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We show that any heat definition expressed as an energy change in the reservoir energy plus
any fraction of the system-reservoir interaction is not an exact differential when evaluated along
reversible isothermal transformations, except when that fraction is zero. Even in that latter case
the reversible heat divided by temperature, namely entropy, does not satisfy the third law of thermo-
dynamics and diverges in the low temperature limit. These results are found within the framework
of nonequilibrium Greens functions (NEGF) using a single level quantum dot strongly coupled to
fermionic reservoirs and subjected to a time-dependent protocol modulating the dot energy as well
as the dot-reservoir coupling strength.
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I. INTRODUCTION

The nature of heat is one of the most fundamental
questions which has been driving research in thermo-
dynamics since its origins. Nowadays, establishing a
thermodynamically consistent notion of heat for open
quantum system is of crucial importance for mesoscopic
physics and for the study of energy conversion in small
devices. This issue has direct implications on defining
meaningful notions of efficiency in thermoelectricity or
photoelectricity for instance.
For systems weakly interacting with their reservoirs the

situation is rather clear1–7. The heat flux is defined as mi-
nus the energy change in the reservoir and can be directly
related to the system energy changes since the system-
reservoir coupling energy is negligible. This definition
has been extensively used to study the performance of a
broad range of nano-devices (see e.g.8–20).
The situation is also clear in the strong coupling

regime, as long as the system operates in a steady
state21–23 (see also e.g.24,25). Indeed attributing the cou-
pling energy to the system or to the reservoirs is equiva-
lent in this case since net changes in the coupling energy
are zero. The first law reduces to Kirchhoff’s law for
heat fluxes crossing the system and the second law re-
duces to the non-negativity of −

∑

ν Q̇ν/Tν ≥ 0 where

Q̇ν is the heat entering the system from reservoir ν and
Tν is the temperature of that reservoir. This result can
easily be shown using scattering theory or nonequilib-
rium Green’s functions (NEGF) approaches. Many per-
formance studies have thus considered steady state se-
tups (see e.g.26–32).
However, the situation is very different when consid-

ering strong coupling setups where the system is driven
by a time-dependent process since in this case changes in
the coupling energy must be accounted for. Few studies
have considered them because the dynamics typically be-
comes difficulty to solve. These setups are important for

instance to study any kind of stroke engine or the thermo-
dynamic cost for turning on or off the interaction between
a system and its reservoirs. They are also indispensable
to consider reversible transformations which play a cen-
tral role in thermodynamics. Indeed, thermodynamics
predicts that the heat produced along a reversible trans-
formation, when divided by the reservoir temperature, is
the change of a state function called entropy.

In this paper, we use the framework of NEGF to show
that any attempt to define heat as the energy change
in the reservoir energy plus any non-zero fraction of the
system-reservoir interaction is not an exact differential
when evaluated along reversible isothermal transforma-
tions. We also find that the state function entropy ob-
tained for zero fraction does not satisfy the third law
of thermodynamics and diverges in the low temperature
limit.

The plan of the paper is as follows. Heat notions in-
cluding different fractions 0 ≤ α ≤ 1 of the system-
reservoir interaction energy are defined in section II. The
model system used for their explicit evaluation is pre-
sented in section III. Their reversible expressions and
their thermodynamic consistency is discussed in section
IV. Their first irreversible correction is given in section
V. The special case of no driving in the coupling and wide
band approximation is discussed in section VI. Conclu-
sions are drawn in section VII.

To highlight the physical content of our paper, the
technical parts have been relegated to appendices. Ex-
pressions for the energy and matter current in terms of
NEGF are given in appendix A. The gradient expansion
technique needed to consider slow transformations is de-
scribed in appendix B. It is used for our model system in
appendix C to calculate the reversible heat (C 1), its first
correction (C 2), and to show that in absence of driving
in the coupling and in the wide band limit our NEGF
treatment becomes equivalent to that of Ref.33 (C 3).
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II. HEAT DEFINITIONS

The typical Hamiltonian of an open quantum system S
coupled to multiple reservoirs ν at temperatures Tν and
chemical potentials µν is

Ĥ(t) = ĤS(t) +
∑

ν

(

Ĥν + V̂ν(t)
)

