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We present an analysis of the polymorphic energy ordering and properties of the rock salt and
zincblende structures of manganese oxide using fixed node diffusion Monte Carlo (DMC). Manganese
oxide is a correlated, antiferromagnetic material that has proven to be challenging to model from
first principles across a variety of approaches. Unlike conventional density functional theory and
some hybrid functionals, fixed node diffusion Monte Carlo finds the rock salt structure to be more
stable than the zincblende structure, and thus recovers the correct energy ordering. Analysis of
the site-resolved charge fluctuations of the wave functions according to DMC and other electronic
structure descriptions give insights into elements that are missing in other theories. While the
calculated band gaps within DMC are in agreement with predictions that the zincblende polymorph
has a lower band gap, the gaps themselves overestimate reported experimental values.

I. INTRODUCTION

Transition-metal oxides exhibit a rich variety of
intriguing phenomena, including metal-to-insulator
transitions1,2, high-temperature superconductivity3,4,
colossal magnetoresistance5, and colossal dielectric
constants6. These properties are closely related to the
strongly correlated nature of the localized d-orbital elec-
trons. The presence of electron correlations also render
transition metal oxides very challenging to model from
first principles. One classic example of a correlated metal
oxide is manganese oxide (MnO), which is of interest
for several potential applications including solar energy
conversion7, photoelectrochemical water splitting8,9, and
as a magneto-piezoelectric semiconductor10. While the
ground state of MnO is rock salt (RS), a few years ago
metastable wurtzite (WZ) was grown by thermal decom-
position on a carbon template11. More recently, predic-
tions of a reduced band gap and favorable hole transport
properties in the wurtzite phase7,12 have been verified in
experiment13.

Manganese oxide possesses a d5 electronic structure,
and exhibits antiferromagnetic ordering of the Mn atoms.
Several recent first-principles studies have explored in
detail the properties of two polymorphs of MnO: rock
salt (RS) and zincblende (ZB)12,14–16. Within the
RS and ZB polymorphs, there is antiferromagnetic or-
dering along the [111] (AF2) and [001] (AF1) direc-
tions, respectively14. Although rock salt is the ground
state structure, the generalized gradient approxima-
tion (GGA) and some hybrid functionals (HSE06) erro-
neously predict that the zincblende structure is lower in
energy12,14. The failure of conventional DFT and even
some hybrids to obtain the correct energetic ordering
shows the importance of correlation in the phase stabil-
ity of these materials. The challenges in describing cor-
related materials within DFT arise from its approximate

treatment of electron correlation and exchange. This is
true whether one uses the local density approximation17,
the generalized gradient approximation17, or a hybrid
functional18–20. The accuracy and transferability of a
given approximation across a spectrum of materials, or
even for different polymorphs of the same material, must
ultimately be justified a posteriori, by comparison to ex-
periment.

By contrast, in this work we use fixed-node diffu-
sion Monte Carlo (FN-DMC), a type of quantum Monte
Carlo method, to assess the properties of the zincblende
and the rock salt polymorphs of MnO. The reasons are
twofold. First, in quantum Monte Carlo, statistical sam-
pling is used to approximate the many-body wave func-
tion and evaluate total energies directly from the first-
principles many-body Schrödinger equation, greatly re-
ducing the extent of approximation necessary. Quantum
Monte Carlo methods therefore offer a parameter-free,
systematically improvable approach. Because of their di-
rect treatment of electron correlation, they are amongst
the most accurate electronic structure approaches avail-
able today21–23. Second, although the FN-DMC method
is in principle exact when the nodal structure is exactly
known, there remain outstanding questions as to the
practical accuracy of the technique. It is important to
test how well simple nodal surface do in practice. This
material system offers a test of the capabilities, using
“best practices” for DMC simulation of solids as they are
currently understood, to obtain quantitative descriptions
of challenging correlated oxide materials.

