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We study the effects of a phase difference on Yu-Shiba-Rusinov (YSR) states in a spinful Coulomb-
blockaded quantum dot contacted by a superconducting loop. In the limit where charging energy
is larger than the superconducting gap, we determine the subgap excitation spectrum, the cor-
responding supercurrent, and the differential conductance as measured by a normal-metal tunnel
probe. In absence of a phase difference only one linear combination of the superconductor lead
electrons couples to the spin, which gives a single YSR state. With finite phase difference, however,
it is effectively a two-channel scattering problem and therefore an additional state emerges from the
gap edge. The energy of the phase-dependent YSR states depend on the gate voltage and one state
can cross zero energy twice inside the valley with odd occupancy. These crossings are shifted by the
phase difference towards the charge degeneracy points, corresponding to larger exchange couplings.
Moreover, the zero-energy crossings give rise to resonant peaks in the differential conductance with
magnitude 4e2/h. Finally, we demonstrate that the quantum fluctuations of the dot spin do not
alter qualitatively any of the results.

PACS numbers: 72.10.Fk, 74.45.+c, 73.63.Kv, 74.50.+r

I. INTRODUCTION

Yu-Shiba-Rusinov1–3 states are bound states in an s-
wave superconductor induced inside the energy gap by
local magnetic moments. Individual localized Yu-Shiba-
Rusinov (YSR) states have been observed both by scan-
ning tunneling spectroscopy of magnetic atoms like Mn or
Cr adsorbed on superconducting Pb or Nb substrates,4–8

and as subgap states in Coulomb blockaded quantum
dots (QD) coupled to superconducting (S) leads.9–17 The
quantum dot realization is based on the spin-1/2 of odd-
occupation charge states, and is therefore free of most
of the material dependent complications for adatoms on
a surface, like mixed valence, higher spin, and magnetic
anisotropy. Furthermore, the quantum dot system al-
lows for electrical tunability of the particle-hole asymme-
try and, to some extent, the exchange coupling between
the spin on the quantum dot and the quasiparticles in
the superconductor, which makes it an ideal system for
studying the properties of individual YSR states.

Recently, sharp subgap states have been observed with
a weakly coupled normal (N) metal lead probing an S-
QD-S junction as illustrated in Fig. 1, where the quan-
tum dot was formed in a Coulomb-blockaded segment of
carbon nanotube12 or InAs nanowire13 spanning a super-
conducting Al loop. The gate control allows for determi-
nation of even (spinless) or odd (spinful) charge states
of the quantum dot by even-odd effects (such as absence
or presence of Kondo resonances13) of the stability dia-
gram. By tuning the magnetic flux piercing the Al loop,
one may control the phase-difference across the quan-
tum dot, and this device therefore provides additional
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Fig. 1. (Color online) (a) Sketch of the device studied here
(following the experiments in Refs. 12 and 13), comprised of
a Coulomb-blockaded QD (green), tunnel coupled to super-
conducting leads (blue) with an applied phase difference, φ,
controlled by a magnetic flux. A backgate voltage is adjusted
to provide a single spin-1/2 on the QD, and the resulting
phase-dependent YSR states are probed by a normal-metal
tunnel probe (yellow).

information about the phase dependence of the subgap
states. It is this phase dependence of the spin-induced
YSR states, which is addressed in the present paper.

Earlier measurements of supercurrent through phase-
biased Coulomb-blockaded quantum dots,18–21 have al-
ready demonstrated that odd-occupied spin-degenerate
dots may lead to negative (π-phase) supercurrent. Also,
a supercurrent sign reversal, i.e., a π − 0 transition, has
been shown to take place when adjusting the gate voltage
to move away from odd occupancy, thereby increasing the
ratio of the Kondo temperature TK to the superconduct-
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ing gap ∆, in accordance with a number of theoretical
predictions.22–30 Whereas the supercurrent only carries
information about the ground state, the additional spec-
troscopic information from experiments like Refs. 12 and
13 now offers an opportunity to learn more about the
subgap excitations caused by a local magnetic moment.

The nature of subgap states depends on the ratio of
the charging energy EC and the superconducting gap ∆.
For EC > ∆ and EC � Γ, where Γ denotes the elastic
broadening of the dot states due to their coupling to the
leads, the natural starting point for the spinful dot is the
Kondo model31 with exchange coupling J and with the
lead conduction electrons described by BCS Hamiltoni-
ans. As we show below, in absence of a phase difference
across the junction, this reduces to a single-channel YSR
problem. For weak exchange coupling, TK � ∆, where
the ground state is a doublet, the YSR state is an ex-
cited singlet state consisting of a single quasiparticle in
the lead bound to the dot spin. As the exchange coupling
is increased the excited state crosses zero energy and
the ground state changes abruptly to spin singlet32–34 at
TK ∼ ∆, where TK is the Kondo temperature. For even
larger values TK � ∆, the ground state can be described
as the well-known Kondo singlet.

In the opposite limit, EC < ∆, the natural starting
point for understanding the subgap states is a model
where the superconducting electrons are integrated out,
giving rise to a local pairing on the dot with strength
Γ, which was studied by Meng et al.35 It gives a mixing
of states with occupation N ± 1 when the average oc-
cupation is N . With odd average occupation there will
be two subgap states split by Γ, as found already in the
single orbital Anderson model.35 Even though the two
cases EC < ∆ and EC > ∆ are naturally described in
different languages, the physical situations are similar.
In both cases, the excited states correspond to an extra
quasiparticle bound by the local spin. For EC > ∆ the
bound particle resides mainly in the superconductor in
the form of a YSR state, while for EC < ∆ it resides
mainly on the dot because of the hybridization of 0 and
2 electrons. The two situation are illustrated in Fig. 2.
For the experiments reported in Refs. 13 and 17 the rel-
evant limit is ∆ < EC , which is also the limit considered
in this paper.

