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The quasiparticle interferences (QPIs) of the featureless Mott insulators are investigated by a
T -matrix formalism implemented with the dynamical mean-field theory (T -DMFT). In the Mott
insulating state, due to the singularity at zero frequency in the real part of the electron self energy
(ReΣ(ω) ∼ η/ω) predicted by DMFT, where η can be considered as the ‘order parameter’ for the
Mott insulating state, QPIs are completely washed out at small bias voltages. However, a further
analysis shows that ReΣ(ω) serves as an energy-dependent chemical potential shift. As a result,
the effective bias voltage seen by the system is eV ′ = eV − ReΣ(eV ), which leads to a critical bias
voltage eVc ∼

√
η satisfying eV ′ = 0 if and only if η is non-zero. Consequently, the same QPI

patterns produced by the non-interacting Fermi surfaces appears at this critical bias voltage eVc

in the Mott insulating state. We propose that this re-entry of non-interacting QPI patterns at eVc

could serve as an experimental signature of the Mott insulating state, and the ’order parameter’ can
be experimentally measured as η ∼ (eVc)

2.

PACS numbers: 71.27.+a,72.10.Fk,71.10.Fd

Introduction – Mottness, the physics of understanding
how the insulating state arises from a partially-filled con-
duction band due to strong local interactions, has been
one of the most challenging subjects in condensed mat-
ter physics. It could potentially hold the key to under-
standing the mechanism of high-temperature supercon-
ductivity observed in various materials with a narrow
bandwidth1–3. The essential physics of Mottness can
emerge from the single orbital Hubbard model,

HHubbard = Ht +HU

Ht = −t
∑

<i,j>,σ

c†iσcjσ + h.c.,

HU = U
∑

i

ni↑ni↓, (1)

where t is the hopping parameter between nearest neigh-
bor sites < i, j >, and U is the on-site Coulomb interac-
tion. Although we analyze a single orbital model here,
our conclusions are also applicable to multi-orbitals sys-
tems. While the Hubbard model has been successful in
conceptually demonstrating both the metallic and the
insulating states in two extreme limits of U/t << 1 and
U/t >> 1, the nature of the transition from the metallic
to the insulating states as a function of U/t is still ob-
ject of active investigation. One particular difficulty is
that the Mott transition does not seem to involve break-
ing of symmetry, and consequently such a transition can
not be studied within the framework of Landau-Ginzburg
theory. The change in the temperature dependence of
dc resitivity1 is often used as an indicator of the Mott
transition, but it depends on many other details of the
materials, e.g., impurity and disorder. As a result, the
dc resitivity can not be a conclusive experimental signa-
ture for the Mott transition. Other possible candidates
for an ‘order parameter’ of the Mott transition, such as,

the density of states at Fermi energy4,5 or the number
of double occupancy6, have been discussed in the liter-
ature. However, these physical quantities are also not
ideal candidates for an order parameter behavior since
for example, the density of states at Fermi energy is zero
in the insulating state and therefore does not contain in-
formation about the strength of Mott insulator. In other
words, an order parameter for the Mott transition that is
theoretically well-defined and experimentally observable
is lacking.
The dynamical mean-field theory (DMFT) has been

shown to be a sophisticated theoretical approach to un-
derstand the Mott insulating state7–11. DMFT maps the
problem of solving the Hubbard model to another one
of solving the Anderson impurity model which is much
better understood. Such a mapping is shown to be ‘ex-
act’ in the limit of spatial dimension d going to infin-
ity. The price paid for this mapping, however, is that
the momentum-dependence of the electron self energy is
completely neglected, but the resulting electron self en-
ergy Σ(ω) includes all the local quantum fluctuations.
Since the Mott insulating state concerns mostly the local
physics, Σ(ω) from DMFT captures a lot of information
that can not be accessed by other approaches easily, de-
spite its lacking of the momentum dependence.
In DMFT for the case of half-filling7, the real part of

the electron self energy has the following singular behav-
ior at low frequency

ReΣ(ω) = η
ω
+O(ω), (2)

Here η is given by,

η =
[

− 1
π

∫ ∞

−∞

dǫ
ǫ2

∑

~k

ImGb(~k, ǫ+ i0+)
]−1

, (3)

where Gb(~k, ω) is the Green function obtained from
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DMFT with the following form,

Gb(~k, ω) =
[

ω − E(~k)− Σ(ω)
]−1

, (4)