For MnO, our results show that the DMC method ob-
tains accurate descriptions of the ground state of both the
RS and ZB phase, including their relative energies and
lattice constants. We find that the magnitude of the fixed
node error for the ground state is small in comparison to
the substantial improvement that comes from adopting
an explicitly correlated approach. Because DMC samples
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the true many-body wave function, we analyze the prop-
erties of this highly accurate model to assess the phys-
ical reason for the failure of DFT methods. Thus, the
use of FN-DMC helps to reveal aspects, such as charge
fluctuation and localization, that may not be accurately
captured by other methods. In agreement with other the-
oretical methods, we also find that the band gap of the
ZB phase is substantially lower than that of RS phase ac-
cording to FN-DMC. However, FN-DMC overestimates
the band gaps of both polymorphs in comparison to ex-
periment. We discuss possible reasons for the overesti-
mate.
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FIG. 1. (Color online). The rock salt (left) and zincblende
(right) polymorphs of manganese oxide; both exhibit an anti-
ferromagnetic ordering of Mn atoms. The grey atoms are oxy-
gen and the blue or red are opposing spin manganese atoms.
In the rock salt structure each Mn atom possesses a neighbor-
ing octahedral field of O atoms; in the zincblende structure
the neighboring field of O atoms surrounding each Mn atom
is tetrahedral instead.

II. DFT AND DMC METHODOLOGY

The QMC calculations reported here were carried out
within the FN-DMC framework as implemented in the
QWalk code24, with single-determinant Slater-Jastrow
trial wave functions constructed from DFT Kohn-Sham
orbitals, with variance-minimized two-body Jastrow co-
efficients, and a time step of 0.004 au. We also assessed
the sensitivity of the DMC energy to various forms of
trial wave functions, such as two and three body Jastrow
factors and both energy and variance minimization to
optimize the Jastrow parameters. However in all cases
we find the DMC energies to be statistically equivalent.
This is similar to our observations for DMC simulations
of the wide band gap material zinc oxide, also using
small-core BFD pseudopotentials and a similar simula-
tion strategy25.

Ground state energies were determined by twist av-
eraging the DMC energies calculated at real-valued k-
points, which corresponds to a 2 × 2 × 2 grid in each
supercell. Scalar-relativistic energy-consistent Hartree-
Fock pseudopotentials ([Ne] core for Mn) as implemented
by Burkatzki, Filippi, and Dolg (BFD)26 were used to
remove the core electrons. These pseudopotentials are

designed for use within QMC and there are now several
indications in the literature that they are well-suited for
DMC simulations of solids27–30. The rock salt structure
of MnO has previously been studied within DMC31; to
this analysis we now provide a comparison between the
ZB and RS polymorphs, physical insights into the elec-
tronic structure of the two phases, and statistical analysis
of the many body wave functions to reveal the reasons
for the failure of conventional and hybrid DFT to obtain
the correct energy ordering.

To obtain the trial wave functions for the DMC calcu-
lations, we carried out DFT simulations for the RS and
ZB phases. For these simulations, we used the CRYSTAL
code32 and gaussian-type localized basis sets to expand
the Kohn-Sham orbitals. The DFT results presented here
implement the “PBE1x” framework in which the degree
of exact exchange mixing α is systematically varied. We
do this to study the effect on both the DFT results them-
selves as well as the the final DMC results arising from
different selections of trial wave functions.

III. DENSITY FUNCTIONAL THEORY
RESULTS AND CONSTRUCTION OF TRIAL

WAVE FUNCTIONS

A. Effect of Exchange Mixing
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FIG. 2. (Color online). The energy difference EZB − ERS

according to DFT-PBE1x, obtained from all electron calcula-
tions (orange) and with Burkatski-Filipi-Dolg (Hartree-Fock)
pseudopotentials (blue). According to all electron results, for
α = 0 the ZB phase is lower in energy but as α increases
the RS phase becomes stable. The crossing occurs around
α = 10%. When Burkatski-Filipi-Dolg pseudopotentials are
used, the trends are very similar.