For a multi-level quantum dot, the finite level spac-
ing, δE, will also affect the simple evolution of ground
states when δE ∼ TK ,∆. In this paper we thus restrict
our attention to small dots, for which the level spacing
is the largest energy scale, and Γ,∆ � EC ∼ δE, com-
plementary to the ∆ � EC regime studied by Meng et
al.35 Furthermore, we restrict our attention to gate volt-
ages adjusted to accommodate odd occupation and hence
a net spin-1/2 on the quantum dot, which will be de-
scribed within an effective cotunneling (Kondo) model.
For the main part of the paper, however, the dot spin is
treated as classical (non-fluctuating), being polarized in
a fixed direction. We will show that this approximation
does not modify the physics substantially (at least for
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Fig. 2. (Color online) Schematics of the two situations,
EC > ∆ and EC < ∆. In both cases there is a subgap
state in the odd diamond. For large ∆ it appears because
of hybridization of the N = 0 and N = 2 charge states by
the superconductor, while for large EC it appears because of
hybridization between the dot electron and quasiparticles in
the leads, forming a bound state, which is the YSR state.
In both cases the average occupation on the dot is equal to
one and the subgap states have similar dependences on gate
voltage. In this paper, we focus on the situation (a) with
EC > ∆.

weak dot-lead coupling), while considerably simplifying
the calculations.

The paper is organized as follows. In Section II an ef-
fective Kondo model for an odd-occupied quantum dot
coupled to superconducting leads is introduced. In Sec-
tion III, we derive the subgap states within the polarized-
spin approximation. The corresponding nonlinear tun-
neling conductance to an auxiliary normal lead is dis-
cussed in Section III B, with a few technical details
relegated to Appendix A, and finally the supercurrent
through the phase-biased S-QD-S junction is addressed
in Section III C. In Section IV, we briefly compare the
results from the polarized-spin approximation with the
perturbative (in dot-lead coupling) results including the
full quantum dynamics of the dot spin, which we derive
in Appendix B.

II. THE MODEL

We consider a quantum dot tunnel-coupled to two su-
perconducting leads, capacitively coupled to a gate elec-
trode, and subjected to an applied magnetic field. The
coupling to the normal metal electrode is also included
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for the purpose of doing transport spectroscopy.
The quantum dot connected to these three leads is

modelled by a single orbital Anderson-type model:

H = HN +HLR +HD +HT. (1)

The superconducting leads are described by the effec-
tive Bardeen-Cooper-Schrieffer (BCS) mean-field Hamil-
tonian

HLR =
∑
αkσ

ξkσc
†
αkσcαkσ (2)

−
∑
αk

(
∆αc

†
αk↑c

†
α,−k↓ + ∆∗αcα,−k↓cαk↑

)
,

where ξkσ = ξk + σgceB/2 and ξk = εαk − µα is the
conduction electron dispersions. Here α = L/R labels
the two superconducting leads and k and σ are lead or-
bital and spin quantum numbers, respectively. The leads
are assumed to have bandwidth 2D with ξk ∈ [−D,D].
The Landé g-factor in the superconductors is denoted by
gce, the magnetic field by B, and the complex supercon-
ducting order parameters by ∆α = ∆eiφα . Here we for
simplicity take the two order parameters to be of equal
magnitude. The normal-lead Hamiltonian is

HN =
∑
kσ

(εNkσ − µN )c†NkσcNkσ, (3)

with a bias voltage applied to this lead µN − µα = V .
Assuming the level spacing in the quantum dot to be
large, we model it by a single orbital:

HD =
∑
σ=↑,↓

εdd
†
σdσ + Un↑n↓, εdσ = εd + σgdB/2, (4)

where d†σ creates an electron in the orbital with spin σ, U
is the charging energy on the quantum dot, εd is the level
position, which is controlled by the gate voltage, and gd

is the g-factor in the dot (which can be different from
gce).

The coupling between the leads and the dot is de-
scribed by the tunneling Hamiltonian

HT =
∑
αkσ

(
tαc
†
αkσdσ + t∗αd

†
σcαkσ

)
, (5)

where tα denote the lead-dot tunneling amplitudes and
the lead index α is extended to run through L, R, and
N .

We focus on the odd-occupied spinful cotunneling
regime well inside the corresponding Coulomb diamond,
where

2πνF |tα|2 ≡ Γα � −εd, U + εd, (6)

where νF is the density of states at the Fermi level.
A standard Schrieffer-Wolff transformation36,37 then

leads to the following effective cotunneling (Kondo)

model for the spin- 1
2 coupled to the normal and two su-

perconducting leads:

H = HN +HLR +Hd,B +HJ +HW , (7)

where the Zeeman term for the quantum dot spin reads

Hd,B = gdBS
z, (8)

with Si denoting the spin operator on the dot.The trans-
formation is valid for ∆/U � 1 and |gce−gd|B/U � 1.38

For the polarized-spin approximation considered in the
next section, the Zeeman term for the dot spin has no
influence, but it will become important in Appendix B
where the magnetic field dependence of the quantum cor-
rections are discussed.

The exchange cotunneling term reads

HJ =
∑

i=x,y,z
α′k′σ′αkσ

Jα′αS
ic†α′k′σ′τ

i
σ′σcαkσ, (9)

where τ i denotes the Pauli matrices, and the potential
scattering term is

HW =
∑

α′k′,αk,σ

Wα′αc
†
α′k′σcαkσ. (10)

Here the exchange, and potential scattering amplitudes
are given by

Jαα′ =
4

1− x2

tαtα′

U
, Wαα′ =

2x

1− x2

tαtα′

U
, (11)

where x parameterizes the dimensionless gate voltage as

x = 1 +
2εd
U
. (12)

Note that the Anderson model always gives antiferromag-
netic exchange J > |W | ≥ 0 inside the odd occupied di-
amond x ∈ [−1, 1] and that W breaks particle-hole sym-
metry and therefore vanishes at the particle-hole sym-
metric point, x = 0, defining the middle of the Coulomb
diamond. We also define the following dimensionless cou-
pling constants:

gαα′ = πνFJαα′S, g = gLL + gRR,

wαα′ = πνFWαα′ , w = wLL + wRR,
(13)

to be used extensively below.

III. POLARIZED-SPIN APPROXIMATION

We start by considering the case where the spin op-
erator in Eq. (9) is treated as a classical variable with
a fixed direction: S ≈ Sẑ. In this approximation, the
problem is similar to the original problem considered by
Yu, Shiba, and Rusinov,1–3 but now with two supercon-
ductors having different phases. In Appendix B we show
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that this approximation is justified when gdB � g2∆. At
zero field the excitation energies calculated within this
approximation correspond to the correct result at weak
coupling (g � 1) only after rescaling g by a factor of
3. For now, we use the polarized-spin approximation in
order to discuss the spectroscopy.

