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Snake states are open trajectories for charged particles propagating in two dimensions under
the influence of a spatially varying perpendicular magnetic field. In the quantum limit they are
protected edge modes that separate topologically inequivalent ground states and can also occur
when the particle density rather than the field is made nonuniform. We examine the correspondence
of snake trajectories in single-layer graphene in the quantum limit for two families of domain walls:
(a) a uniform doped carrier density in an antisymmetric field profile and (b) antisymmetric carrier
distribution in a uniform field. These families support different internal symmetries but the same
pattern of boundary and interface currents. We demonstrate that these physically different situations
are gauge equivalent when rewritten in a Nambu doubled formulation of the two limiting problems.
Using gauge transformations in particle-hole space to connect these problems, we map the protected
interfacial modes to the Bogoliubov quasiparticles of an interfacial one-dimensional p-wave paired
state. A variational model is introduced to interpret the interfacial solutions of both domain wall
problems.

PACS numbers: 73.20.-r,73.22.Pr,73.20.Hb,3.65.Vf

INTRODUCTION

A charged particle moving in two dimensions under the
influence of a spatially varying perpendicular magnetic
field can exhibit snake state trajectories. These are open
two-dimensional orbits perpendicular to the direction of
the magnetic field gradient. Snake trajectories occur in
both the classical and quantum limits of this problem
and are of fundamental interest with potential applica-
tions for electron transport in multidomain ferromagnets,
two-dimensional electron gases [1, 2], and in nanomate-
rials like graphene [3–5]. In the quantum limit the snake
states can be interpreted as the protected modes that
occur at domain walls that separate topologically mis-
matched gapped ground states. This picture suggests
that snake trajectories can arise even in a uniform mag-
netic field if the particle density is suitably modulated
laterally, e.g. by electrostatic gating patterned to form
interfaces between distinct quantum Hall ground states.

Indeed exactly this possibility has been explored theo-
retically [6–9] and examined experimentally for graphene
in a uniform perpendicular magnetic field via measure-
ments of the Hall conductance and of Fabry-Perot like os-
cillations in the inter-edge conductance across graphene
pn junctions [10, 11]. Graphene is an excellent candi-
date for this application because it can be electrostati-
cally switched from n to p carrier types and studied in
the ballistic transport regime [12]. The converse prob-
lem of snake trajectories for a uniform carrier density in
a spatially varying magnetic field is even more technically
challenging and it has not been examined experimentally
(for a theoretical discussion see Ref. 13). On the other
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hand, a variant of this latter problem is routinely en-
countered in present-day experimental environments. In
single-layer graphene subject to elastic lattice strains, the
low-energy electronic structure is described by a Dirac
Hamiltonian containing a strain-induced gauge field that
mimics the effects of a perpendicular (albeit valley anti-
symmetric) magnetic field. For generic smoothly varying
strain fields the presence of nodal lines that separate re-
gions of “positive” and “negative” pseudo-magnetic field
in a single valley is a nearly unavoidable consequence of
the symmetry of this strain coupling.

The “antisymmetric B” and “antisymmetric doping
(V )” problems break both time reversal symmetry T
(due to the presence of a magnetic field) and particle-
hole symmetry Ξ (they require a nonzero carrier den-
sity). Nonetheless they retain different composite sym-
metry operations that combine these discrete symmetries
with twofold rotation about the layer normal Rz: the
former problem is symmetric under RzT and the latter
under RzΞ. This difference manifests itself in many of
the spectral properties presented in Section I. In fact,
this distinction persists even into the classical limit, and
reflects the different underlying dynamics of these two
problems. In the antisymmetric-B problem a snake state
trajectory arises from the compensation of the circulation
of cyclotron orbits in regions where the magnetic field is
reversed. In the antisymmetric-V it arises from one-sided
skipping orbits due to an electric field at the interface of
a pn junction. It is perhaps surprising that these prob-
lems exhibit the same pattern of boundary and interface
currents. This can be understood as a consequence of
confinement of these boundary modes at the interface
between topologically mismatched gapped ground states
on either side of the interface. It is therefore of interest to
understand precisely how these different problems are re-
lated in the bulk. In this paper we observe that these two



2

situations are in fact gauge equivalent representations of
the same problem. However our demonstration of this
equivalence requires that we extend both problems in a
Nambu-doubled formulation, explicitly restoring particle
hole symmetry about a nonzero chemical potential. In
this doubled representation we find that the problems are
interconverted by local gauge transformations exploiting
the particle and hole degrees of freedom in the Nambu
basis. Among the insights provided by this approach,
we observe that the interfacial degrees of freedom com-
mon to the two problems (the snake states) are mapped
to a model for the Bogoliubov quasiparticles in a one-
dimensional superconductor along the tangent line that
supports a “p-wave” pairing field.

This paper is organized as follows. In Section I we
begin by comparing the spectra for antisymmetrically
doped graphene (a pn junction) in uniform field with the
spectrum for uniform doping in an antisymmetric field.
In Section II we present a family of local gauge trans-
formations that allow one to map one problem onto the
other. In Section III we implement this procedure for the
case of the graphene pn junction and analyze the struc-
ture of the uniformly doped antisymmetric field problem
to which it maps. In Section IV we present a topological
analysis of the ground state manifolds in these models,
concluding that they are the same and are members of
the Altland-Zirnbauer chiral symmetry class C, i.e. they
are indexed by even integer-valued winding numbers. In
Section V we use a variational approach to determine the
spatial structure of the interface modes.