E(~k) = ǫ(~k) − µ, where ǫ(~k) = −2t(coskx + cos ky), and
µ is the chemical potential. The constant term −U/2 has
been absorbed into the chemical potential. The validity
of Eq. 2 will be discussed in Supplementary Material.
This 1/ω singularity in ReΣ(ω) is inherited from the

self energy in the atomic limit of the Hubbard model
(t = 0), and DMFT captures it well even with non-zero
t. It can be shown7 that η = 0 in the metallic phase while
η 6= 0 in the Mott insulating phase. Moreover, a larger
η corresponds to a stronger Mott insulating state. Due
to the above reasons, η has been proposed to have prop-
erties similar to an order parameter of the Mott insulat-
ing state7,12. However, η remains a purely theoretically-
defined ‘order parameter’ since no experimental probe
has been applied to measure it.
In this paper, we propose that the quasiparticle in-

terferences (QPI’s) from impurities on a material sur-
faces which are measured by spectroscopic imaging scan-
ning tunelling microscopy (SI-STM) could be a feasi-
ble tool to directly measure η. QPIs have been widely
used to extract the spectroscopic information of the
electronic structure in materials including, but not lim-
ited to, cuprates13–15, iron-based superconductors16–18,
topological insulators19–22, Sr3Ru2O7

23–25, and heavy
fermion systems26,27. On the theoretical side, the T -
matrix formalism24,25,28,29 has been shown to be a well-
established method to compute the QPI images. We de-
velop a T -matrix formalism implemented with DMFT
(T -DMFT) to analyze the QPI patterns in the Mott in-
sulating state. We find that at small bias voltage, no
meaningful QPI images are found due to the singular
behavior of the electron self energy given in Eq. 2, as ex-
pected. However, by analyzing the T -DMFT formalism,
we further find that the QPI patterns resembling the one
produced by the non-interacting Fermi surface appear at
a non-zero critical bias voltage Vc, and this critical bias
voltage is directly related to η, the ‘order parameter’ of
the Mott insulating state given in Eq. 2. We propose
that this novel re-entry of non-interacting QPI at high
bias voltage could serve as an experimental signature of
the Mott transition, and the order parameter can be ob-
tained by η ∼ (eVc)

2 accordingly.
Formalism – We start from the following model Hamil-

tonian of

H = HHubbard +Himp,

Himp =
∑

~k,~k′

∑

σ

V~k,~k′c
†
~kσ

c~k′σ
, (5)

whereHHubbard is the Hubbard model described in Eq. 1,
and V~k,~k′

is the impurity scattering matrix element which

is assumed to be spin-independent. To specifically com-
pute the QPI image, we employ a T -matrix approach28,29

implemented with DMFT, and the procedure is given be-
low.

Following Ref. [7], we first solve HHubbard with DMFT
using Hirsch-Fye quantum Monte Carlo algorithm as the
impurity solver. The imaginary time interval [0, β] is di-
vided into L = 128 slices, and the maximum Matsubara
frequency used is nmax = 8192. We use the semicircular
density of states with half-bandwidth D. After the self-
consistent calculation is converged, the time-ordered elec-
tron self energy in Matsubara frequency Σ(iωn) can be
evaulated directly. In order to obtain the electron Green

function in real frequency Gb(~k, ω), a numerical calcu-
lation of the analytic continuation on Σ(iωn) is neces-
sary. We adopt the continuous-pole-expansion method30

recently developed by Staar, et al. to numerically per-
form the analytic continuation on Σ(iωn). This method is
shown to be an efficient approach to find an accurate and
unambiguous result of the analytic continuation within a
finite range of frequency, which is necessary for the cur-
rent study. Finally, the electron Green function with

DMFT Gb(~k, ω) given in Eq. 4 can be obtained after the
analytic continuation on Σ(iωn) is performed.
Once HHubbard is solved by DMFT, we treat impurity

scatterings necessary for the QPI images as a perturba-
tion around the DMFT solution. If the impurity scatter-
ings are weak, T -matrix formalism28,29 allows us to sum
over all the vertex corrections due to the impurity scat-

terings with Gb(~k, ω) as the ‘bare’ Green function. The
full Green function including impurity scatterings can be
expressed as28,29

G(~k,~k′, ω) = Gb(~k, ω) δ~k,~k′
+Gb(~k, ω)T~k,~k′

(ω)Gb(~k
′, ω)

(6)

where the T -matrix satisfies

T~k,~k′
(ω) = V~k,~k′

+

∫

d2p V~k,~pGb(~p, ω)T~p,~k′
(ω) , (7)

Typically, SI-STM is performed on a nicely-cleaved sur-
face on which the impurities are usually apart from each
other. In this case, the STM conductances ( dI

dV
) at po-

sitions near a single impurity are measured, and conse-
quently it is sufficient to include only one impurity in
the calculation28,29. For the case of the single impurity,
V~k,~k′

= V0, and T~k,~k′
(ω) can be further reduced to T (ω).