We start by diagonalizing the exchange, and potential
scattering terms in L/R-space, omitting the coupling to
the normal lead. This diagonalization is possible because
they share the same matrix structure in L/R-lead space

Jαα′ = JΘαα′ , and Wαα′ = WΘαα′ , (14)

where

Θαα′ =

(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)
, (15)

with coupling asymmetry parameterized by an angle θ
defined by

(cos θ, sin θ) = (tL, tR)/t, t =
√
t2L + t2R. (16)

Notice that θ = π/4 corresponds to symmetric coupling
tL = tR. By means of a gauge transformation, the phases
of the individual pairing potentials in the contacts, ∆α,
can be combined to a phase difference, φ = φL − φR,
appearing only in the scattering terms via the matrix Θ:

Θαα′ →
(

cos2 θ eiφ/2 sin θ cos θ
e−iφ/2 sin θ cos θ sin2 θ

)
. (17)

This matrix has eigenvalues 0 and 1 with corresponding
eigenvectors:

v0 =

(
eiφ/2 sin θ
− cos θ

)
, v1 =

(
cos θ

e−iφ/2 sin θ

)
, (18)

and a unitary transformation that diagonalizes Jαα′ and
Wαα′ is therefore achieved with

U =

(
cos θ eiφ/2 sin θ

e−iφ/2 sin θ − cos θ

)
, (19)

leading to the following transformed cotunneling terms:

HJ +HW =
∑
kk′σ

(σJS +W )c̃†1kσ c̃1k′σ, (20)

where the new operators c̃0k and c̃1k are defined as(
c̃1k
c̃0k

)
= U

(
cLk
cRk

)
. (21)

From expression (20) it is evident that the channel cor-
responding to eigenvalue 0 does not couple to the cotun-
neling terms.

However, with finite phase the two channels are not in-
dependent and therefore the problem remains effectively

a two-channel problem. In order to see this, we write
lead Hamiltonians in Nambu space

H0 =
1

2

∑
kσ

C†kσ

(
ξk + σgceB/2 ∆

∆ −ξk + σgceB/2

)
Ckσ,

(22)
with Nambu 4-spinors defined as

Ckσ = (cLkσ, cRkσ,−σc†L−k−σ,−σc
†
R−k−σ)T . (23)

Notice that since H0 is diagonal in lead space, a unit
matrix in lead space is implied on each of the four ma-
trix elements in (22). After the rotation (21), which in
Nambu space reads

C̃kσ =

(
U 0
0 U∗

)
Ckσ, C̃†kσ = C†kσ

(
U† 0
0 UT

)
, (24)

the lead Hamiltonian becomes

H0 =
1

2

∑
kσ

C̃†kσ

(
ξk + σgceB/2 ∆P

∆P † −ξk + σgceB/2

)
C̃kσ,

(25)
where P = U†U∗, which evaluates to

P =

(
cos2 θ + eiφ sin2 θ −i sin(2θ) sin(φ/2)
−i sin(2θ) sin(φ/2) cos2 θ + e−iφ sin2 θ

)
. (26)

From the expression for P , we now see that for φ 6= 0
the two channels are not independent, and the problem
therefore remains a genuine two-channel scattering prob-
lem.

A. Subgap spectrum from T-matrix

We are interested in understanding the structure of
the subgap states and therefore we study the T -matrix
for spin-σ given by

TRσ (ω) = Vσ
[
1−GR0 (ω − σgceB/2)Vσ

]−1
, (27)

with the diagonalized exchange, and potential scattering
terms extended to Nambu space as

Vσ =

 σJS +W 0 0 0
0 0 0 0
0 0 σJS −W 0
0 0 0 0

 , (28)

whereby

HJ +HW =
1

2

∑
kk′σ

C̃†kσVσC̃k′σ. (29)

The local Green’s function corresponding to (25) is found
as

GR0 (ω) =
∑
k

[
ω −

(
ξk ∆P

∆P † −ξk

)]−1

(30)

=− πνF√
∆2 − ω2

 ω 0 a∆ −ic∆
0 ω −ic∆ a∗∆

a∗∆ ic∆ ω 0
ic∆ a∆ 0 ω

 ,



5

where the k-integration was performed assuming a con-
stant density of states νF and assuming tha ω < ∆� D.
The lead asymmetry and the phase-difference are en-
coded in the dimensionless coefficients

a = cos2 θ + eiφ sin2 θ, (31)

c = sin(2θ) sin(φ/2). (32)

The condition for poles in TRσ is

det
[
1−GR0σ(E − σgceB/2)Vσ

]
= 0, (33)

and after some algebra one finds two roots for each spin,
corresponding to YSR states at energies

E±,σ = σgceB/2−
σc±∆√

(1 + u)2 + 4g2

[
(1 + u)(1 + χu)

+ 2g2 ± 2g
√
g2 + u(1− χ)(1 + χu)

]1/2
,

(34)
with the following shorthand notation

χ = 1− sin2(2θ) sin2(φ/2),

u = w2 − g2,

c− = sgn(1 + χu),

c+ = 1.

(35)

Here we have assumed g > 0; the corresponding solutions
for g < 0 simply have opposite spins, and hence are given
by E±,−σ.

In the rest of this section we examine the dependence
of the subgap states on the coupling strengths and the
phase difference. For zero phase difference, φ = 0, and
antiferromagnetic coupling, g > 0, Eq. (34) gives the
following subgap energies:

Eσ = −σ∆
1 + w2 − g2√

(1 + w2 − g2)2 + 4g2
, g > 0. (36)

This is the result obtained by Yu, Shiba and Rusinov.1–3

In the case when there is no exchange coupling, i.e., g =
0, Eq. (34) yields the usual expression for the Andreev
bound state:39–43

E0
±,σ = ±σ∆

√
1− τ sin2 φ

2
, τ =

w2 sin2(2θ)

1 + w2
, (37)

where τ denotes the normal state transmission of the
junction.