, (1)

where ĤS (Ĥν) denotes the system (reservoir ν) Hamil-

tonian and V̂ν is the system-reservoir interaction.
We start by introducing the class of all possible heat

definitions expressed as the change in the quantum expec-
tation value of the reservoir Hamiltonian plus a fraction
0 ≤ α ≤ 1 of the the system-reservoir coupling energy
(we set ~ = e = kB = 1 throughout the paper)

Q̇ν,α = Jν,α − µνIν , (2)

where the matter and heat currents entering the system
from reservoir ν are given by

Iν =− Tr{N̂ν dtρ̂} = −dt〈N̂ν〉 (3)

Jν,α =− Tr{
(

Ĥν + αV̂ν

)

dtρ̂}, (4)

and ρ̂(t) is the density matrix of the total system. The
heat flux definition most commonly used in the literature
corresponds to the choice α = 0 and can be expressed
in terms of the rate of change in the number operator
N̂ν and in the Hamiltonian Ĥν of the reservoir ν, since
Jν,0 = −dt〈Ĥν〉

25,34–39. The choice α = 1 was considered
for instance in Ref.40 and the choice α = 1/2 in Ref.33.

III. THE MODEL

The specific model that we consider consists of an ex-
ternally driven level ε(t) bi-linearly coupled to a single
Fermionic reservoir R at equilibrium. Its Hamiltonian
is given by (1), where the level, the reservoir and their
coupling respectively read

ĤS(t) = ε(t)d̂†d̂ , ĤR =
∑

k

εkc
†
k ĉk (5)

V̂ (t) =
∑

k

(

Vk(t)d̂
† ĉk +H.c.

)

. (6)

Here d̂† (d̂) and ĉ†k (ĉk) create (annihilate) an electron
in the level of the system and in state k of the reservoir,
respectively. εk is the energy of the latter. We emphasize
that the external driving can modify the position of the
level, ε(t), as well as the strength of the system-reservoir
coupling, Vk(t). Following Ref.41, we assume that this
latter is of the form

Vk(t) = u(t)Vk u(t) ∈ R. (7)

For the simulations presented in this letter we will con-
sider the driving protocols

ε(t) =ε0 +
∆ε

2

(

1− cosω0t

)

(8)

u2(t) =1 +
∆Γ

2Γ0

(

1− cosω0t

)

. (9)

IV. REVERSIBLE HEAT

We now use the framework of NEGF to evaluate the
heat flux (2) along a reversible (very slow driving pro-
tocols) isothermal transformation for our model. Details
are provided in appendix A. The explicit expression of
the heat flux in terms of NEGF is given by (2) with the
particle and energy currents (A1) and (A2). In general
a NEGF depends on two times, t1 and t2, but only de-
pends on their difference τ = t1 − t2 at steady state. If
the driving acting on the system is slow compared to the
system relaxation timescale, after a Fourier transform in
τ → E, one can make use of the slow time-dependence
of the resulting NEGF in t = (t1 + t2)/2 to evaluate its
equation of motion. This procedure is known as the gra-
dient expansion and is detailed in appendix B. When
using it to evaluate the heat flux for our model (5)-(7)
as shown in appendix C, we obtain to the lowest order
which corresponds to the reversible limit

Q̇(1)
α =

d

dt

(∫

dE

2π
f A(0)

[

(E − µ) + (1 − 2α)(E − ε)
]

)

−

∫

dE

2π
f

(

A(0) dtε+ (1− α)

[

ReGr(0) ∂tΓ +A(0) ∂tΛ

])

,

(10)

where f(E) = [e(E−µ)/T + 1]−1 is the Fermi-Dirac dis-
tribution in the reservoir, the zero order retarded Green
function is given by

Gr(0)(t, E) = [E − ε(t)− Λ(t, E) + iΓ(t, E)/2]
−1

(11)

and A(0)(t, E) = −2 ImGr(0)(t, E) is the system spec-
tral function. The Lamb shift and broadening caused by
coupling to the reservoir are taken as34,42

Λ(t, E) =u2(t) Γ0
1

2

(E − EB)WB

(E − EB)2 +W 2
B

(12)