To begin, we construct a set of trial wave functions for
the DMC calculations using the DFT-PBE1x approach,
in which the degree of exchange mixing α is varied be-
tween 0 and 60%. In Figure 2, we illustrate the ground
state energy difference (EZB − ERS) per formula unit
MnO, as a function of the degree of exchange mixing
used in the DFT-PBE1x calculations. For comparison,
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FIG. 3. (Color online). The partial density of states for O 2s,2p and Mn 3d orbitals, as obtained within DFT for different
degrees of exchange mixing α. As α increases, the band gap becomes larger as expected. Also below the valence band maximum,
the p− d hybridization increases as the relative Mn 3d orbital energies near the VBM drop.

we also show all electron results as well. It is encourag-
ing that the two sets of results are quite similar, which
suggests that the relativistic Hartree-Fock pseudopoten-
tials are not affecting the analysis substantially. For these
calculations, 4 atom unit cells were used for both RS and
ZB in conjunction with an 8 × 8 × 8 Monkhorst-Pack
sampling of k-points in the Brillouin zone. The RS lat-
tice constant was set to 4.43 Å, matching experiment33,
while the ZB lattice constant was set to the PBE0 lattice
constant of 4.73 Å since the experimental value is not
known. Positive values of (EZB −ERS) in Fig. 2 denote
more stable rock salt phase.

Consistent with previous results12,14, we find that
without exchange mixing (α = 0%, PBE) the ZB phase
is more stable (by ≈ 70 meV/fu in our case, both for all
electron and BFD pseudopotentials. As the degree of ex-
change mixing is increased, the RS phase becomes more
favored. For instance, for α = 60% RS has become more
stable by ≈ 250 (BFD) or 300 (all electron) meV/fu. The
cross-over occurs around an exchange mixing of α ≈ 10%.
We note the wide variability of relative DFT energy dif-
ferences predicted for different selections of α in Figure
2. For oxides and wide gap semiconductors, although
the empirical choice α = 25% in hybrid calculations is
motivated from perturbation theory34 and appears to be
quite reasonable in many instances, sometimes tuning of
the parameter is required35. This sensitivity to simula-

tion parameters renders true quantitative predictions of
energy ordering and phase stability challenging within
the hybrid DFT framework.

Regarding the energy differences shown in Fig. 2,
our results are consistent with previous results in which
several DFT functionals including the Heyd-Scuseria-
Ernzerhof screened exchange hybrid functional (incor-
rectly) find ZB to be more stable than RS12,14. For in-
stance, using HSE06, the energy difference EZB−ERS is
reported to be -28 meV/fu12. There are some cautionary
notes to be aware of when comparing our results in Fig. 2
to others, however. We are using BFD (Hartree-Fock)
rather than DFT pseudopotentials since our primary in-
terest is to generate the best possible QMC description,
and not to carry out a DFT study per se. The more local-
ized treatment of the core within Hartree-Fock influences
DFT results reported here. Also, the lattice constants are
fixed to generate the results of Fig. 2, rather than op-
timized separately for each value of α considered. This
affects the precise energy differences as well as the “cross-
over” value of α. Qualitatively, however, Figure 2 shows
the expected behavior that is consistent with previous
results12,14 for this system, and the BFD results appear
to be a good starting point for DMC analysis.
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FIG. 4. (Color online). The total absolute spin on the
manganese atoms increases with increasing exchange weight
α. The spin on the ZB phase is always lower than that of the
RS phase.