The energies of the four bound states are plotted as
dashed curves against gate voltage and phase difference
for different cases in Fig. 3. The color scale refers to the
differential conductance for the system with an added
normal lead (see next section). In panels (a) and (b) we
plot the bound-state energies for zero phase difference
and weak, and strong coupling to the superconductors,
respectively. The difference between (a) and (b) can be
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Fig. 3. (Color online) The figure shows the YSR state energies
V = E±,σ given in Eq. (34) as dashed lines. The YSR en-
ergies are plotted as a function of dimensionless gate voltage
x = 1 + 2εd/U in (a)-(d), and as function of phase differ-
ence in (e)-(h). x = 0 corresponds to the middle of the odd
diamond and x = ±1 are the charge degeneracy points, see
Eqs. (11) and (12). The lines are overlayed on contour plots
of the differential conductance (see Fig. 1 and Eq. (39)) using
gNN = 0.1 and the parametrization of the couplings given in
Eq. (A4). The arrows indicate the spin of the excited states.
The exchange coupling at the middle of the diamond is set
to g(x = 0) = 0.5 in figures (a), (c), (e), and (g) and to
g(x = 0) = 1.5 in (b), (d), (f), and (h). In (a), the YSR
states are seen to cross zero energy when the effective ex-
change coupling increases as x is changed from 0 to 1 towards
the charge degeneracy points. (b) With a stronger coupling,
the eye-shaped feature in the middle becomes smaller, and for
strong enough coupling it disappears. (c) With finite phase
difference, two new bound states appear. (d) A finite phase
difference reduces the effective exchange coupling and restores
the eye-shaped crossings. The detailed phase evolution is
shown in (e) and (f) for a cut in gate voltage correspond-
ing to x = 0.5. While panels (a)-(f) are for a symmetrically
coupled junction (θ = π/4), (g) and (h) show the phase de-
pendence for an asymmetrically coupled junction (θ = π/3).
Note that the finite-bias degeneracy at φ = π is lifted by the
asymmetry.
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understood from the position of the YSR states at x = 0
(where W = 0) and φ = 0:

Eσ = −σ 1− g2

1 + g2
. (38)

For (a), where g = 0.5 at x = 0, the upper YSR state
moves down and crosses zero as x approaches the charge
degeneracy points at which g diverges. In contrast, in (b)
where g = 1.5 at x = 0, the YSR state has already crossed
zero at x = 0 due to stronger coupling. Interestingly, the
zero energy crossings correspond to a change of parity
of the ground state, cf. the discussion in Ref. 8. Adding
now a finite phase difference, panels (c) and (d) reveal the
2-channel nature of the problem, with two bound states
above and below the zero energy.

In panels (e)-(h), we plot the dispersion of the bound-
state with phase difference. In general, a finite phase
difference is seen to to shift the value of the coupling at
which the energy levels cross zero to higher values. In
the plots, θ = π/4 corresponds to symmetric coupling,
tL = tR, see Eq. (16). For the particle-hole symmetric
point x = 0 and symmetric coupling θ = π/4, we see that
the two excitations are degenerate at φ = π.

It is interesting to compare the above features with the
experimental results by Chang et al.13 They show con-
ductance plots similar to Fig. 3 (a)-(b) for three different
ranges of back-gate voltage, corresponding to different
devices with either strong, or weak coupling, as well as
one device right at the transition where the YSR states
touch at zero energy in the middle of the diamond at
x = 0. Furthermore, Chang et al. show the phase depen-
dence for different fixed gate voltages similar to Fig. 3
(e) and (f) and with similar qualitative features: only
weak gate dependence in the weakly coupled device, and
a restoring of the zero-energy crossings at finite phase
difference for the stronger coupled devices.

We have seen that a finite phase difference results in
two subgap states at positive energy. Interestingly, the
same situation occurs for a magnetic impurity on cou-
pling to an s± superconductor, i.e., a superconductor
with two bands, where the pairing potentials have dif-
ferent signs in the two bands.44 Note that if the two su-
perconductors have different pairing potentials, but with
same sign, there is only one bound state within the small-
est of the two gaps.

B. Conductance to the normal-metal tunnel probe

The YSR subgap states derived above can be observed
by means of tunneling spectroscopy from a normal metal
lead, as illustrated in Fig. 1 and experimentally carried
out in Refs. 12 and 13. We assume the N -dot tunneling
rate to be larger than any relaxation rate between the
YSR state and the quasiparticle continuum in the super-
conductors, thus ruling out the single-electron tunneling
currents which were recently demonstrated to be impor-
tant for analyzing scanning tunneling spectroscopy of Mn

-1 0 1
0

0.5

1.

-1 0 1
0

0.5

1.

-1 0 1
0

0.5

1.

-1 0 1
0

0.5
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1.5

Fig. 4. (Color online) Differential conductance dI/dV in
units of 2e2/h between the normal electrode and the super-
conducting leads, see Fig. 1. The different lines correspond
to constant phase cuts (φ = 0, π/2, π) in Fig. 3(e)-(h), as in-
dicated at the top of the figure. The left panels (a) and (c)
are for weak coupling, (g(x=0) = 0.5), while the right panels
(b) and (d) are for stronger coupling, g(x=0) = 1.5. The top
panels (a) and (b) are for symmetric coupling θ = π/4, while
the bottom panels (c) and (d) are for asymmetric coupling
θ = π/3. In all cases the gate voltage is set to the particle-
hole symmetric point, x = 0, and the coupling to the normal
lead was chosen to be gNN = 0.1.

adatoms on a Pb(111) surface.45 In this case, the current
is carried exclusively by elastic Andreev reflections and
the differential conductance between the normal lead and
the superconducting region can be obtained from the S-
matrix in the normal lead as46–49 (at T = 0)

dI

dV
=
e2

h
Tr[2− SeeS†ee + SheS

†
he], (39)

where See and She are the scattering amplitudes at en-
ergy eV for an incident electron to be reflected as an elec-
tron or a hole, respectively. The amplitudes See and She
can be obtained from the retarded T -matrix in Eq. (27),
which we write here as (setting B = 0 for simplicity)

TR(ω) = V[1−GR
0 (ω)V]−1, (40a)

V = SJσ3 + Wτ3, (40b)

where τ i and σi are Pauli matrices representing particle-
hole and spin space, respectively, and J and W are 3×3
coupling matrices in lead space, with elements Jαα′ and
Wαα′ for α, α′ = L,R,N .

The unperturbed momentum-summed Green’s func-
tion is a diagonal matrix in lead space, where for the
superconducting leads α = L,R it is

GR0,αα(ω) =− πνF
(ω + iη)−∆α(τ1 cosφ− τ2 sinφ)√

|∆α|2 − (ω + iη)2
,

where η is a positive infinitesimal. For the normal lead,
the Green’s function simplifies to GR0,NN (ω) = −iνFπ,
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assuming the normal-lead density of states νF to be the
same as for the two superconductors, since any difference
can be absorbed into the tunneling matrix elements. The
S-matrix is now expressed through the T -matrix as

S(ω) = 1− 2πiνFT(ω), (41)

and the amplitudes See and She are found as submatrices
of S with α′ = α = N and component (2,1) in electron-
hole space for She and (1,1) for See. The calculation can
be carried out analytically, but is quite lengthy. In Ap-
pendix A, we provide an analytical expression for dI/dV
when the coupling to the superconducting leads is sym-
metric, θ = π/4, see Eq. (A1).