Γ(t, E) =u2(t) Γ0
W 2

B

(E − EB)2 +W 2
B

, (13)

where EB and WB are the center and width of the band,
respectively. To our knowledge (10) is the first explicit
expression for a reversible heat of the kind (2). We also
emphasize that this result is exact since the gradient ex-
pansion is exact for reversible transformations. Two ma-
jor results ensue.
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FIG. 1: (Color online) Difference between the reversible heat
produced along two different driving protocols denoted by
A and B and corresponding to (8) and (9) with parameters
T = 10 K, ε0 = −0.1 eV, ∆ε = 0.2 eV, ∆Γ = −1/6 eV,
Γ0 = 0.5 eV, ω0 = 1013 s−1. The band parameters are EB = 0
andWB = 5 eV and the Fermi energy is EF = 0. The two pro-
tocols are shown in the left top inset and the time dependence
of the level position and coupling strength corresponding to
the protocols are given in the bottom right inset.

A. State function

A central requirement in thermodynamics is that the
reversible heat change is an exact differential. This im-
plies that mixed derivatives of the heat rate with respect
to the driving parameters ε(t) and u(t) should be equal
to each other

∂2Q
(1)
α

∂ε ∂u
=

∂2Q
(1)
α

∂u ∂ε
. (14)

Our first important result is that this property is only
satisfied for α = 0. For any other choice of α, the re-
versible heat is not an exact differential and thus cannot
be considered as a thermodynamically consistent defini-
tion. This result can be explicitly seen in Fig.1 where
two different reversible driving protocols connecting the
same initial and final point give rise to different reversible
heat except for α = 0.

B. Third law

Our second important result is that since the equilib-
rium entropy is the state function whose differential is
the reversible heat divided by temperature

dtS
eq = Q̇

(1)
0 /T, (15)

by integrating the reversible heat rate (10), we are able
to find the equilibrium entropy up to a constant (see
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FIG. 2: (Color online) Reversible heat, Eq. (10), as function
of temperature for simultaneous driving (8) and (9) at t =
0.4 π/ω0. The parameters are the same as in Fig. 1.

appendix C1 for details)

Seq =

∫

dE

2π
A(0)

(

− f ln f − [1− f ] ln[1 − f ]
)

+

∫

dE

2π
A(0)f

(E − ε)

T
(16)

+

∫

dE

2π
A(0) ln[1− f ]

(

∂EΛ +
E − ε− Λ

Γ
∂EΓ

)

.

The first contribution has the appealing form of an
energy resolved equilibrium entropy. The second one
is exactly half of the equilibrium expectation value of
the coupling energy divided by temperature, namely
〈V̂ν(t)〉

eq/(2T ). The third one is due to the energy resolu-
tion of the Lamb shift and broadening and thus vanishes
in the wide-band limit when Λ → 0 and Γ does not de-
pend on energy. In the low temperature limit T → 0, the
first terms goes to zero as expected by the third law of
thermodynamics, but the other two terms diverge, cast-
ing doubts on the thermodynamic relevance of the heat
definition Q̇0. The weak coupling limit resolves the di-
vergence problem and thus satisfies the third law because
the coupling strength is taken to zero before taking the
low temperature limit. Indeed, in this case the first term
becomes the weak coupling Shannon entropy and the last
two vanish. While one may have expected that the finite
coupling can create a finite entropy in the system at low
temperature, justifying a divergent entropy is more dif-
ficult and seems pathological. Figure 2 shows the tem-

perature dependence of the reversible heat Q
(1)
0 given by

(10). At low temperature the reversible heat tends to a
constant, thus leading to a 1/T divergence of the equi-
librium entropy Seq with temperature.
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V. BEYOND REVERSIBLE HEAT

The general expression for the heat obtained using gra-
dient expansion to first order beyond the reversible con-

tribution, Q
(1)
α +Q

(2)
α , is derived in appendix C 2. If one

considers the heat α = 0 generated along the cycle of a
periodic driving of duration τ when the system reaches a
stationary regime (i.e when initial transients are gone),
the reversible heat is a state function and vanishes along

the cycle, Q
(1)
0 = 0, and the remaining heat contribution

is given by

Q
(2)
0 = (17)

∫ τ

0

dt

∫

dE

2π
∂Ef

[

A(0)
]2

2

(

dtε+ ∂tΛ + ∂tΓ
E − ε− Λ

Γ

)2

.