B. Density of States

To better understand the DFT trends in Fig. 2, in Fig.
3 we show the density of states for both phases for dif-
ferent selections of α. The black lines are the total DOS,
while blue and red respectively indicate states with O
2s,2p and Mn 3d character. The first trend, as expected,
is that increasing α widens the band gap in all cases.
In addition, α also has an effect on the relative position
of the O 2p and Mn 3d orbitals below the valence band
maximum (VBM). For both phases, for α = 0% there
are two distinct groups of states: one near the VBM
dominated by Mn 3d orbitals, and another lower in en-
ergy dominated by O 2p orbitals. As α increases, the
mixing between these sets of orbitals below the VBM
increases and the two groups begin to merge; α is essen-
tially a tuning parameter that governs the degree of p-d
hybridization in the materials. A priori it is not possi-
ble to know which degree of hybridization best captures
reality (nor do we expect that sweeping through α will
span all possibilities). However, to first order increas-
ing α has the effect of canceling the self-interaction error
that is present within DFT. Given the trends in Fig. 2,
it appears that RS benefits more from this cancellation
than ZB (i.e., its energy decreases faster as α increases).

Crystal field theory provides a plausible explanation
for why this may be the case. In RS the octahedral field
of O surrounding each Mn splits the five degenerate 3d
orbitals into three lower energy t2g and two higher en-
ergy eg orbitals. The t2g orbitals are non-bonding, but
the eg orbitals directly overlap and hybridize with the O
ligands to form bonding eg and antibonding e∗g states (see
Fig. 3 for RS for α = 25%). For RS the direct orbital
overlap results in a large hybridization and large crystal
field splitting between the t2g, eg levels. By contrast,
in the ZB phase the tetrahedral coordination of the Mn

3d orbitals results in a splitting of the Mn d orbitals into
two lower energy e orbitals and three higher energy t2 or-
bitals. This time the e orbitals are non-bonding while the
t2 orbitals interact with the O ligands (see Fig. 3 for ZB
for α = 25%). The difference is that the t2 orbitals are
oriented in between the O orbitals, so the spatial over-
lap now is less direct. Although the interaction creates
bonding and antibonding t2 states, the resulting crystal
field splitting e, t2 is smaller for ZB.

We speculate that the direct overlap of orbitals for the
RS phase, in contrast to the indirect overlap for ZB, con-
tributes to the difficulty of accurately modeling the RS
phase. Greater overlap implies more electrons will oc-
cupy the same region in space, which can only be cap-
tured by a very good description of electron correlation
and exchange. The approximate description of electron
correlation in DFT may therefore more adversely affect
RS MnO than ZB MnO, causing its energy to be higher
than it should be and resulting in the wrong energy or-
dering.

C. Total Magnetic Moment

Before proceeding to the DMC results, we also show in
Fig. 4 the total absolute spin on each of the Mn as a func-
tion of the exchange weight α. For both phases, the total
spin increases with increasing α. The effect of increasing
α diminishes over the domain as the spin approaches 5,
the total spin in the ionic limit of the high spin d5 oxide.
Furthermore, the total spin on the manganese atoms of
ZB is consistently less than those of RS, which is again
related to its smaller crystal field splitting.

IV. RESULTS FROM DMC DESCRIPTION

A. Effect of Trial Wave Function

For the DMC calculations, our first goal is to determine
the trial wave function that gives the best description of
each phase. Figure 5 shows the total DMC energies for
both the RS (red) and ZB (blue) phase as a function
of the α used to generate the trial wave function for a
4 atom unit cell. As DMC is a variational technique,
the α that results in the lowest DMC energy gives the
best representation of the true nodal surface. Thus, we
can use α to vary the nodes of the trial wave function.
Although the exact nodal structure is not known, it is
expected to sample a wide range since this parameter
tunes an important physical quantity: the hybridization
between oxygen and manganese.