In Fig. 4 we present the differential conductance when
the subgap states are probed by the normal lead. The
traces correspond to vertical cuts in Fig. 3. The coupling
is chosen to be gNN = 0.1: weak enough to resolve the
YSR states as distinguishable conductance peaks, and
large enough to actually see them. For the cases with two
bound states, both states give rise to peaks in dI/dV ,
but with different widths. Assuming φ = 0, θ = π/4,
x = 0, and gNN � gLL = gRR, the width of the sub-
gap conductance peak can be found from Eq. (A1) to be
proportional to gNN∆(1 − E2

σ/∆
2), with Eσ from (36),

implying very sharp peaks close to the gap-edges, and an
overall scale set by the width gNN∆ of a deep YSR state.
When the voltage is resonant with subgap states the dif-
ferential conductance is close to 2e2/h, except when the
two subgap states are degenerate at zero energy, in which
case they add up to exactly 4e2/h (cf. Fig. 3 (h)), or for
a symmetric junction (θ = π/4) when they are degener-
ate at finite energy for φ = π, where the conductance is
exactly zero (cf. Fig. 3 (e-f)).

C. Supercurrent

At zero temperature, the supercurrent can be found
as the derivative of the ground-state energy, EGS, with
respect to the phase difference between the two super-
conducting leads:53

IS(φ) = 2
∂EGS

∂φ
. (42)

If the ground-state energy has a single minimum either at
φ = 0 or at φ = π, the junction is classified respectively as
a 0-junction or a π-junction. In the former (0) case, the
supercurrent is a continuous function of φ with positive
slope at φ = 0 and negative slope at φ = π. In the
latter (π) case, the supercurrent has negative slope at 0
and a positive slope at π. In cases with minima both
at φ = 0 and at φ = π, a 0′- or a π′-junction refers to
the global minimum being respectively at 0 or π, and
the supercurrent is now a discontinuous function (with
one discontinuity in the interval φ ∈ [0, π] and one in the
interval φ ∈ [π, 2π]) with positive slopes both at φ = 0
and at φ = π.

Fig. 5. Phase diagram with couplings parameterized by
Eq. (11), in terms of Γ = νF (t2L + t2R), and the dimension-
less level position (gate voltage) x = 1 + 2εd/U . The phase
boundaries are independent of ∆, and their dependences on
x and θ are indicated, with the function f(θ) defined as

f(θ) = [1/2
{

sin2(2θ) +
√

4 + sin4(2θ)
}

]1/2. In this diagram
the coupling asymmetry parameter was chosen to θ = π/3,
whereas for a symmetric junction with θ = π/4, the 0’-0-
boundary will never be reached, consistent with earlier results
on the Anderson model.27,50,51

Fig. 6. (Color online) Supercurrent vs. phase difference at the
particle-hole symmetric point, x = 0, for exemplary values of
g and θ (see inset) corresponding to the four different kinds
of Josephson junctions. Similar results were first obtained in
Refs. 27 and 29 and experimentally demonstrated in Ref. 52.

Within the polarized-spin approximation, we find the
continuum to be independent of the phase difference in
the limit of infinite bandwidth. This is is akin to a so-
called short junction43 and implies that the supercurrent
can be obtained from the subgap excitation spectrum
alone, which according to the standard Bogoliubov-de
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Gennes formalism is given by

EGS = −1

2
(|E+|+ |E−|) + const. (43)

The resulting phase diagram as a function of the dimen-
sionless gate voltage x, and the lead-dot tunneling rate,
Γ = πνF (t2L + t2R), is depicted in Fig. 5, and examples of
supercurrent in the different phases are shown in Fig. 6.
Only for small coupling constants do we have a sinusoidal
current-phase relations:

IS ≈ (∆/2) sin2(2θ)
(
w2 − g2

)
sinφ. (44)

In some cases the supercurrent is discontinuous, which
is directly related to the subgap states crossing zero en-
ergy and changing their spin (as is evident from Eq. (43)).
Similar behavior of the supercurrent has been demon-
strated experimentally in Ref. 52, where a thermally
smoothened discontinuity was observed at a phase dif-
ference φc whose dependence on gate gate voltage was
shown to comply well with the formula

φc = 2 arccos[
√
γ − (x/h)2]. (45)

This functional dependence on the dimensionless gate
voltage, x, was derived in the atomic limit (∆ → ∞) in
Ref. 30. However, in the experiment ∆ ∼ TK , and γ and
h were therefore used as free fitting parameters. More-
over, the data was also shown to match the result of a
quantum Monte Carlo calculation for the corresponding
Anderson model. We note here that the same functional
behavior follows directly from Eqs. (34), (42), and (43),
with coefficients γ and h defined as

γ =
1

h2
− 1

tan2(2θ)
, h = g sin(2θ), (46)

which allows extracting the coupling asymmetry and the
dimensionless exchange coupling.

IV. QUANTUM MECHANICAL TREATMENT
OF THE SPIN DEGREE OF FREEDOM

Here we discuss the results for the fully quantum me-
chanical description, where unlike for the polarized-spin
approximation an exact solution is not possible. There-
fore we resort to perturbation in the cotunneling cou-
plings g and w, which is valid when the Kondo tem-
perature is much smaller than the superconducting gap
TK � ∆ and the ground state is a doublet. Details of
the calculations can be found in Appendix B, and here we
simply summarize the main findings and contrast them
to the results for the polarized spin found above.

In Appendix B 1, we diagonalize an effective low-
energy single-quasiparticle Hamiltonian. As in the spin-
polarized case, we find two subgap excitation energies
when the two superconductors have a phase difference.
The transition energy from the ground-state doublet to

the excited subgap singlet perturbatively matches the
second order expansion (in gαα′) of the excitation en-
ergy obtained from the polarized-spin approximation for
B = 0 and S = 1

2 , when replacing gαα′ → 3gαα′ in (34).
In Appendix B 2, we show how the subgap excitation

energies at weak coupling, g � 1, are shifted in energy
by an external magnetic field. Assuming that the field
is screened in the superconducting leads, gce ≈ 0, the
transition energy from the ground-state doublet to the
excited-state singlet is found to approach the polarized-
spin result in the limit of high magnetic field, B � g2|∆|
(see Fig. 7).

Appendix B 3 goes beyond the low-energy single-
quasiparticle Hamiltonian and provides a calculation of
the leading order (g2

αα′) correction to the ground-state
energy. With reference to the three-quasiparticle Yosida
wavefunction ansatz analyzed in Ref. 38, we argue why
this shift of ground-state energy does not modify the ex-
citation energy found in Appendix B 1.