Since ∂Ef is always negative, this heat is always negative
as expected from the second law of thermodynamics.

VI. WIDE BAND AND CONSTANT COUPLING

We demonstrated that the heat α = 1/2 is in general
inconsistent with equilibrium thermodynamics. In this
section, we consider the special case where the couplings
to the reservoirs are time-independent (u constant) and
where the wide band approximation is used. We show
that in this case the reversible heat α = 1/2 may mis-
leadingly appear thermodynamically consistent.

Under these assumptions, the heat definition Q1/2 was

proposed in Ref.33 when considering a strongly coupled
ac-driven resonant level coupled to a single reservoir
treated by scattering and Floquet theories. We made
sure in appendix C 3 that in this case our treatment re-
produces the expression for the heat Q1/2 (the reversible

contribution Q
(1)
1/2 as well as its first correction Q

(2)
1/2)

found in Ref.33.

Turning to the thermodynamic analysis of these re-
sults, we find that by integrating the reversible heat

Q̇
(1)
1/2 = T dtS

eq
1/2, (18)

the resulting equilibrium entropy is given by

Seq
1/2 =

∫

dE

2π
A(0)

(

− f ln f − [1− f ] ln[1− f ]
)

. (19)

This is the first contribution to the entropy found in (16)
which we have seen, satisfies the third law of thermo-
dynamics. Also, due to the absence of driving in the
coupling, the equilibrium entropy is necessarily a state
function. While appealing the results crucially depend
on the two assumptions mades (time-independent cou-
pling and wide band approximation).

VII. CONCLUSION

We contributed to the fundamental question of the na-
ture of heat in open quantum system strongly interacting
with a reservoir and driven by a time-dependent force in
the system and in the system-reservoir energy, within the
framework of NEGF.
Our central finding is that any heat definition ex-

pressed as the change in the quantum expectation value
of the reservoir energy plus any fraction α of the coupling
energy displays thermodynamic inconsistencies. Any α
different from zero leads to a reversible heat which is
not a state function. The choice α = 0 is more appealing
since the reversible heat is a state function and the second
law is satisfied for our model, but it leads to an entropy
which diverges in the low temperature limit in contradic-
tion with the third law of thermodynamics. Our consid-
erations were made possible by using the gradient expan-
sion of NEGF which provides to our knowledge the first
explicit reversible expression for the various heat defini-
tions that we considered. The only assumption made in
our approach is intrinsic to NEGF techniques and some-
how necessary to guaranty a proper thermalization of the
system (zeroth law). It consist of treating the reservoirs
as ideal equilibrated objects by assuming that the reser-
voir Greens functions are always thermal.
Our conclusion reinforces our proposal in Ref.43 to

abandon heat definitions (and other thermodynamic
quantities) expressed as quantum expectation values of
operators in order to derive a consistent thermodynamics
within the framework of NEGF for open quantum system
beyond the weak coupling limit.
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Appendix A: Particle and energy fluxes

We consider the standard definition for the particle and
energy fluxes at the interface with reservoir ν, Eqs. (3)
and (4), respectively. In terms of Green functions, these
definitions yield35,41

Iν(t) =2ReTr

∫

dt1
{

G<(t, t1)Σ
a
ν(t1, t) (A1)

+Gr(t, t1)Σ
<
ν (t1, t)

}

Jν,α(t) =(α− 1) ∂t〈V̂ν(t)〉 − α dt〈V̂ν(t)〉

+2 ImTr

∫

dt1
{

G<(t, t1) ∂tΣ
a
ν(t1, t) (A2)

+Gr(t, t1) ∂tΣ
<
ν (t1, t)

}

,
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where

〈V̂ν(t)〉 =2 ImTr

∫

dt1
{

G<(t, t1)Σ
a
ν(t1, t) (A3)

+Gr(t, t1)Σ
<
ν (t1, t)

}

.