For both RS and ZB, a minimum in the DMC en-
ergy is observed around α ≈ 25%. It is interesting to
note that this is similar to several other transition metal
oxides for which minima in DMC energy tend to occur
in a range 15% < α < 35% including VO2

27, FeO30 ,
CaCuO2

36, LaCuO4
36, and ZnO25. We speculate that
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FIG. 5. (Color online). The effect of varying the trial
wave function in DMC using different DFT-PBE1x exchange
weights α on the DMC total energies for RS and ZB (error
bars are smaller than the marker size). Both phases demon-
strate a minimum energy around α = 25%, and maintain
similar relative energies over the domain.
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FIG. 6. (Color online). The DMC energies of the RS
and ZB phase (eV/fu), relative to the extrapolated zero time
step DMC energy of the ZB phase, plotted as a function of
timestep, for a 4 atom supercell. The inset shows the energy
difference EZB − ERS (eV/fu) vs. time step.

α = 25% may tend to offer the best description of hy-
bridization between the transition metal d and the O 2p
orbitals, although we emphasize that this may not al-
ways be the case. For both phases the overall variation
of the total DMC energy is less than 0.15 eV/fu across
the full range sampled here, indicating that variations in
nodal structure can give rise to total energy differences
of roughly this magnitude. Nevertheless, the exchange
weight that offered the lowest ground state DMC energy
within the 4 atom system was used for both polymorphs
for all subsequent calculations. This exchange weight was
calculated by applying a Bayesian quadratic fit37 to the

data of Fig. 5 from which a minimum was determined :
αmin ≈ 25.0±0.7% for rock salt, and αmin ≈ 28.1±0.4%
for zincblende.

From the parabolas in Fig. 5, it appears that when
comparing energy differences between two structures,
variations in the nodal structure benefit from a cancel-
lation of errors. The DMC energy differences (space be-
tween the parabolas for a given α) are even less sensi-
tive to changes in the nodal surface that arise from vary-
ing α in the trial wave function. The total variation in
(EZB − ERS) per fu across the full range of α spanned
is now only 0.053 ± 0.010 eV (in spite of the 0.3 eV/fu
variation exhibited by the DFT starting point calcula-
tions). We caution that since these DMC results are for
4 atom cells, they suffer from finite size effects and there-
fore the precise value (EZB−ERS) is not meaningful (we
later carry out a full extrapolation of (EZB − ERS) for
increasing supercell size). Our focus here instead is on
the sensitivity of (EZB−ERS) to the trial wave function,
which is quite small. It is encouraging that DMC gives
consistent results in spite of the large variability of the
starting point.

B. Effect of DMC Timestep

In diffusion Monte Carlo, a Green’s function approach
is used to propagate a set of walkers in a 3Ne-dimensional
space (Ne is the number of electrons), to statistically
sample the many-body wave function. The Green’s func-
tion projector is exact only in the limit of vanishingly
small time step, but in practice implementation of DMC
requires a finite time step, which introduces an error in
the projected energy38,39. Therefore, it is important to
show that errors in the projected energy due to the finite
time step are small, in comparison to the energies of in-
terest. In Fig. 6, we show the DMC energy for RS and
ZB (4-atom supercells, twist averaged) as a function of
the DMC time step, and the extrapolation of the energy
to infinitesimal time step. For both phases the depen-
dence of the energy on the time step shows a linear or
near-linear dependence, which is expected for sufficiently
small time steps. For time steps smaller than 0.01 au, for
each phase the energy varies within ≈ 0.1 eV/fu of the
extrapolated value.

Most importantly, the inset of Fig. 6 shows the energy
difference EZB − ERS (eV/fu) vs. the DMC time step,
which is the quantity which we are ultimately interested
in resolving. This figure shows that energy differences
somewhat benefit from a cancellation of time step errors.
For instance, in the limit of zero time step the energy
difference is 0.04(1) eV/fu. For a time step of 0.01 au,
the computed energy difference instead is around 0.03(1)
eV/fu, which indicates a time step error in the energy
difference of ≈ 0.01(1) eV/fu. For a time step of 0.004
au, the computed energy difference is within error bars
of the extrapolated energy difference. For the remainder
of this work, we use a DMC time step of 0.004 a.u. The
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uncertainty in EZB − ERS arising from the time step
error here is then less than 0.01 eV/fu, which (as we will
demonstrate later) is smaller than the energy difference
that we are trying to resolve.

