , (3)

where the range functions for the Heisenberg and Ising
terms are given by

FD
H (R, ξF ) = −

{

J2[(3− 2ξ2F ) cos(2ξF ) + 4ξF sin(2ξF )]

−2λ2[cos(2ξF ) + ξF sin(2ξF )]
}

/8π3vFR
5

(4)

FD
Ising(R, ξF ) = −(J2 − λ2)

[

(2ξ2F − 5) cos(2ξF )

−6ξF sin(2ξF )] /8π
3vFR

5 , (5)

with ξF = εFR/vF . Here the superscript D stands for
Dirac SMs. One can clearly see that if J2 = λ2, the
contribution to the Ising term from the internode pro-
cess cancels that from the intranode process exactly, i.e.,
FD
Ising = 0. This cancellation is due to the restoration of

the spin rotation symmetry by the internode process.
At long range (ξF ≫ 1) and for finite εF , the RKKY

interaction reduces to a simple form

HD
RKKY ≈

J2ε2F cos(2ξF )

4π3v3FR
3

S1 · S2 , (6)

which reflects the long-range and oscillatory nature of the
RKKY interaction. The ferromagnetism (FM) or antifer-
romagnetism (AFM) of magnetic impurities depends on
both the concentration of impurities and the carrier den-
sity of Dirac fermions through R and εF , respectively.
Interestingly, for the intrinsic case (εF = 0), the

RKKY interaction becomes nonoscillatory

HD
RKKY =

−(3J2 − 2λ2)

8π3vFR5
S1 · S2 . (7)

We can see that if J2 = λ2, the exchange coupling is al-
ways ferromagnetic. For sufficiently large impurity den-
sity, this will lead to a spontaneous magnetization, which
then drives Dirac SMs into Weyl SMs with broken TRS.
Consequently, a nonzero anomalous Hall conductivity
proportional to the separation of the two Weyl nodes
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FIG. 2. (Color online) The exact range functions of RKKY in-
teraction of the noncentrosymmetric Weyl SMs (FTR/C) as a
function of the reduced parameter ζ at the Fermi energy εF =
15 Q0 (a) and εF = 0.1 Q0 (b), with C = −J2Q5

0/(2πv
2

F )
3.

The inset in each panel for ζ3F TR/C shows an evident beat-
ing feature for each term in this RKKY interaction.

in momentum space will appear [31]. The ferromag-
netic transition temperature Tc depends on the specifics
of both magnetic impurities and host materials, which
need detailed first-principles studies [32]. It is clear that
its spatial dependence as 1/R5 differs from 1/R3 for the
intrinsic graphene [33].
Next we consider noncentrosymmetric Weyl SMs, in

which the two Weyl nodes with opposite chirality have
different energies (Q0 6= 0). For a given carrier density,
the magnitudes of Fermi wave vectors of these two Weyl
nodes are distinct, therefore ξ+F 6= ξ−F with ξχF = (εF −
χQ0)R/vF . Following the same procedure, we obtain the
RKKY interaction for the noncentrosymmetricWeyl SMs

HTR
RKKY = FTR

H (ξF , ζ)S1 · S2 + FTR
Ising(ξF , ζ)

× Sj
1S

j
2 + FTR

DM(ξF , ζ)(S1 × S2)j , (8)

with ζ = Q0R/vF and the jth-component of the spin
Sj is along the direction connecting the two impurities.
Here the superscript TR stands for the TRS invariant
Weyl SMs. We can see that the RKKY interaction con-
sists of three terms, namely, a Heisenberg term, an Ising
term and a Dzyaloshinsky-Moriya (DM) term [34]. This
is similar to the surface state of TIs [28]. The specific ex-
pressions of these range functions (FTR

H , FTR
Ising, F

TR
DM) are

given in the Supplemental Material [30].
Figure 2 shows the range functions to two sets of pa-

rameters. As we can see, these range functions display
a damped oscillatory behavior with increasing distance
R, with each term dominating in different regime of the
parameters εF and R. In addition, these range functions
oscillate with two distinct periods and form a beating
pattern. The beating feature, originated from the two
unequal Fermi wavevectors, manifests itself by multiply-
ing each of range functions in Eq. (8) by ζ3 as shown
in the insets of Figs. 2(a) and 2(b). The measurement
of beating period can be used to determine the energy
difference Q0 [35]. This beating structure does not occur
in the typical surface state of TIs where there is only one
Fermi circle [27–29].
The DM term is essential for realizing spiral spin states

and skyrmions, and also has potential applications in
spintronics. It may also provide some hint to understand
the recent experimental observation of the TRS-breaking
Weyl metal in YbMnBi2 [23]. In this material, although
there is a global inversion symmetry, in each layer the
inversion symmetry is broken, which could give rise to
a nonvanishing DM term. The combination of the DM
interaction and the AFM order of Mn can cause a canted
AFM order with a nonvanishing net magnetization ob-
served in the experiment [23].
Finally, we discuss TRS-breaking Weyl SMs, in which