Finally, this second order shift in ground-state energy
is used in Appendix B 4 to calculate the supercurrent in
the presence of a finite magentic field via formula (42). In
the perturbative regime, the functional dependence of the
supercurrent on both φ and θ is similar with, and without
the polarized-spin approximation, but again, only in the
large-field limit do they match exactly.

Summarizing theses findings, we find qualitative agree-
ment between the results found within the polarized-spin
approximation and the perturbative results for the full
quantum mechanical treatment. A non-perturbative cal-
culation of the YSR spectrum and the supercurrent be-
yond the polarized-spin approximation could be found by
means of a numerical renormalization group calculation
of the T -matrix, whereas the non-linear Andreev conduc-
tance would require an average of the current operator.

V. CONCLUSIONS

In summary, we have determined the phase-dispersion
of the Yu-Shiba-Rusinov states induced by a spinful
Coulomb blockaded quantum dot coupled to two phase-
biased superconducting leads. At finite phase difference,
two channels are involved in the screening of the dot
spin. Consequently, the phase-biased system exhibits
two, instead of one, YSR states, one of which merges
with the continuum at the gap edge for zero phase dif-
ference. We have shown how the corresponding subgap
excitation spectrum is modified by coupling asymmetry
and potential scattering, and established that the phase
difference generally shifts the parity transition, and the
accompanying sign change in the supercurrent, to larger
values of the exchange coupling.

We have solved the problem exactly in the spin-
polarized approximation, and perturbatively in the fluc-
tuating quantum case (cf. Appendix B), and obtained
a closed analytical expression for the subgap excitation
energy [Eq. (34)], which extends Rusinov’s result3 to a
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situation with two superconductors at a finite phase dif-
ference and arbitrary tunnel couplings.

The YSR bound states can for example be observed by
a normal metal tunnel probe connected to the dot, which
would also give information about their spectral weight.
We have therefore calculated the differential conductance
in such a setup. These results should provide a valuable
basis for a more detailed analysis of future experiments
like Refs. 12 and 13.
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Appendix A: Explicit formula for the
symmetric-coupling conductance

In the case of symmetric coupling of the quantum dot
to the two superconductors (θ = π/4), we can derive a
simple closed-form expression for the differential conduc-
tance dI/dV . For subgap conductance (|V | < ∆) we
obtain

dI

dV
=

4t+t−f
2 cos2 φ

2 × 2e2/h

[1 + (t+t− − r+r−)(1− f2 sin2 φ
2 ) + (r+ + r−)fv]2 + [(r+t− + r−t+)(1− f2 sin2 φ

2 )− (t+ + t−)fv]2
+(v → −v),

(A1a)
and for continuum conductance (|V | > ∆) we get

dI

dV
=

2f |v|[(r2
+t− + r2

−t+)(1 + f2 sin2 φ
2 ) + (t+ + t−){1 + t+t−(1 + f2 sin2 φ

2 )}+ 4t+t−f |v|]× 2e2/h

[1 + (t+t− − r+r−)(1 + f2 sin2 φ
2 ) + (t+ + t−)f |v|]2 + [(r+t− + r−t+)(1 + f2 sin2 φ

2 ) + (r+ + r−)f |v|]2
.

(A1b)

with v = V/∆ and f(V ) = ∆/
√
|∆2 − V 2|, and where

transmission, and reflection amplitudes for incident elec-
trons in the superconductors have been identified as

t± =
2(gNS ± wNS)2

1 + (gNN ± wNN )2
, (A2)

r± = g ± w − (gNN ± wNN )t±. (A3)

where gNS ≡ gNL = gNR and wNS ≡ wNL = wNR.
Similar expressions to Eq. (A1) were derived for polar-
ized spin coupled to a single superconductor54 and un-
conventional superconductor junctions containing sub-
gap states.55 For calculations of dI/dV in Fig. 3 when
there is finite coupling asymmetry, the couplings involv-
ing the normal lead are parametrized as

gNL =
√
gNN g cos θ, gNR =

√
gNN g sin θ,

wNα = gNαw/g, wNN = gNNw/g.
(A4)

Appendix B: Subgap states beyond the
polarized-spin approximation

In this appendix, we determine the subgap states in-
duced by the dot spin without doing the polarized-spin
approximation applied in Section III. The presence of the
spin-flip terms prohibits a solution along the lines in the
main part of the paper and we therefore revert to a per-
turbative treatment, valid for small dimensionless cou-
plings. This problem was considered already by Soda,

Matsuura and Nagaoka,32 using Yosida’s wave-function
ansatz.56 Since the calculation using the ansatz is rather
technical, it is more instructive to calculate the subgap
spectrum, using an effective single-quasiparticle model
for the case with no potential scattering at x = 0.

First, the BCS leads are diagonalized by the Bogoli-
ubov transformation

cαkσ = uαkγαkσ + σvαke
iφαγ†α,−kσ̄, (B1)

where

uαk =

√
1

2

(
1 +

ξk
Eαk

)
, vαk =

√
1

2

(
1− ξk

Eαk

)
.

(B2)
In terms of the Bogoliubov quasiparticle operators γαkσ,
the lead Hamiltonian (2) reads

HLR =
∑
αkσ

Eαkσγ
†
αkσγαkσ, (B3)

with eigenenergies

Eαkσ = Eαk + σ
gceB

2
, Eαk =

√
ξ2
k + |∆α|2. (B4)

1. Effective single-quasiparticle model

Next, we express the exchange Hamiltonian HJ in
terms of the Bogoliubov operators. In accordance with
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the leading order term in Yosida’s ansatz, we neglect all

pairing-like terms, γ†a′↑γ
†
a↓ and γa′↑γa↓ in the exchange

Hamiltonian and obtain the following low-energy effec-
tive model:

HJ ≈
1

2

∑
α′k′αk

(
1 + ei(φα′−φα)

)
Jα′α

×
[
Sz
(
γ†α′k′↑γαk↑ − γ

†
α′k′↓γαk↓

)
+ S+γ†α′k′↓γαk↑ + S−γ†α′k′↑γαk↓

]
=
∑
k′k

ψ†k′Mψk,

(B5)

where we have set uk ≈ vk ≈ 1
2 since their energy depen-

dence only matters for higher order corrections to the
subgap excitation energies. The last line in (B5) is ex-
pressed in terms of the conduction electron 4-spinor