The partial derivatives in the first and third terms in the
right side of Eq.(A2) indicate a time derivative of the
system-reservoir coupling only in the external driving.
Tr{. . .} denotes a trace over the system subspace. G< =
G−+ and Gr = G−− − G−+ are matrices in the system
subspace and are the lesser and retarded projections of
the single-particle Green function

Gmm′(τ, τ ′) = −i
〈

Tc d̂m(τ) d̂†m′ (τ
′)
〉

, (A4)

where Tc denotes the contour ordering operator, τ and τ ′

are the contour variables, and the contour branches are
labeled as time ordered, s = − , and anti-time ordered,
s = + . Σ<

ν = Σ−+ν and Σa
ν = Σ−+ν − Σ++

ν are also
matrices in the system space and are the lesser and ad-
vanced projections of the self-energy due to the coupling
to reservoir ν

[Σν(τ, τ
′)]mm′ =

∑

k∈ν

Vmk(t) gk(τ, τ
′)Vkm′ (t′), (A5)

where

gk(τ, τ
′) ≡ −i〈Tc ĉk(τ) ĉ

†
k(τ
′)〉 (A6)

is the equilibrium Green function for the free electrons in
the reservoir ν. The equations of motion for the projec-
tion s1s2 of the GF (A4) are given by



i

→

∂

∂t1
σz
s1s2 −HS(t1)



Gs1s2(t1, t2) = (A7)

σz
s1s2δ(t1 − t2)−

∑

s3

∫

dt3 Σ
s1s3(t1, t3) s3 G

s3s2(t3, t2)

Gs1s2(t1, t2)



−i

←

∂

∂t2
σz
s1s2 −HS(t2)



 = (A8)

σz
s1s2δ(t1 − t2)−

∑

s3

∫

dt3 G
s1s3(t1, t3) s3 Σ

s3s2(t3, t2),

where σz is the Pauli matrix, and Σs1s2(t1, t2) is the to-
tal self-energy, i.e. the self-energy due to the system-
reservoirs couplings and the intra-system interactions.

Appendix B: Gradient expansion

Green functions and self-energies are two-time func-
tions, F (t1, t2). Introducing via a change of variable the
classical timescale, t = (t1 + t2)/2, and the quantum
timescale, s = t1−t2, and performing a Fourier transform

in the quantum time leads to the time-dependent energy
resolved function F (t, E) =

∫

dseiEsF (t, s), which is the
Wigner transform of F (t, s). Naturally

F (t1, t2) = F (t, s) =

∫

dE

2π
e−iEsF (t, E). (B1)

Below, we will consider partial derivatives of the form
∂t2F (t1, t2) (see Eq. (A2)). Their Wigner transforms
read [∂t/2 + iE]F (t, E). We will also consider integral
expression such as

F (t1, t2) =

∫

dt3 F1(t1, t3)F2(t3, t2), (B2)

whose Wigner transform reads44

F (t, E) = F1(t, E) Ĝ(t, E)F2(t, E), (B3)

where

Ĝ(t, E) = exp

(

1

2i

[

←

∂ t

→

∂E −
←

∂E

→

∂ t

])

(B4)

is the gradient operator. At steady state the dependence
on t vanishes and only the energy resolution E survives.
This means that when the driving is slow relative to the
characteristic relaxation timescales of the system, we can
expand (B4) in Taylor series and truncate the series to
the suited level. Traditionally the gradient expansion
goes to the first order, but we will need the second order
below

F (t, E) ≈ F1(t, E)F2(t, E) (B5)

+
i

2
{F1(t, E);F2(t, E)} −

1

8
[F1(t, E);F2(t, E)] ,

where

{F1(t, E);F2(t, E)} = (B6)

∂EF1(t, E) ∂tF2(t, E)− ∂tF1(t, E) ∂EF2(t, E)

[F1(t, E);F2(t, E)] = ∂2
EF1(t, E) ∂2

t F2(t, E) (B7)

+ ∂2
t F1(t, E) ∂2

EF2(t, E)− ∂2
tEF1(t, E) ∂2

tEF2(t, E).