I. SPECTRA OF THE FOLDED GRAPHENE
AND PN JUNCTION IN MAGNETIC FIELD

We consider snake state solutions in two limits of a
tight-binding theory for electrons on a honeycomb lattice.
The Hamiltonian is

H =
∑
i

(Vi − µ)
(
c†i ci − 1/2

)
+
∑
〈i,j〉

teiϕijc†i cj + h.c.

(1)

where ϕi,j = (e/~)
∫ j
i
~A · d~̀ is the Peierls phase accumu-

lated in a (possibly nonconstant) perpendicular magnetic
field Bi. We adopt a coordinate system where the scalar

potential Vi and the vector potential ~Ai are spatially
varying in the x direction and constant along y. The
chemical potential µ is set so that the left and right sec-
tors are simultaneously gapped. The calculations are car-
ried out for “zigzag” interfaces, where a domain wall at
x = 0 is tangent to a primitive translation vector along y.
We examine two limiting domain wall geometries. In the
first we assume that the system is uniformly doped, say
p-type on both sides of an interface where B(x) changes
sign. In the second we consider the complementary case
where the B field is uniform (or at least a symmetric func-
tion of x with no sign changes), and instead the external

scalar potential V (x) with zero mean changes its sign on
an interface defining a pn junction. We show that the
edge-state solutions for these two limits are the same de-
spite the different microscopic dynamics. This manifests
a topological equivalence of their bulk ground states. In-
deed we find that these can be mapped into each other
by gauge transformations that mix the particle and hole
degrees of freedom when the problem is rewritten in a
Nambu particle-hole basis. This leads to the possibility
of inventing architectures that simulate unusual ballistic
transport effects like Andreev reflection even in the ab-
sence of a physical superconducting condensate. In the
following, we will first discuss the two limits separately
and then analyze their gauge equivalence.

A. Antisymmetric B, Symmetric V

We assume that the system is uniformly slightly doped
p-type and has an antisymmetric magnetic field profile
B(x) = Bo tanh(x/`). The spectrum for this problem
is displayed in Fig. 1. The vertical red lines denote the
projections of the bulk K and K ′ Dirac points, i.e. in
the absence of a field these are the interface-projected
locations of the bulk gap closures.

For an antisymmetric B(x) the vector potential in Lan-
dau gauge is an even function with Ay(−x) = Ay(x).
Consequently the system supports normalizable (near)
zero-energy states that are “one-sided” in momentum
space as shown in Fig. 1. There are two types of
momentum-space anisotropy evident in these spectra:
(a) The B-induced zero modes occur only for q = ky −
K(K ′) < 0 in both valleys (b) The q < 0 spectrum near
K ′ supports an additional pair of zero modes due to the
undercoordinated atoms at the zigzag edges (the total
orbital degeneracy of the q < 0 spectrum is actually four
in this region). The additional low-energy modes bridge
the K ′ and K points where they smoothly evolve into the
field-induced zero modes in the opposite valley. In either
case the transition from q < 0 to q > 0 marks a crossover
where the zero-energy degrees of freedom hybridize to
produce a pair of particle-hole symmetric propagating
modes that are confined to the domain wall. For p type
doping (as illustrated) this pair of interfacial modes co-
propagate along −ŷ. Physically the pair of domain wall
modes combine cyclotron orbital states of opposite cir-
culation to confine their motion near the interface.

The dispersion of the outer-edge modes near the right-
hand K ′ valley is particularly instructive. Note that
this band is nearly flat for small q < 0 but it becomes
strongly dispersive with positive group velocity for suffi-
ciently large negative q. This occurs via hybridization of
the sublattice-polarized edge degree of freedom with the
Landau zero mode on the opposite sublattice when their
guiding centers are forced to the outer edges of the rib-
bon. Note that the antisymmetry of B(x) requires that
the guiding centers are forced to opposite outer edges at
the same value of the crystal momentum ky. These dis-
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FIG. 1. Numerically calculated spectrum for graphene with
uniform doping in an antisymmetric magnetic field profile.
We plot E − µ as a function of kya, where a is the inter-
atomic distance in graphene, and assume p-type doping (i.e.,
µ = 0, and a uniform scalar potential V that shifts the system
away from neutrality). The spectrum shows four dispersing
features at the Fermi energy: two with “positive” velocity on
the outer edges, and a pair of modes with “negative” velocity
in the domain wall. The flat band that extends from the K to
K′ points is the surface state for a zigzag edge. The horizontal
dashed lines show the dispersionless bulk Landau levels for a
Dirac system.

persive outer edge modes constitute a return path for the
topological current induced in the domain wall. These
features can be identified in the spatial distribution of
the probability (or charge) densities plotted in Figs. 2
and 3.

To summarize, for constant V and antisymmetric B we
observe (a) Four interface/edge modes at the Fermi en-
ergy. (b) A pair of co-propagating modes at the domain
wall which combine cyclotron motions of opposite circu-
lation. (c) Outer edge modes that hybridize the zeroth
Landau level with the zigzag surface state. (d) Valley
asymmetry: domain wall modes occur in both valleys
but there is support for the outer edge modes only in a
single valley. Reversal of the direction of B everywhere
will select the other valley.

B. Symmetric B, Antisymmetric V

We now consider the opposite limit that occurs with
uniform magnetic field and an antisymmetric bias V (x) =
Vo tanh(x/`). This creates a graphene pn junction in a
uniform field which is the situation studied in two recent
experiments [10, 11].