ψ†k = (γ†Lk↑, γ
†
Rk↑, γ

†
Lk↓, γ

†
Rk↓), (B6)

and the matrix

M =

(
Sz S+

S− −Sz
)
⊗

(
JLL JLR

1+eiφ

2

J∗LR
1+e−iφ

2 JRR

)
=Ms ⊗Ml,

(B7)

in which Ms operates in spin, and Ml in lead space.
The Hamiltonian (B5) is written in the excitation ba-

sis with γαkσ annihilating the BCS vacuum, γαkσ|0〉 = 0,
and it can be diagonalized exactly. After diagonalizing
the lead space matrixMl we obtain two decoupled chan-
nels δ = 1, 2

γ1kσ = aγLkσ + be+iφ/2γRkσ,

γ2kσ = aγRkσ − be
−iφ/2γLkσ,

(B8a)

where

a =

√
1

2

(
1 +

JLL − JRR
Jd

)
,

b =

√
1

2

(
1− JLL − JRR

Jd

)
.

(B8b)

The corresponding eigenvalues for two channels are

J1/2 =
1

2
(JLL + JRR ± Jd) ,

Jd =

√
(JLL − JRR)

2
+ 4|JLR|2 cos2

φ

2
.

(B8c)

The eigenstates of the spin matrix

Ms,δ =


|↑δk, ↑〉 |↑δk, ↓〉 |↓δk, ↑〉 |↓δk, ↓〉

1
2 0 0 0

0 − 1
2 1 0

0 1 − 1
2 0

0 0 0 1
2

, (B9)

are the singlet

|Sδk〉 =
1√
2

(|↑δk, ↓〉 − |↓δk, ↑〉) , λS = −3

2
, (B10a)

and triplet states

|T 0
δk〉 =

1√
2

(|↑δk, ↓〉+ |↓δk, ↑〉) ,

|T+
δk〉 = |↑δk, ↑〉, |T−δk〉 = |↓δk, ↓〉, λT =

1

2
.

(B10b)

Here λS/T denotes the corresponding eigenvalues and

|σδk, s〉 = γ†δkσ|0〉|s〉, with Sz|s〉 = s/2|s〉. (B11)

We note that the states (B10) and (B11) span only the
Hilbert sub-space of single particle excitations with re-
spect to the ground-state doublet |Ds〉 = |0〉|s〉. Ex-
pressed in the singlet/triplet basis (B10), the Hamilto-
nian now takes the following simple form

HLR +HJ =
∑
δk

Ek

(
|Sδk〉〈Sδk|+ Σj |T jδk〉〈T

j
δk|
)

− 3

2

∑
δk′k

Jδ|Sδk′〉〈Sδk|+
1

2

∑
jδk′k

Jδ|T jδk′〉〈T
j
δk|.

(B12)
To find a singlet subgap state from the above Hamil-

tonian (B12) we form the linear superposition

|Sδ〉 =
∑
k

Aδk|Sδk〉, (B13)

and solve the stationary Schrödinger equation

(HLR +HJ − E)|Sδ〉 = 0. (B14)

Projecting Eq. (B14) to 〈Sδq| we obtain the equation

Aδq =
3Jδ
2

∑
k Aδk

Eq − E
, (B15)

which is integrated over q to yield

1 = 3gδIE , (B16)

where gδ = πνFJδ/2 and the necessary integral, IE , for
subgap states with |E| < ∆ and large bandwidth D � ∆
is given by

IE =
1

πνF

∑
q

1

Eq − E

≈ 2

π
ln

∣∣∣∣2D∆
∣∣∣∣+

2E
(

1
2 + 1

π arcsin E
∆

)
√

∆2 − E2
.

(B17)

We note that the subgap triplet solutions can exist for
ferromagnetic coupling, gδ < 0.32,38,57 However, the An-
derson model always gives rise to antiferromagnetic ex-
change, and therefore there will be no triplet subgap



11

state. Parameterizing the leading-order energy of singlet
solutions as

E0δ = ∆(1− η2
0δ), (B18)

we finally obtain the perturbative solution valid to lowest
(second) order in gδ

|η0δ| = 3
√

2gδ. (B19)

This result matches the second order expansion (in gαα′)
of the excitation energy obtained from the polarized-spin
approximation for w = 0, B = 0, and S = 1

2 , when the
replacement gαα′ → 3gαα′ is made in (34). This could be
anticipated already by comparing the expectation value
of HJ for the state |↑δk, ↓〉 corresponding to a polarized
spin and for the state |Sδk〉:

〈Sδk|HJ |Sδk〉
〈↑δk, ↓|HJ |↑δk, ↓〉

= 3. (B20)

If the potential scattering term, HW , is included, the
perturbative result and the polarized-spin approximation
still match (see Ref. 38).

2. Magnetic field dependence

In the singlet/triplet basis, the Zeeman term takes the
following form

HB =− B̃
∑
δk

(
|Sδk〉〈T 0

δk|+ |T 0
δk〉〈Sδk|

)
+ B̄

∑
δk

(
|T+
δk〉〈T

+
δk| − |T

−
δk〉〈T

−
δk|
)
,

+
gdB

2
(|D↑〉〈D↑| − |D↓〉〈D↓|) ,

(B21)

where the last term represents the Zeeman splitting of
the ground-state doublet |Ds〉 = |0〉|s〉. In terms of the
two potentially different g-factors, we have introduced
the difference and average B-fields as

B̃ =
B

2
(gd − gce), B̄ =

B

2
(gd + gce). (B22)

For gd 6= gce, we have B̃ 6= 0 and the singlet and the
triplet are mixed to form a new eigenstate

|ψδ〉 =
∑
k

(
aδk|Sδk〉+ bδk|T 0

δk〉
)
. (B23)

Projecting the stationary Schrödinger equation

(HLR +HB +HJ − E)|ψδ〉 = 0 (B24)

to the sub-space spanned by |Sδq〉 and |T 0
δq〉 and integrat-

ing over q yields the secular equation∣∣∣∣1− 3gδ
2 [IE+B̃ + IE−B̃ ] − gδ2 [IE+B̃ − IE−B̃ ]

3gδ
2 [IE+B̃ − IE−B̃ ] 1 + gδ

2 [IE+B̃ + IE−B̃ ]

∣∣∣∣ = 0.