Below we will also need to consider the dependence
of the full self-energy Σ(t1, t2) on the system-reservoir
coupling u(t). Since

Σ(t1, t2) = u(t1)S(t1, t2)u(t2), (B8)

it is easy to show that up to second order gradient ex-
pansion, the functions Σ and S are related by

Σ(t, E) ≈u2(t)S(t, E) (B9)

−
1

4

(

∂2
t u(t)− [∂tu(t)]

2
)

∂2
ES(t, E).

Similarly their time derivatives are related by

∂tΣ(t, E) ≈ u2(t) ∂tS(t, E) + u(t) ∂tu(t)S(t, E). (B10)



6

Appendix C: Slow driving of a single level coupled

to a reservoir

We now restrict our consideration to a single level,
Eqs. (5)-(7). The position of the level ε(t) as well as
its coupling to the reservoir u(t) are driven by a slowly
changing external field, Eqs. (8)-(9).
After gradient expansion,

Gr(t1, t2) → Gr(t, E) (C1)

G<(t1, t2) → G<(t, E) = i A(t, E)φ(t, E), (C2)

where the system spectral function is given by

A(t, E) ≡ −2 ImGr(t, E) (C3)

and φ(t, E) is the non-equilibrium population of the level.
Also

Σr(t1, t2) → Σr(t, E) = Λ(t, E)− iΓ(t, E)/2 (C4)

Σ<(t1, t2) → Σ<(t, E) = iΓ(t, E) f(E), (C5)

where Λ and Γ are the Lamb shift and the broadening
caused by the coupling to the reservoir and f(E) is the
Fermi-Dirac thermal distribution.
We now apply the second order gradient expansion

(B5) to expressions for the fluxes, Eqs. (A1) and (A2).
This leads to

I(t) =

∫

dE

2π
I(t, E) =

d

dt

∫

dE

2π
A(t, E)φ(t, E) (C6)

Jα(t) = (α− 1) ∂t〈V̂ (t)〉+

(

1

2
− α

)

dt〈V̂ (t)〉 (C7)

+

∫

dE

2π
E I(t, E),

where

I(t, E) = {E − ε(t);Aφ} (C8)

〈V̂ (t)〉 = 2

∫

dE

2π

(

AφΛ + ReGr Γf
)

(C9)

+
1

2

∫

dE

2π

(

{Γ;Aφ} − {Γφ;A}
)

∂t〈V̂ (t)〉 =

∫

dE

2π

(

Aφ∂tΛ + ReGr ∂tΓφ
)

(C10)

+
1

4

∫

dE

2π

(

{∂tΓ;Aφ} − {∂tΓφ;A}
)

.

Note that evaluation of expressions (C6) and (C7) up to
second order in gradient expansion requires the knowl-
edge of the Gr, A, and φ only up to first order (see
Eqs. (C14)-(C18) below). Note also that in the spirit of
the Botermans and Malfliet (BM) approximation45, we
substituted f(E) by φ(t, E) in all the expressions involv-
ing derivatives of the lesser projection of the self-energy.
The retarded projection of the Green function

Gr(t, E), the spectral function A(t, E) and the non-

equilibrium distribution φ(t, E) can be expanded as

Gr(t, E) = Gr(0)(t, E) +Gr(1)(t, E) +Gr(2)(t, E) + . . .
(C11)

A(t, E) = A(0)(t, E) +A(1)(t, E) +A(2)(t, E) + . . .
(C12)

φ(t, E) = φ(0)(t, E) + φ(1)(t, E) + φ(2)(t, E) + . . . ,
(C13)

where the orders coincide with the orders of the gradi-
ent expansion. Inserting this expansion in the gradient
expansion expression for the Green function equations-
of-motion (A7) and (A8), and identifying terms order by
order, one finds that46,47,

Gr(0)(t, E) = [E − ε(t)− Σr(t, E)]
−1

(C14)

A(0)(t, E) =
Γ(t, E)

(E − ε(t)− Λ(t, E))
2
+ (Γ(t, E)/2)

2

(C15)

φ(0)(t, E) = f(E) (C16)

and

Gr(1)(t, E) = A(1)(t, E) = 0 (C17)

φ(1) = −dEf
A(0)

2

(

dtε+ ∂tΛ + ∂tΓ
E − ε− Λ

Γ

)

.