The spectrum calculated for this configuration is dis-
played in Fig. 4 where we plot E − µ as a function of
ky. Here the system is n-doped for x < 0 and p-doped
for x > 0. Again one finds four dispersing modes at the
Fermi energy: two with negative velocity at the domain
wall, and two with positive velocity confined on the outer
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FIG. 2. Numerically calculated probability (or charge) den-
sity for one of the interface zero-energy modes shown in Fig. 1.
The mode is associated with valley K for uniform doping in
an antisymmetric magnetic field profile, and ψa (solid blue)
and ψb (red dashed) are the two spinor components. For the
other valley, K′ the density of the a and b components of the
wave function are interchanged. The x-axis is measured in
units of the interatomic distance a in graphene.
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FIG. 3. Numerically calculated probability (or charge) den-
sity for the zero-energy modes shown in Fig. 1. The two peaks
in the center correspond to the interface modes of Fig. 2. The
peaks on the left and right side correspond to the edge modes.
The solid blue (red dashed) curve represent the ψa (ψb) spinor
component. Inset: Schematic of the current pattern due to
opposite cyclotron motions in the two halves of the setup.

edges. Despite this similarity, the mechanism producing
the edge state structure is quite different. We note that
the
√
n signature of the Landau quantization of the Dirac

spectrum is observed for q = ky −K > 0 in the K val-
ley but for q′ = ky − K ′ < 0 in the K ′ valley, i.e. the
Landau quantized spectra are both one-sided in momen-
tum space, but with opposite senses in the two valleys.
In the forbidden regions q < 0 and q′ > 0 the spectrum
collapses to a pair of nearly degenerate orbital doublets
that connect the two valleys. This degeneracy is exact
at kya = π/

√
3: the energy jump that is produced by
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the transition q > 0 to q < 0 (and vice versa for q′)
is the quantized energy spacing between the zeroth and
first Landau levels, so all the levels for kya = ±π/

√
3 are

twofold degenerate.
Here the dispersion of the confined interfacial modes

can be understood as a response to the lateral electric
field produced in the pn junction. As x crosses zero the
scalar potential V (x) switches its sign and the internal
electric field E = −∂xV is nonzero. Thus a state with
drift velocity ~E × ~B/B2 sees no deflection and can prop-
agate freely. This can be contrasted with the guiding-
center mechanism that liberates these modes in the for-
mer antisymmetric-B problem where E = 0 and one re-
quires the compensation of the circulation in orbits in
reversed B fields to produce freely propagating interfa-
cial snake states.

Interestingly, the appearance of dispersive edge modes
on the outer boundaries follows exactly the same recipe
as for the antisymmetric B problem. The guiding cen-
ter of the Landau zero mode which is sublattice polar-
ized, is forced to the outer edge of the ribbon where it
hybridizes with the zigzag surface state on a complemen-
tary sublattice to form the one-way dispersive excitation.
However, because the B field is constant in this problem,
the guiding centers are forced to the outer edges of the
ribbon at opposite momenta ±ky. The entire spectrum of
Fig. 4 is then invariant under the combined transforma-
tion E − µ→ −(E − µ) and ky → −ky. The probability
(or charge) densities associated with the zero modes is
plotted in Figs. 5 and 6. We note that the charge density
shows a sublattice polarization, favoring the sublattice
found in Landau zero mode. This sublattice polariza-
tion is captured in the variational approach presented in
Section V.

To summarize the main results from this model for
the graphene pn junction in a uniform B: (a) Four
interface/edge modes at the Fermi energy. (b) Co-
propagating modes in the domain wall determined by
their drift velocity specified by B and the potential gra-
dient in the wall. (c) Conventional outer edge modes that
hybridize a Landau zero mode with the surface state.

II. GAUGE EQUIVALENCE VIA NAMBU
FORMULATION

It is striking that despite the different microscopic ori-
gins of the domain wall solutions and the different struc-
ture of the full spectra apparent in Figs. 1 and 4, the
basic pattern of the edge state currents is the same. This
is evidence of the topological character of these modes.
By negating either B or V at the interface we reverse
the sign of the Chern number in the first fundamental
gap between Landau levels and therefore we require the
same pattern of boundary currents. This suggests that
the ground states of these two systems can be adiabati-
cally mapped into each other. This conclusion is surpris-
ing since the momentum-space structures of their spec-
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FIG. 4. Spectra for the pn junction in a uniform field. The
plot gives E−µ as a function of ky for a geometry where B is
constant but V (x) = Vo tanh(x/`). The system supports four
edge and interface modes: two positive velocity modes on the
outer edges and two negative velocity modes at the domain
wall. The flat feature is a zigzag edge state that morphs into
the zeroth Landau level. The spectra are one-sided, and show
graphene character near a shifted neutrality point of one sign
of q = ky−K in one valley and the opposite sign in the other.
At kya = π/

√
3 the spectra are twofold degenerate.
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FIG. 5. Numerically calculated probability (or charge) den-
sity for one of the interface zero-energy modes shown in Fig. 4.
The mode is associated with valley K for a graphene pn junc-
tion with the potential profile V (x) = Vo tanh(x/`) in a homo-
geneous perpendicular magnetic field, ψa and ψb are the two
spinor components. For the other valley, K′ the density of the
a and b components of the wave function are interchanged.