C. Lattice Constants
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FIG. 7. (Color online). Extrapolated values of lattice con-
stants according to DMC for ZB and RS MnO are 4.73±0.004
Å and 4.47±0.005 Å respectively. The RS value is within 1%
of experiment 4.43 Å33. The experimental value for ZB is un-
known, but the DMC value matches the PBE0 value of 4.73
Å.

Since energy differences due to using the wrong lattice
constant can be significant when resolving small differ-
ences in total energies, it is necessary to find the opti-
mal lattice constants for both phases within DMC itself.
Finding lattice constants in DMC is complicated by the
fact that DMC simulations of bulk solids themselves suf-
fer from both one-body and many-body finite size effects.
The former are accomodated by twist-averaging, but the
latter arise from a spurious correlation between image
electrons in the computational domain which typically
reduces the total energy40. For large enough supercells,
the energy variations scale as 1/V , where V is the volume
of the cell40 (or 1/N , where N is the number of atoms in
the supercell, since N is proportional to V ).

Using the optimal α for each phase, we evaluated the
total DMC energy of the RS and the ZB phase as a func-
tion of the lattice constant a, for supercells of size 4, 8,
and 16 atoms. Fig. 7 shows the minimum a obtained
for each phase and supercell size. We find that the op-
timal lattice constant is not the same for different sized
supercells but that they increase with increasing super-
cell size. To our knowledge, there are no studies of finite
size effects on lattice constants within DMC, which would
be an interesting avenue for further analysis. From the
results in Fig. 7, we speculate that many-body finite
size effects bias towards smaller lattice constants. For
small supercells, the calculated total energies are artifi-

cially low, dominated by the finite size effect. The lattice
constant is drawn towards smaller values, which further
enhances the stabilizing influence of the spurious image
electron correlation. As the supercell size increases, the
finite size effect is reduced and the lattice constants bet-
ter reflects the true values.

In any case, extrapolating our results to the thermo-
dynamic limit N → ∞, the lattice constants for the
ZB and RS polymorphs of MnO were determined to be
4.730±0.004 Å and 4.470±0.005 Å. While there is no ex-
perimental measurement for the ZB structure, the lattice
constant for the RS structure has been previously mea-
sured to be 4.43 Å33, demonstrating that in this case our
DMC approach can estimate lattice constants to within
∼ 1% of experiment. For the ZB phase the estimated
lattice constant matches well the PBE0 value of 4.73 Å
obtained here.

D. Total Energies and Phase Stability
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FIG. 8. (Color online). (a) The extrapolated DMC total
energies of the RS and ZB phase; the RS phase is found to
be lower in energy by EZB − ERS = 132± 6.5 meV/formula
unit. (b) Compiled existing results and current DMC results
on the energy ordering of MnO ZB and RS polymorphs.
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Finally, using the optimal values of α and the DMC-
optimized lattice constants for each phase, we are able to
estimate the energy difference for the two phases in the
thermodynamic limit. We extrapolated the DMC total
energies to the thermodynamic limit using supercells of
size N = 8, 16, and 32 atoms. Our extrapolated DMC
results, shown in Fig. 8a, find that the RS phase is more
stable than ZB by 132 ± 6.5 meV/fu. A summary of our
DMC results, in comparison to results obtained using
other theories, is presented in Fig. 8b. It is interest-
ing to note the excellent agreement with the estimate pf
131 meV/fu obtained using the random phase approxi-
mation to the correlation energy, in conjunction with the
application of a Hubbard U as well as a nonlocal exter-
nal potential V (which are carefully chosen to obtain the
correct p-d coupling between unoccupied and occupied
states, respectively)12. It is encouraging that fixed-node
DMC with single determinant wave functions leads to
a good description of the basic properties of this highly
correlated, antiferromagnetic system. This suggests that
this technique can be used for other, similarly compli-
cated materials.