(C18)

1. Reversible driving

The reversible transformation in the system is per-
formed by a reversible driving, which corresponds to ex-
panding the fluxes to first order in Eqs. (C6) and (C7).
To do so we only need the zero order correction of the
retarded Green function Gr (0)(t, E), its corresponding
A(0)(t, E), and of the population φ(0)(t, E). We find

I(1)(t) =

∫

dE

2π
∂tA

(0) f (C19)

J (1)
α (t) = (α− 1)

[

∂t〈V̂ (t)〉
](1)

+

(

1

2
− α

)

dt〈V̂ (t)〉(0)

+

∫

dE

2π
E
(

∂tA
(0) f + dtε ∂E (Af)

)

, (C20)

where

〈V̂ (t)〉(0) = 2

∫

dE

2π

(

A(0)f Λ + ReGr(0) Γf
)

(C21)

[

∂t〈V̂ (t)〉
](1)

=

∫

dE

2π

(

A(0)f ∂tΛ + ReGr(0) ∂tΓ
)

.

(C22)

Using (C19)-(C22) in the definition (2) yields Eq. (10).
Since both the Lamb shift, Λ(t, E), and broaden-

ing, Γ(t, E), are proportional to u2(t) (see Eqs. (12)



7

and (13)), and taking into account (10), the condi-
tion (14) means that the derivative of

∫

dE f A(0) dtε
with respect to the driving parameter for the system-
reservoir coupling u(t) should be equal to the derivative
of (1−α)

∫

dEf
[

ReGr(0) ∂tΓ+A(0) ∂tΛ
]

with respect to
the driving parameter for the level position ε(t). It is
easy to see that this condition is satisfied only for α = 0.
Since the exact differential of the reversible heat defines

entropy

T dtS(t) = Q̇
(1)
0 (t), (C23)

we find that the entropy is given (up to a constant) by

S =

∫

dE

2π
f

(

A

[

E − µ

T
+

E − ε

T

]

(C24)

+
2

T
arctan

E − ε− Λ

Γ/2

)

.

Utilizing

E − µ

T
= ln

1− f(E)

f(E)
(C25)

f(E)

T
=

d

dE
ln[1− f(E)] (C26)

and performing an integration by parts for the last term
in (C24), we get Eq. (16). We stress that the reversible
driving results do not rely on the BM approximation.

2. Beyond reversible driving

To calculate the fluxes (C6) and (C7) to second or-
der, we therefore need corrections up to first order of
the retarded Green function Gr (0,1)(t, E), its correspond-
ing A(0,1)(t, E), and of the nonequilibrium population
φ(0,1)(t, E). This leads to

I(2)(t) = (C27)
∫

dE

2π

(

∂t

(

A(0) φ(1)
)

+ dtε ∂E

(

A(0) φ(1)
)

)

J (2)
α (t) = (C28)

(α− 1)
[

∂t〈V̂ (t)〉
](2)

+

(

1

2
− α

)

dt〈V̂ (t)〉(1)

+

∫

dE

2π
E

(

∂t

(

A(0) φ(1)
)

+ dtε ∂E

(

A(0) φ(1)
)

)

,

where

〈V̂ (t)〉(1) = 2

∫

dE

2π
A(0)φ(1) Λ (C29)

+
1

2

∫

dE

2π

(

{

Γ;A(0) f
}

−
{

Γ f ;A(0)
}

)

[

∂t〈V̂ (t)〉
](2)

= (C30)
∫

dE

2π

(

A(0)φ(1) ∂tΛ + ReGr(0) ∂tΓφ(1)
)

+
1

4

∫

dE

2π

(

{

∂tΓ;A
(0) f

}

− {∂tΓ f ;A}

)

.

Using (C27)-(C30) in the definition (2) yields

Q̇(2)
α =

(

1

2
− α

)

dt〈V̂ (t)〉(1) (C31)

+
d

dt

(∫

dE

2π
A(0)

(

(E − µ)φ(1) +
1− α

4
∂tΓ∂Ef

)

+

∫

dE

2π
∂Ef

[

A(0)
]2

2

(

dtε+ ∂tΛ + ∂tΓ
E − ε− Λ

Γ

)

×

(

dtε+ (1− α)

(

∂tΛ + ∂tΓ
E − ε− Λ

Γ

))

.