tra examined in the previous section are evidently con-
trolled by the underlying dynamics which are quite dif-
ferent and in fact incompatible for the two states. In this
section we show that their ground states can nonetheless
be mapped into each other using a particle-hole exten-
sion of the original formulations of both problems. The
required mapping is a rotation in the particle and hole
degrees of freedom expressed in a Nambu basis. Local
gauge transformations in this basis interconvert the two
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FIG. 6. Numerically calculated probability (or charge) den-
sity for the zero-energy modes shown in Fig. 4. The two peaks
in the center correspond to the interface modes of Fig. 5. The
peaks on the left and right side correspond to the edge modes.
The solid blue (red dashed) curve represent the ψa (ψb) spinor
component. Inset: Schematic of the current pattern showing
the two co-propagating modes at the interface between the
two half of the setup. The electric field ~E corresponds to the
potential gradient at the pn junction.

problems at the expense of introducing a fictitious pairing
field within the domain wall. In this section we develop
a family of such mappings and discuss the consequences
of the induced pseudo-pairing field in Section III.

The problems of Section I.A and I.B are distinguished
by the coupling of external potentials to bilinear terms in
the fermion operators c and c†. For example, the Peierls
phase in Eq. (1) is coupled to nearest-neighbor bilinear
terms in the form

teiϕi,jc†i cj , (2)

while the scalar potential that defines the local doping is
coupled through the site density operator

Vi

(
c†i ci − 1/2

)
. (3)

Sign reversal of the magnetic field direction negates the
exponentiated phase in Eq. (2) while a reversal of the
scalar potential flips the sign of the coupling to the net
charge operator Eq. (3). Ignoring the physical spin of the
electrons, these reversals are introduced by the particle-
hole transformation

c̄ = c†

c̄† = c (4)

whereby

teiϕi,jc†i cj 7→ −te
iϕi,j c̄†j c̄i = −te−iϕj,i c̄†j c̄i

Vi

(
c†i ci − 1/2

)
7→ −Vi

(
c̄†i c̄i − 1/2

)
. (5)

For our application it is useful to collect these operators
in two-component spinors that resolve the two degrees of

freedom at each Bloch wavevector k

ψk = (ak, bk) (6)

and write the original problem in a doubled Nambu four-

component basis Ψk = (ψk, ψ
†
−k)

HN (k) =
(
ψ†k ψ−k

)( Hk 0
0 −H∗−k

)(
ψk
ψ†−k

)
. (7)

When summed over k this theory gives a doubled “re-
dundant” description of the original problem.

Using Eqs. (5) a global rotation in particle-hole space
can globally “choose” the signs of B and V . For example,
consider a Hamiltonian H[V (x), B(x)] parameterized by
the fields V (x) andB(x). Then define 2×2 Pauli matrices
σµ acting on the two sublattice degrees of freedom and
Σµ acting on the particle and hole degrees of freedom in
the Nambu representation. A global operator of the form

S(θ) = cos θ S1 + sin θ S2 , (8)

where S1 = σ3 ⊗Σ1 and S2 = σ3 ⊗Σ2, has the property
of formally flipping the signs of V and B everywhere in
the manner

S(θ)†H[V (x), B(x)]S(θ) = H[−V (x),−B(x)] . (9)

We will discuss the behavior of S(θ = 0) = S1 first and
then return to the interpretation of the remaining phase
degree of freedom θ.

In an analogous manner, if we promote S to a local
gauge degree of freedom we can introduce a gauge trans-
formation S1(x) that locally defines the signs of V and
B. Specifically, we can use this to interconvert the do-
main wall configurations of sections I.A and I.B. To keep
track of the signs of V and B in the left and right spaces
we use a shorthand notation H[v−, v+; b−, b+] where v±
and b± specify the asymptotic signs of the potential and
magnetic field strength. In this notation, H[−,+; +,+]
denotes a situation with V < 0 on the left and V > 0 on
the right, all immersed in a uniform positive field B > 0.
We now introduce a local gauge transformation

S(x) = cosα(x) I + i sinα(x)S1 , (10)

where α(−∞) → π/2, α(∞) → 0 and α(0) = π/4.
This has the effect of implementing a one-sided particle-
hole transformation, where the local gauge transforma-
tion evolves smoothly through the interface. We retain
the original problem for x� 0 but swap particle and hole
amplitudes for x� 0 to invert the signs of V and B. This
transformation is unitary and performs the mapping

SH[−,+; +,+]S† = H[+,+;−,+] , (11)

thereby swapping the representation of a pn junction
in a uniform field with a system with uniform doping
in an antisymmetric B field. In the doubled space the
ground states can be identified implying that the zero-
mode structure is unchanged. In Fig. 7 we overlay the
spectra calculated for the two problems in the Nambu
representation, illustrating this correspondence.
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FIG. 7. Bogoliubov spectrum for the topological domain wall
in graphene corresponding to both Figs. 1 and 4. The spec-
trum is the particle-hole doubled version of the antisymmet-
ric B spectrum, which is plotted only in the particle channel
in Fig. 1. The blue lines correspond to the antisymmetric
magnetic field spectrum as shown in Fig. 1; the orange lines
correspond to the spectrum of a pn junction in a uniform mag-
netic field as shown in Fig. 4. The horizontal dashed green
lines show the Landau-level spectrum for a Dirac particle in
a uniform magnetic field for a chemical potential lying sym-
metrically between the zeroth and the first Landau level.