As a result, T (ω) can be evaluated from Gb(~k, ω) by

1
T (ω) =

1
V0

−
∫

d2~k Gb(~k, ω) (8)

It is well-established28,29 that dI
dV

(~r, eV ) at bias volt-
age V is proportional to the local density of states
ρ(~r, eV ) =

∑

σ ρσ(~r, eV ) where ρσ(~r, ω) = ImGσ(~r, ~r, ω).
The QPI image in the ~q map , namely ρ(~q, ω), is just the
Fourier component of ρ(~r, eV ). After a straightforward
calculation, the T -DMFT formalism leads to

ρ(~q, eV )− ρ0(eV ) =

Im
{

T (eV )

∫

d2k Gb(~k, eV )Gb(~k + ~q, eV )
}

, (9)
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FIG. 1: The Fermi surface of HHubbard with U = 0 at half-
filling. The red dashed lines represent the Fermi surfaces, and
the blue arrow indicates the momentum (in this case, (π, π))
connecting two points on the Fermi surface with large joint
density of states.

where ρ0(eV ) is the density of states without the impu-
rity scatterings which will be dropped out from now on
since it is just an unimportant constant.
Results – For the non-interacting case, Σ(ω) in Eq. 4

is zero, and the peaks in the ~q map of ρ(~q, eV ) are cor-
responding to the momenta connecting two points with
large joint density of states on the equal energy contour
at energy eV away from the Fermi energy28,29. For ex-
ample, the Fermi surface of HHubbard with U = 0 at
half-filling is depicted by the red dashed lines in Fig. 1.
The ~q map of ρ(~q, eV = 0) has a peak at ~q = (π, π)
corresponding to the blue arrow in Fig. 1.
As the interaction is present,

Gb(~k, ω) =
[

ω − E(~k)− Σ(ω)
]−1

=
[

ω′ − E(~k)− iImΣ(ω)
]−1

, (10)

where ω′ = ω − ReΣ(eV ). Consequently, Eq. 9 becomes

ρ(~q, eV ) = Im
{

T (eV ) (11)

×
∫

d2~k

[eV ′−E(~k)−iImΣ(eV )][eV ′−E(~k+~q)−iImΣ(eV )]

}

.

It is now clear that eV ′ = eV − ReΣ(eV ) is the effective

bias voltage shifted due to the present of ReΣ(eV ). The
QPI images at bias voltage eV in this case is in fact the
same as the non-interacting one at eV ′ except the extra
broadening resulted from ImΣ(eV ).
The electron self energy Σ(ω) obtained from DMFT

calculation for various valules of U is plotted in Fig. 2.

FIG. 2: The real (top) and imaginary (bottom) parts of the
electron self energy from DMFT for U = 1, 2, 3, 4, 5 with tem-
perature kBT = 0.1. Note that the unit of energies is D as
used in Ref. 7. The critical bias Vc is the point crossed by
the line of ω and ReΣ(ω). For U = 1, 2, the system is not in
the Mott insulating state, thus Vc = 0.

Note that both U and kBT are in the unit of D as used
in Ref. 7. For small U , the self energy is small, and
therefore the QPIs are not expected to deviate from the
ones obtained in the non-interacting case. The situation,
however, changes dramatically as U is large enough for
the occurrence of the Mott insulating state (2 < Uc < 3
in the current calculation). In the Mott insulating state,
ImΣ(ω) has a delta-function-like peak at ω = 0, while
ReΣ(ω) exhibits a divergence of 1/ω at small frequency.

These behaviors of self energy make Gb(~k, ω) very small
at small frequency, which washes away any meaningful
features in the QPI images at small bias voltage.
Intriguing features appear at high bias voltage. The

singular behavior of ReΣ(ω) described in Eq. 2 guaran-
tees the existence of a critical bias voltage eVc satisfying

eV ′
c = eVc − ReΣ(eVc) = 0. (12)

Adopting the expansion of ReΣ(ω) given in Eq. 2, we find
eVc ∼

√
η. Although the precise value of eVc depends on

the high order corrections, it is important to recognize
that eVc scales with η, and eVc = 0 if and only if η =
0. In other words, in the Mott insulating state, there is
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always a non-zero critical bias voltage Vc at which the
QPI pattern is exactly the same as the non-interacting

one except extra broadening, and the ‘order parameter’ of
the Mott insulating state can be indicated by η ∼ (eVc)

2.