When considering periodic transformations where the
system has reached a stationary regime, the second law
of thermodynamics states that

Q0 = Q
(2)
0 ≤ 0, (C32)

where we used the fact that ∆Seq = Q
(1)
0 /T = 0. We ver-

ify that this relation is satisfied since along such cyclic
transformation only the last two lines of Eq. (C31) sur-
vive and one finds that for α = 0 they become

∫

dE

2π
∂Ef

[

A(0)
]2

2

(

dtε+ ∂tΛ+ ∂tΓ
E − ε− Λ

Γ

)2

(C33)

which is indeed always negative or zero.

3. Wide band and no driving in the coupling

We now consider the wide band approximation (WBA)
(i.e. Λ = 0 and Γ(E) = Γ = const) and driving only in
the level position and not in the coupling (u(t) = 1) to
show that our expressions (C19)-(10) and (C27)-(C31)
reduce in this case to the results derived in Ref.33 using
scattering and Floquet theories.
Under these assumptions, we can make use of the iden-

tity

∂tA
(0)(t, E) = −dtε(t) ∂EA

(0)(t, E). (C34)

We start by considering the particle current. Utilizing
(C34) in (C19) and integrating by parts in energy leads
to

I(1)(t) = dtε

∫

dE

2π
dEf A(0) (C35)

Similarly, utilizing (C34) in (C27) and integrating by
parts in energy leads to

I(2)(t) =∂t

∫

dE

2π
A(0) φ(1)

≡−
1

2
∂t

∫

dE

2π
dEf

[

A(0)
]2

dtε, (C36)

where the second equality is obtained by using the WBA
version of (C18). Expressions (C35) and (C36) are the
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results presented in equation (S.33) of the supporting in-
formation of Ref.33. Note that difference in sign is due to
our flux definition (positive when going from the reservoir
to the system) which is opposite to the choice in Ref.33.
We now turn to evaluating the coupling term. Using

(C21) within the WBA one gets

[

dt〈V̂ (t)〉
](1)

≡ dt〈V̂ (t)〉(0) = 2

∫

dE

2π
Γ f ∂tReG

r(0).

(C37)
Utilizing

dtReG
r(0) = −dtε ∂EReG

r(0) (C38)

and integrating in energy by parts leads to

[

dt〈V̂ (t)〉
](1)

=2

∫

dE

2π
dEf ΓReGr(0) dtε

≡2

∫

dE

2π
dEf A(0) (E − ε) dtε. (C39)

Similarly in the WBA (C29) becomes

[

dt〈V̂ (t)〉
](2)

≡ dt〈V̂ (t)〉(1) = −
1

2
dt

∫

dE

2π
Γ dEf ∂tA

(0).

(C40)
Since using (C34),

∂tA
(0) =

2 (E − ε) dtε

Γ

[

A(0)
]2

, (C41)

we get that

[

dt〈V̂ (t)〉
](2)

= −dt

∫

dE

2π
dEf

[

A(0)
]2

(E − ε) dtε.

(C42)

Expressions (C39) and (C42) are the results presented in
equation (S.36) of the supporting information of Ref.33.

We finally turn to the energy current. Taking the
choice α = 1/2 and disregarding the driving in the
system-reservoir coupling (the first term) in Eq. (C20),
after using (C34), we get

J
(1)
1/2(t) =

∫

dE

2π
dEf E A(0) dtε. (C43)

Similarly Eq. (C28) after employing (C34) yields

J
(2)
1/2(t) =

∫

dE

2π
E A(0)

(

∂tφ
(1) + dtε ∂Eφ

(1)
)

. (C44)

Substituting the WBA version of Eq. (C18) and perform-
ing the derivatives leads to

J
(2)
1/2(t) =−

1

2

∫

dE

2π
dEf (C45)

×

(

E dt

(

[

A(0)
]2

dtε

)

−
(

A(0) dtε
)2

)

.

Expressions (C43) and (C45) are the results presented in
equation (S.32) of the supporting information of Ref.33.
Once more, the difference in sign is due to our opposite
convention for the flux compared to Ref.33.
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