III. PAIR FIELD IN THE INTERFACE

An interesting consequence of this mapping is the
structure of the spectrum inside the domain wall. The
control parameter α varies smoothly through the wall
and has the value α(0) = π/4 exactly at its center. The
transformation in Eq. (10) when α = π/4 is

Sd = (I + iσ3 ⊗ Σ1)/
√

2

=
1√
2

 1 0 i 0
0 1 0 −i
i 0 1 0
0 −i 0 1

 . (12)

As an example, for graphene we explicitly show the com-
plex structure of its sublattice off-diagonal terms:

Hk =

(
V γ∗k
γk V

)
. (13)

Inserting this in Eq. (7), in the domain wall the trans-
formed Hamiltonian has the form

H̃ = Sd · HN (k) · S†d

=

 0 Re[γ] −iV Im[γ]
Re[γ] 0 Im[γ] iV
iV Im[γ] 0 −Re[γ]

Im[γ] −iV −Re[γ] 0

 . (14)

Thus, there is a pairing amplitude ∆̂[V, γ2] defined by the
local potential V and the imaginary part of the hopping

amplitude γ2 = Im[γ]. It is a matrix pairing operator act-
ing on the sublattice degrees of freedom. It is symmetric
and thereby represents an effective p-wave pairing.

The appearance of an interfacial pair amplitude in the
transformed problem can be interpreted as follows. Sup-
pose we introduced the local gauge transformation in the
absence of a domain wall. Then in the particle language,
electrons would pass through the putative interface un-
deflected. But in the transformed language this means
that an incident electron is converted into a hole with unit
probability. This is an Andreev process that requires a
pairing field in the Bogoliubov Hamiltonian.

Note that a relation of this form indicates a formal
mapping between the problem of Klein tunneling [14] and
Andreev reflection at a boundary in the Dirac theory. A
closely related observation was made by Beenakker and
colleagues a few years ago [15] who noticed that the re-
flection amplitude for electrons incident on a symmetric
graphene pn junction from the n-doped side has a precise
analogy with a problem where the particles were actually
being Andreev reflected by a contact with a superconduc-
tor. This work did not present the problem in a Nambu
basis and did not access the physics that we discuss be-
low.

We now look at the symmetries of the original and
transformed problem in the domain wall. The original
problem can be expressed, using γ1 = Re[γ], γ2 = Im[γ],
and suppressing the ⊗, as

Hd = V σ0Σ3 + γ1σ1Σ3 + γ2σ2Σ0 , (15)

while after the transformation we have

H̃d = V σ3Σ2 + γ1σ1Σ3 + γ2σ1Σ1 . (16)

In both cases the “V ” term commutes with the γ1 and
γ2 terms while the γ1 and γ2 terms anticommute. For
the pn junction problem, V = 0 in the interface. For
the antisymmetric B problem V is constant and can be
absorbed in the chemical potential. Then because of the
anticommutation rules for the γ terms in Eq. (15), zero-
energy solutions can only occur when γ1 and γ2 simul-
taneously vanish, as they do precisely at the (projected)
Dirac point. In the transformed language this means
that a zero-energy solution in the Bogoliubov spectrum
for the pseudo-superconductor will similarly require that
γ2 → 0 which reveals a momentum-space linear node in
the pairing field, consistent with its p-wave symmetry.

The Bogoliubov spectrum is invariant under global
U(1) gauge transformations of its matrix-valued pair field

∆̂ in the interface

∆̂′(θ) = e−iθ∆̂(0) . (17)

This gauge degree of freedom can be identified with the
continuous family of possible transformations in Eq. (8)
that interchange the particle and hole degrees of free-
dom in the Nambu representation. Thus any global U(1)
gauge transformation at the interface (x = 0) can be ab-
sorbed in a redefinition of the global phase angle θ that
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defines the rotation that is used to switch the particle
and hole subspaces. Note that this choice is invisible in
the two bounding states but it does appear in the theory
of the interface. However, a variation of the phase θ(y)
along the interface is a gauge choice and it is not asso-
ciated with a physical charge current along its tangent
line. To see this we observe that if θ is promoted to a lo-
cal (i.e. y-dependent) U(1) degree of freedom it also can
be eliminated by a local y-dependent gauge transforma-
tion back to a number conserving representation at the
expense of introducing a connection for operators that
transport electrons (holes) along the y direction. Here
one can verify that for generic Hamiltonians in the form

Ψ†iΨj + Ψ†jΨi the generalization of Eq. (12)

Sd(y) = (I + iσ3 ⊗ (Σ1 cos θ(y) + Σ2 sin θ(y)))/
√

2

(18)

satisfies

(∂yS
†
d)Sd + S†d∂ySd = 0 , (19)

so that any variation θ(y) in the interfacial pair field dis-
appears completely and leaves no residual signature in
the number-conserving blocks of the back-transformed
Hamiltonian. The interfacial problem presents the more
interesting case of a chiral theory where the Hamiltonian
instead has the structure −iΨ†∂yΨ. Here the connection
introduces terms in the Hamiltonian

−iS†d∂ySd =
[
Σ3 + (Σ+e

−iθ + Σ−e
iθ)σ3

]
∂yθ/2 .(20)

The first term commutes with the number conserving
blocks and leads to a momentum boost of the spec-
trum ∝ ∂yθ. The remaining terms anticommute with the
number conserving blocks so their effects appear only at
higher order O(∂yθ)

2 and are unimportant for smoothly
varying θ(y). The momentum boost has no effect on the
boundary currents which depend on the number of zero-
energy intersections of the chiral branch of the Hamilto-
nian. The boost can be interpreted as producing a valley
polarization within the occupied manifold, however lack-
ing a sharp definition of this polarization (the valleys are
connected in the full lattice theory), we expect that any
variation θ(y) has no effects on physically measurable
quantities.