(B25)

We start by examining Eq. (B25) in the low magnetic

field limit where |B̃| � |g2
δ∆|. Parameterizing the energy

as before,

Eδ = ∆(1− η2
δ ), (B26)

we first expand Eq. (B25) to lowest order in

η± =

√
η2
δ ±

B̃

∆
, (B27)

to obtain the equation

η+η− −
√

2gδ(η+ + η−)− 6g2
δ = 0. (B28)

Expanding now to lowest order in B̃/(η2∆), this yields

η4
δ − 2

√
2gδη

3
δ − 6g2

δη
2
δ −

(
B̃

2∆

)2

= 0, (B29)

which has the following leading order perturbative solu-
tion

|ηδ| = 3
√

2gδ

(
1 +

3

16

B̃2

η4
0δ∆

2

)
. (B30)

This shows that the energy of the subgap state decreases
quadratically with B̃ for small magnetic fields.

In the high field limit where |B̃| � |g2
δ∆|, we find from

Eq. (B25) to lowest order in gδ that

Eδ = ∆(1− η2
δ,cl)− B̃, |ηδ,cl| ≈

√
2gδ, (B31)

which corresponds to neglecting off-diagonal terms in
the spin matrix (B9). For intermediate magnetic field
strengths, the perturbative (in gδ) solution is obtained
by numerically solving Eq. (B28).

Finally, we examine the subgap excitation spectrum in
the case where the magnetic field in the superconducting
leads is screened, i.e., for gce ≈ 0 and B̃ = B̄ = gdB/2.
Note that we assume the magnetic field to be much
weaker than the critical field and hence neglect its in-
fluence on the gap. For positive magnetic field, B̃ > 0,
the ground state is the lower energy component of the
doublet with E↓ = −B̃ and the resulting subgap exci-
tation energy, Eex = Eδ − E↓, for a particular channel
δ is depicted in Fig. 7. For high magnetic fields, this
excitation approaches the energy of the polarized spin
approximation, Eq. (34). In this case the eigenstate is

|↑δ, ↓〉 =
∑
k A
↑
δk|↑δk, ↓〉, where A↑δk is determined by pro-

jecting the Schödinger equation to |↑δk, ↓〉 with neglected
spin-flip terms S+ and S− in the exchange Hamiltonian
(B5). Changing the sign of the magnetic field simply
reverses all spins in the previous discussion.

3. Beyond the single-quasiparticle approximation

So far we have examined the excitation spectrum when
only a single quasiparticle is included and the system is
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Fig. 7. (Color online) Subgap excitation spectrum, Eex =
Eδ − E↓, with respect to the ground-state doublet |D↓〉 for
particular channel δ = 1, 2. It is assumed that the magnetic
field in the superconductor is screened gce ≈ 0. For antifer-
romagnetic coupling, gδ = 0.05, the excited state is singlet
like, which for high magnetic fields becomes polarized-spin
like |↑δ, ↓〉.

effectively described by the Hamiltonian (B5). We now
return to the original Hamiltonian and investigate the ef-

fects of the terms γ†a′↑γ
†
a↓ which were neglected to arrive

at (B5). With these terms included, second order per-
turbation theory yields the following shift of the ground-
state energy from which the supercurrent can be deduced

E(2)
s =

∑
l 6=Ds

|〈l|H ′|Ds〉|2

E
(0)
s − El

= −
∑
αk
α′k′

(1

4

Jα′αJαα′ |uα′k′vαkeiφα − uαkvα′k′eiφα′ |2

Eαk + Eα′k′

+
1

2

Jα′αJαα′ |uα′k′vαkeiφα − uαkvα′k′eiφα′ |2

Eαk + Eα′k′ − s(g − gce)B

+
Wα′αWαα′ |uα′k′vαkeiφα + uαkvα′k′e

iφα′ |2

Eαk + Eα′k′

)
,

(B32)
with |l〉 denoting all possible intermediate states and
H ′ = HJ +HW .

This second order shift in ground-state energy would
appear to influence the observable excitation energies,
but when analyzed in terms of a three quasiparticle
Yosida wavefunction ansatz (see Ref. 38), the eigenen-

ergies of the subgap states are found to be shifted in
exactly the same way, and overall the shift (B32) drops
out and the previously obtained second order result for
the excitation energies, Eq. (B19), remains valid. In this
manner, the Yosida wave-function ansatz generates a well
defined perturbative expansion for the energy differences
in the dimensionless couplings, g and w.

4. Supercurrent

Going beyond the polarized-spin approximation, we
calculate the supercurrent perturbatively from Eqs. (42)
and (B32). For B > 0 the ground state is |D↓〉 and one
finds

IS = 2∆ sin2(2θ)
[(
w2 − g2

)
F (0)− 2g2F (B̃)

]
sinφ,

(B33)
to leading order in w and g and with

F (B̃) =
1

∆π2ν2
F

∑
kk′

ukvkuk′vk′

Ek + Ek′ + B̃
(B34)

whereby F (0) ≈ 1/4 for D � ∆. For zero magnetic field,
the supercurrent simplifies to

IS =
∆

2
sin2(2θ)

(
w2 − 3g2

)
sinφ, (B35)

which always corresponds to a π-junction since g > w.
For small magnetic fields with |B̃| � ∆, we have

F (B̃)− F (0) ≈ − B̃

2π2∆
. (B36)

From Eq. (B33), it then follows that a positive B̃ de-

creases, and a negative B̃ increases the magnitude of the
supercurrent, |IS |. Notice that B̃ can become negative
for positive B when gce > gd.

For large magnetic fields with |B̃| � ∆, one finds in-
stead

F (B̃) ≈ ∆

B̃

(
ln2

(
2B̃

∆

)
+
π2

6

)
, (B37)

and as F (B̃) vanishes with increasing field, the spin is
polarized, and the supercurrent (44), obtained within the
polarized-spin approximation, is recovered.
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Gefen, S. Guéron, G. Montambaux, and J. Dalibard (El-
sevier, 2005), pp.427-478. (Available at arXiv:0501007).

32 T. Soda, T. Matsuura, and Y. Nagaoka, Prog. Theor.
Phys. 38, 551 (1967).

33 K. Satori, H. Shiba, O. Sakai, and Y. Shimizu, J. Phys.
Soc. Jpn. 61, 3239 (1992).

34 J. Bauer, A. Oguri, and A. C. Hewson, J. Phys.-Condens.
Matter 19, 486211 (2007).

35 T. Meng, S. Florens, and P. Simon, Phys. Rev. B 79,
224521 (2009).

36 M. M. Salomaa, Phys. Rev. B 37, 9312 (1988).
37 J. Schrieffer and P. Wolff, Phys. Rev. 149, 491 (1966).
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