To confirm this, we consider the one-band Hubbard
model with the nearest neighbor hopping at half-filling.
The non-interacting QPI exhibits a strong peak at ~q =
(π, π) at zero bias and the peak shifts to a smaller mo-
mentum as the bias voltage increases. Fig. 3 plots the
QPI patterns along the nodal direction in the first Bril-
louin zone at the critical bias voltage Vc for different U .
All of them exhibit exactly the same peak at ~q = (π, π),
resembling the non-interacting QPI at zero bias. For
U = 1, 2, the system is not in the Mott insulating state
and Vc = 0. For U = 3, 4, 5, the non-interacting QPI
pattern appears at eVc = 0.44, 0.88, 1.37 respectively.
Longer range hopping parameters can be added in or-
der to capture more details in the Fermi surface, but
these additions do not change the conclusions except the
critical bias voltage might be slightly modified.
Discussions and summary – The current result is pri-

marily based on the feature that the electron self energy
obtained from DMFT is momentum-independent. This
feature is correct in the atomic limit of the Hubbard
model7, but in general the electron self energy should
depend on the momentum whenever t/U is non-zero.
Nevertheless, since we are mainly interested in the Mott
insulating state in which t/U is a small parameter, the
momentum-dependence of the electron self energy should
be very weak in the Mott insulating state, which has been
discussed in previous studies31–36. As a result, the pre-
dicted re-entry of the non-interacting QPIs at a critical
bias voltage should be robust even as the momentum de-
pendence of the electron self energy is considered.
It is worth being mentioned that the critical bias volt-

age is smaller than the Mott gap as we can see in Fig. 3.
The typical value of D for cuprates is around 400 meV,
which gives the critical bias voltage about 150 meV to 600
meV for U = 3 − 5. The fundamental limitation on the
energy resolution of SI-STM is the range of the energy
within which the density of states of the STM tips re-
mains flat. A typical STM tip has a flat density of states
within EF ± 500 meV. As a result, although the critical
voltage is a little higher than the typical range of the
bias voltages where the SI-STM is routinely exploited, it
is still measurable with the current techniques.
The existence of the critical bias voltage eVc is not

limited to the electron self energy obtained from DMFT.
In fact, any theory having an electron self energy with
a diverging behavior at low frequency is likely to have a
non-zero eVc. From the Dyson’s equation, the self energy
can be expressed as Σ = G−1

0 −G−1, where G0 and G are
the non-interacting and the full Green functions. Since
G0 is non-zero always, Σ could have a diverging behavior
if and only if the full Green function has zeros at low fre-
quency. The existence of zeros in full Green function has

been recently found in a variety of theories for strongly
correlated electrons35,37–39, including the AdS-CFT holo-

FIG. 3: The QPI at the critical bias voltage Vc for dif-
ferent U along the nodal direction. ρ(~q, eVc) is normalized
with respect to the peak value at ~q = (π, π) for each U .
eVc = 0, 0, 0.44, 0.88, 1.37 for U = 1, 2, 3, 4, 5.

graphic models40,41. As a result, it is expected that the
same result will be obtained if these theories could be
incorporated into T -matrix formalism to compute QPIs.
Further, note that although for computational simplicity
we have focussed on the 2D Hubbard model which is ap-
plicable to a large class of materials including cuprates
and Heavy-Fermions, our conclusions are more general
and applicable to 3D systems as well.

In summary, we have employed the T -matrix formal-
ism implemented with the dynamical mean-field theory
(DMFT) to study the QPI patterns of the featureless
Mott insulator. While QPIs at small bias voltages are
completely washed out due to the singular electron self
energy obtained from DMFT, we find that the QPI pat-
terns resembling the non-interacting ones appear at a
non-zero critical bias voltage. Since the existence of this
non-zero critical bias voltage is a direct consequence of
the singular behavior of ReΣ(ω) ∼ η/ω in which η could
be thought of the ’order parameter’ of the Mott insu-
lating state, this novel re-entry of non-interacting QPI
patterns at a finite critical bias voltage could serve as an
experimental signature of the Mott transition, and the
order parameter can be indicated by η ∼ (eVc)

2 accord-
ingly.
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