IV. TOPOLOGICAL CLASSIFICATION

Particle-hole doubling of the domain wall problem pro-
motes its Hamiltonian to a Bogoliubov de Gennes (BdG)
symmetry class. In the original number-conserving rep-
resentation, this system is gapped breaking time-reversal
symmetry (B 6= 0), particle-hole symmetry and chiral
symmetry (µ 6= 0). It is described by the Altland-
Zirnbauer [16–19] unitary symmetry class A which sup-
ports topologically nontrivial ground states in two dimen-
sions which are indexed by an integer-valued invariant Z.
The count of the interface states in Sections I.A and I.B

manifests the mismatch ∆Z = 2 for the two bounding
gapped states across the domain wall.

The Nambu-doubled version of this problem explicitly
restores particle-hole symmetry Ξ so that the extended
problem can be described by either Altland-Zirnbauer
symmetry classes D or C, depending on whether Ξ2

equals 1 (Class D) or −1 (Class C). For our application
this distinction is important since in the former case the
ground state becomes topologically trivial and does not
support any symmetry protected modes at its edges or
the interfaces. In the latter case (C) the ground state has
a 2Z topological classification requiring an even number
of interfacial/edge modes in the spectrum. In either case
an odd number of topologically protected edge modes is
excluded. Combining the two conditions

Ξ†Ξ = I
{Ξ, H̃} = 0 , (21)

we have Ξ = iσ1Σ2, so that Ξ2 = −1 and the extended
problem is a member of class C.

We have verified this by an explicit calculation of the
winding number for the ground state. We carry this out
in the number conserving representation where the topo-
logical invariants from the particle and hole sectors can
be summed. The Chern number (C) for the ground state
can be calculated by choosing a chemical potential lying
in the first fundamental gap between Landau levels and
summing up the Chern numbers for all the individual
bands below the chemical potential. The Chern number
of the nth Bloch band is

Cn =
1

2πi

∫
T 2

d2k
(
∂kxAy(~k)− ∂kyAx(~k)

)
, (22)

where the Berry connection

Aη(~k) = 〈n(kx, ky)|∂kη |n(kx, ky)〉 , (23)

for η ∈ {x, y}. Here |n(kx, ky)〉 represents the normalized
wavefunction of the nth Bloch band. We compute the
Chern number by discretizing the Brillouin zone (BZ)
and summing up the Berry curvature defined on each of
the discretized plaquettes[20]. After discretization, the
Chern number for the nth band is

C̃n =
1

2πi

∑
kx,ky

Fn(kx, ky) , (24)

where kx, ky are within the first BZ,

Fn(kx, ky) =ln
(
Ukx(kx, ky)Uky (kx + δkx, ky)

Ukx(kx, ky + δky)−1Uky (kx, ky)−1
)
,(25)

and

Ukx(kx, ky) =
det
(
Λ†(kx + δkx, ky)Λ(kx, ky)

)
|det (Λ†(kx + δkx, ky)Λ(kx, ky)) |

Uky (kx, ky) =
det
(
Λ†(kx, ky + δky)Λ(kx, ky)

)
|det (Λ†(kx, ky + δky)Λ(kx, ky)) |

.(26)
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The column vectors of the matrix Λ(kx, ky) are given
by the Bloch eigenstates |n(kx, ky)〉, where we include all
the Bloch bands below the chemical potential. The Bloch
eigenstates |n(kx, ky)〉 are obtained by numerically diag-
onalizing the tight-binding Hamiltonian for the graphene
lattice with nearest-neighbor hopping, where the phase
of the hopping amplitude is determined via the Peierls
substitution. Assuming that system is of n-type and the
magnetic field is uniform, adding up the Chern numbers
for the particle sector (1) and the hole sector (1), we find
that in the ground state C = 1+1 = 2. Similarly, we find
that C = −2 for a p-type system in a uniform magnetic
field. This mismatch of Chern numbers suggests that
there should be four topologically protected edge states
at the interface defining the pn junction. However, since
we have artificially doubled the spectrum by going to the
Nambu basis, the genuine number of edge states at the
interface is two.

The following thought experiment provides an alter-
native route to demonstrating the equivalence of the
[v−, v+, b−, b+] = [+,−,+,+] and [+,+,+,−] interfaces.
The two situations are distinguished by the substitution
of [v+ > 0, b+ < 0] by [v+ < 0, b+ > 0] in the right
hand space. This replacement simultaneously negates
the field direction and the chemical potential and there-
fore it leaves the Chern number of the gapped ground
state unchanged. This substitution can also be regarded
as resulting from the gauge transformation in Eq. (11)
imposed on a uniform (V,B) state and implemented on
a line displaced from the physical interface. Thus this
second wall is topologically trivial and does not support
any protected interfacial modes. Reducing the separa-
tion between the original (physical) [+,−,+,+] interface
and the second (fictitious) interface to zero generates the
[+,+,+,−] problem without changing the pattern of do-
main wall currents.