the Weyl nodes with opposite chirality reside at different
k-points in momentum space±Q. We further assume the
inversion symmetry remains intact, thus the DM term
does not appear. We take into account the effect of the
separation of Weyl nodes in the internode process. The
corresponding RKKY interaction can be obtained from
that of Dirac SMs in Eqs. (4) and (5) by replacing λ2 with
λ2 cos(2Q ·R). It can be seen that the internode process
gives rise to an oscillating term proportional to∼ cos(2Q·
R), which is absent in the typical surface state of TIs [27,
28]. Because of the long-range and oscillatory nature of
the RKKY interaction, for a large momentum separation
2Q, the part from the internode process will vanish after
averaging over position and thus does not contribute to
the net magnetization. Therefore, the intranode process
dominates the RKKY interaction in this case. At long
distance, we have the approximate RKKY interaction

HI
RKKY ≈

J2ε2F cos(2ξF )

4π3v3FR
3

(S1 · S2 − Sj
1S

j
2) , (9)

where the superscript I refers to the centrosymmetric
Weyl SMs. Since the asymptotic range functions for
the Heisenberg and Ising terms exhibit the same oscil-
latory behavior but with a phase differing by π, the Ising
term always cancels the j-th component of the Heisen-
berg term, leading to the XY-like spin model for j = z.
On the other hand, for the intrinsic case the RKKY in-
teraction becomes

HI
RKKY =

−J2

8π3vFR5
(3S1 · S2 − 5Sj

1S
j
2) , (10)
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which could realize various spin models, such as the XXZ-
like spin model for j = z. The resulting spin configura-
tions of impurities (XY- and XXZ-like spin models) can
be accessed by a variety of experimental techniques, such
as neutron scattering technique.

In reality, almost all experimental realizations of Weyl
or Dirac SMs (and theoretically conjectured systems,
such as [31, 36–38]) possess a strongly anisotropic single-
particle dispersion. Here we consider the effect of
anisotropy on the RKKY interaction. The effective
Hamiltonian for fermions near the anisotropic Weyl node
χ takes the form H̃0 = χ(vxk̃xσx + vyk̃yσy + vz k̃zσz),
where the Fermi velocities vα in different direction are
different, |vx| 6= |vy | 6= |vz |. To simplify our discussion,
we set vj > 0 with j = x, y, z. The corresponding energy

spectrum is given as εk̃ = ±(v2xk̃
2
x + v2y k̃

2
y + v2z k̃

2
z)

1/2.
It is instructive to make the following transformation
as (viQ̃i, vik̃i, vF R̃i) ≡ (vFQi, vF ki, viRi), such that we
relate the Green function of an anisotropic Weyl node
in the energy-coordinate representation to that of an
isotropic one as G̃χ(±R̃; ε) = λAGχ(±R; ε), with λA =
v3F /(vxvyvz). We note that the above transformation
converts a Fermi elliptic sphere into a Fermi sphere but
preserves the volume of Fermi sphere. This allows us to
connect the RKKY interaction of anisotropic Dirac SMs
to the counterpart of the isotropic ones

H̃RKKY(R̃) = λ2
AHRKKY(vF R̃/vi) , (11)

which implies that the anisotropy of Dirac or Weyl nodes
must lead to an anisotropic RKKY interaction. It is clear
that for vx = vy = vz (λA = 1), the above expression in
Eq. (11) can reduce to that of the isotropic one.

Before drawing conclusions, we briefly discuss the
pseudospin case, in which the Pauli matrices in Eq. (1)
may refer to pseudospin degree of freedom such as orbital
index. This pseudospin case is similar to graphene. In
the absence of the spin-momentum locking, the RKKY
interaction only contains the conventional Heisenberg
term [39]. Hence, the RKKY interaction directly asso-
ciates with the Fourier transform of the static density-
density response function [40]. We leave all the specific
expressions of RKKY interaction to the Supplemental
Material [30]. It should be emphasized that the RKKY
interaction in this intrinsic Dirac SMs is also a nonoscil-
latory Heisenberg term HRKKY = (2J2−3λ2)

4π3vFR5 S1 ·S2, which
allows the spontaneous magnetization of magnetic impu-
rities for |λ| > (2/3)1/2|J |. Compared with Eq. (7), the
factor of 2 comes from the degeneracy of real spin degree
of freedom.

In summary, we have studied the RKKY interaction
between magnetic impurities in Dirac and Weyl SMs. We
found that it is possible to realize a spontaneous magne-
tization in these systems. The RKKY interaction in gen-
eral contains the Heisenberg, Ising, and DM terms, which
can give rise to rich spin textures of the impurities. These

findings provide an alternative scheme to engineer topo-
logical SMs and pave the way for the application of Dirac
and Weyl SMs for spintronics.

We are grateful to Ran Cheng and Shengyuan Yang
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NSF (No. EFRI-1433496), Natural Science Foundation of
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Note added.–After the submission of this manuscript,
a related paper appeared, in which some results on the
anisotropic Weyl SMs has also been obtained in [41]. Re-
cently, the Kondo effect of a single magnetic impurity in
the Weyl SMs has also been discussed in [42].
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