V. VARIATIONAL SOLUTION FOR THE
INTERFACE

Although the full energy spectrum of the graphene
honeycomb lattice can be calculated using a tight-binding
approximation, additional insight can be obtained from
the continuum approximation. In this case a Taylor
expansion centered at two non-equivalent Dirac points
K and K′ produces the Dirac-like Hamiltonians HK =
vF (σxτz p̂x + σyp̂y) where τz acts on the K and K ′ val-
ley indices and vF is the Fermi velocity. Together these
Hamiltonians can be combined to reproduce a 4 × 4
two-valley Hamiltonian in terms of the Dirac gamma
matrices[21]. Due to the similarities of the two Hamil-
tonians, here we will only consider the K point where
the Hamiltonian with an external potential V (x) be-
comes [22–24]

Ĥ = vF (~σ · p̂) + V (x)I , (27)

where ~σ are Pauli matrices in the sublattice basis, p̂ =
(p̂x, p̂y) is the momentum operator, I is the identity ma-
trix, and V (x) is an external or bias potential associated
with an applied electric field. Below we consider the two
cases of antisymmetric electric and symmetric magnetic
fields and vice versa. In either case the vector poten-

tial is written in Landau gauge with ~A = Ay(x)ŷ and
the Dirac Hamiltonian associated with the K valley and
normalized for vF has the form

H =

(
V (x) −i∂x − (∂y − iAy)

−i∂x + (∂y − iAy) V (x)

)
.(28)

The solution for the Dirac equation HΨ = εΨ can be
written in the Bloch form

ψ = eikyy
(
a(x)
b(x)

)
(29)

indexed by the conserved wave vector ky. After this sub-
stitution the Dirac equation is rewritten as a pair of cou-
pled second-order equations:([

−∂2x + (ky −Ay)2
]
Î− ∂xAyσz

)
ψ

=
(

(ε− V )2Î + i∂xV σx

)
ψ (30)

which defines a complex matrix-valued potential

U = (ky −Ay)2Î−B(x)σz − i∂xV σx . (31)

In the case of an antisymmetric B field with uniform
doping, ∂xV = 0 and these equations are decoupled in
the sublattice basis so they can be solved separately. For
both sublattices we have a particle described by a mas-
sive Schrödinger-like equation in a double parabolic po-
tential. In the case when B(x) = B sign(x) the potentials
are shown in the upper panel of Fig. 8. The minima in
these potentials occur at the values x = ±ky/B, offset
in energy by the pseudo-Zeeman σz term in Eq. (31).
The a and b sublattice potentials are exchanged by the
reflection x→ −x.

Equation (28) reveals that these two amplitudes are
not independent, but are coupled through the −iσx∂x
term in the linearized Hamiltonian. The form of the ef-
fective potential U suggests a useful variational basis for
studying the states bound to the domain wall,

a(x) = Ce−(x−xa)
2/σ2

= Ce−(x−d)
2/σ2

b(x) = Ce−(x−xb)
2/σ2

= Ce−(x+d)
2/σ2

, (32)

which are two overlapping Gaussians each of width σ and
separated by 2d; C is a normalization factor. In this vari-
ational space the off-diagonal coupling describes a tun-
neling between states on opposite sides of the interface
and with opposite sublattice polarizations. Evaluating
the matrix element one finds

〈a|H|b〉 = −〈b|H|a〉

= −i
(

2d

σ2
− ky +B〈|x|〉

)
e−2d

2/σ2

≈ −i
(

2d

σ2

)
e−2d

2/σ2

(33)
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FIG. 8. Upper panel: potential of the interface created by
an antisymmetric magnetic field B(x) = B sign(x). For both
sublattices we have a pseudo-Zeeman shifted double parabolic
potential. Lower panel: potential of the interface created by
an antisymmetric electric bias field V (x) = −V sign(x). It
consists of one parabola, which has a jump at the interface
related to the value of the electric field in the pn junction,
e.g. as E = ∂xV (x).

which is optimized for d = σ/2 in a gauge where a min-
imum in the effective potential occurs at x = 0 when
ky = 0. This demonstrates that the localized variational
states are most effectively tunnel-coupled at a finite range
from the domain wall. The charge density in the lowest
energy state is therefore sublattice polarized on opposite
sides of the interface as seen in the charge density plotted
in Fig. 2. The tunneling Hamiltonian in this variational
basis is proportional to σy. The energy-optimized state
is a coherent combination of these trial basis states form-
ing an eigenfunction of the velocity operator vFσy with
negative eigenvalue: this is a domain wall state propa-
gating along the −ŷ direction. The same physics occurs
in the K ′ valley. In either case the variational solution
describes a situation where an incident electron bound in
a cyclotron orbit is transmitted through the domain wall
where the field is reversed producing a counter circula-
tion of the orbit and liberating the average motion along
the tangent line of the wall.

In the case of a homogeneous magnetic field and an-
tisymmetric doping, when V (x) = −V (−x), the a and b
sublattice solutions are coupled by the −i∂xV σx term in
the potential Eq. (31). For the specific example consid-
ered here, when V (x) = V sign(x) this coupling appears
as boundary conditions at the interface,

−∂xa(0+) + ∂xa(0−) = ivb(0)

−∂xb(0+) + ∂xb(0−) = iva(0) , (34)

where v is the jump of the electrostatic potential at the
interface. The potentials in shown in the lower panel
of Fig. 8 again suggest a variational basis. Here the
dominant low-energy degree of freedom is a-sublattice
polarized in the lowest Landau level on the right side

(low potential side) of the interface. It is coupled to
an evanescent mode on the right which is b-sublattice
polarized penetrating a barrier from the pseudo-Zeeman
field, and to evanescent modes on the left penetrating the
electrostatic barrier on both sublattices. This physics is
captured in the variational basis

a(x) = Cae
−(x−d)2/σ2

; (x > 0)

= C ′ae
x/`; (x < 0)

b(x) = Cbe
−x/`c ; (x > 0)

= Cbe
x/`; (x < 0) (35)

where `c and ` are decay lengths for penetrating the
pseudo-Zeeman barrier and the electrostatic barrier, re-
spectively. The matching condition can be written in
matrix form(

1/`− 2d/σ2 −iv
−iv 1/`+ 1/`c

)(
a(0)
b(0)

)
= 0 . (36)

A nontrivial solution occurs when the determinant of the
matching matrix is zero, giving

d =
σ2

2`

(
1 + v′2`˜̀

)
(37)

where ˜̀ = ``c/(` + `c). The interfacial mode is a vector
in the nullspace of Eq. (36)

ψ(0) = C

(
1

iv ˜̀

)
. (38)

Here, v < 0 so the group velocity is directed along the
−ŷ direction. This velocity is evidently proportional
to v, consistent with its identification with the classical
drift velocity E/B expected in the classical theory of an
edge/interface state.

Note also the sublattice asymmetry in this boundary
solution: the interfacial mode is not in a velocity eigen-
state as was found in the antisymmetric B problem and
has its dominant amplitude on the sublattice found in the
zero-energy mode (lowest Landau level) in each valley.
This is clearly seen in the charge densities calculated for a
version of this interface plotted in Fig. 5. The evanescent
form of the trial functions in Eq. (35) reflects the differ-
ent physics operative in the electrostatic barrier. Here
an electron bound in a cyclotron orbit is backscattered
by an electric field at the interface, weakly penetrating
both an electrostatic barrier and a Zeeman barrier due to
the sublattice polarization. This behavior is illustrated
in Fig. 9.

VI. DISCUSSION

Graphene interfaces that support electrostatic barriers
(at a pn junction) or field reversal (at a magnetic do-
main wall) can host confined snake state solutions. The
dynamics responsible for these solutions is clearly differ-
ent in these two situations. For the magnetic domain wall
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FIG. 9. The two different types of domain walls support two
different kinds of semiclassical trajectories. Solid line: skip-
ping orbits typical for the uniform magnetic field case at a
(V,−V ) domain wall. Dashed lines: snake orbits typical for
a (B,−B) domain wall.

cyclotron orbits of opposite circulation are matched on a
boundary to produce an unbound propagating excitation.
For the electrostatic barrier a transverse electric field is
introduced that reflects an incident mobile carrier to pro-
duce a skipping orbit drifting at velocity E/B. Despite
these differences the pattern of boundary currents is the
same demonstrating the common topological character of
both interfaces. We found that these two problems can
be mapped onto each other using a particle-hole doubled
representation. In this extended basis the two problems
are interconverted by a local gauge transformation using
the particle and hole degrees of freedom in the Nambu
basis. An interesting and unavoidable consequence of
this mapping is that a number-conserving version of one
problem is the image of a Bogoliubov de Gennes problem
for fermions with an interfacial pair field in the other.
This relation offers the interesting possibility of gener-
alizing coherent quantum transport phenomena such as
Andreev reflection or Veselago lensing, to a new family
of graphene-derived architectures.

Our results imply two “no-go” theorems for this sys-
tem. First, the gauge-transformed representation of
the interfacial problem describes a one-dimensional par-
ticle/hole gas coupled by a pairing field with p-wave
symmetry. In principle, this class of models can sup-

port Majorana excitations in an appropriate parame-
ter regime [25, 26]. However, the prospects for realiz-
ing such excitations in this setup are remote. We find
that the doubled problem has the discrete symmetries of
Altland-Zirnbauer symmetry class C so that its gapped
ground state is indexed by an even integer-valued (2Z)
index. Here topological domain wall solutions must ap-
pear in pairs, and the possibility of having an unpaired
Majorana excitation appearing on the boundary, or at
its ends are excluded. This is understandable, since the
appearance of such an excitation would not admit an
interpretation in the original (number conserving) repre-
sentation of the same problem. Second, it is intriguing
that under the gauge transformation the interfacial prob-
lem exhibits an apparent broken U(1) gauge symmetry
due to the pseudo-pairing field. However, this seems not
to be associated with any measurable collective effects
in the interface: spatial variations of the phase of the
order parameter are the images of momentum shifts of
the spectrum in the original number-conserving repre-
sentation of the problem, which is simply a gauge choice.
Again, any nontrivial property arising from the pairing
field would require a dual interpretation in the number-
conserving representation of the same problem. It re-
mains an open question as to whether one might further
break the symmetries of the original problem to identify
measurable consequences of these symmetries in its gauge
transformed image.

Our results highlight several directions for exploiting
the structure of the domain wall solutions. It is possi-
ble that the sublattice and valley asymmetries found for
two problems could be exploited to valley filter ballis-
tic transport in patterned graphene. The two-channel
interfacial solutions may also provide a venue for impor-
tant one-dimensional interaction effects that are acces-
sible in nonlocal transport measurements between reser-
voirs bridged by a domain wall. Finally, we also note
that while graphene provides a natural starting point for
developing this formulation, the conclusions appear to
be generally valid for ballistic transport in domain walls
separating topologically gapped ground states in a wider
class of semiconductor nanostructures.
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