E. Charge Fluctuations

Since they predict different relative energy ordering, a
natural question is “what changed between the descrip-
tion of the materials in DFT and in DMC?” To pro-
vide some insights, in Fig. 9 we present the site-resolved
charge fluctuations, also known as the compressibility,
according to both DFT (a Slater determinant composed
of the Kohn-Sham orbitals) and DMC. The compress-
ibility is the expectation value 〈Ψ|(n̂i − 〈n̂i〉)2|Ψ〉, where
n̂i is the number operator on the Voronoi polyhedron
surrounding atomic site i. The expectation value is eval-
uated for a given site by sampling over the DMC con-
figurations of the wave function. The compressibility
represents the degree to which the number of electrons
around a given site fluctuate about the average when the
many body wave function is properly sampled. Larger
compressibility indicates more fluid charges and delocal-
ized states, while smaller compressibility indicates larger
barriers to charge fluctuations and localized states. The
charge fluctuations, resolved into majority and minority
spins on Mn atoms, are compared for a Slater determi-
nant of DFT (PBE, HSE06, and PBE0) orbitals and our
DMC results. We have included the site fluctuations ac-
cording to Hartree Fock as well for comparison.

According to Figure 9, the charge fluctuations vary
substantially amongst the different theories. As ex-
pected, across the board the fluctuations are largest
for PBE (green markers) and smallest for Hartree Fock
(brown markers). The DMC results (red markers), pre-
sumably the closest to reality, lie somewhere in between.
Both PBE0 and HSE06 are observed to improve the de-
scription in comparison to PBE, decreasing the charge
fluctuations towards the DMC values. It is remarkable

that HSE06 and PBE0 both recover the correct qualita-
tive ordering of the fluctuations on the different atomic
species. By contrast, PBE does not get the qualitative
ordering correct. For example for ZB the Mn fluctuations
are all larger than the O fluctuations, different from the
DMC result. Further, Mn in the high spin d5 configura-
tion should have the compressibility of the majority spin
higher than that of the minority. This is properly cap-
tured by FN-DMC, HF, and the hybrids. By contrast,
PBE misses this physics entirely both in RS and ZB: ma-
jority and minority spin Mn have similar compressibility.
As Fig. 9 shows, PBE does not describe the localiza-
tion properly. Ultimately, obtaining the correct energy
ordering depends on obtaining a good description of the
localization of the states in both phases. Given the in-
ability to properly describe the localization, PBE cannot
be expected to give quantitative information about the
relative stability of the materials in question.
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FIG. 9. (Color online). The charge fluctuations 〈Ψ|(n̂i −
〈n̂i〉)2|Ψ〉 site-resolved onto Mn and O atoms from Slater de-
terminants of PBE, PSE0, HSE06 orbitals, in comparison to
DMC and Hartree-Fock for rock salt (top) and zincblende
(bottom). The trends demonstrate that both PBE0 and
HSE06 improve the description of the materials, bringing the
fluctuations closer to that of the DMC values.
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Method – Rock salt Band Gap (eV)

Conductivity [41] 3.8− 4.2
Optical Absorption [42] 3.6− 3.8
Photoemission spectroscopy [43] 3.9± 0.4
Photocurrent measurements [44] 3.4

LDA [45] 0.78
GGA [46] 0.7
HSE03 [46] 2.6
LDA + GW [45] 3.5
(GGA+U) + GW [7] 3.36
GGA + GW [46] 1.7
HSE03 + GW [46] 3.4
DMC [47] 4.8 ± 0.2
DMC (QP) (this work) 4.55± 0.26
DMC (OG) (this work) 4.47± 0.16

Method – Zincblende Band Gap (eV)

(GGA+U) + GW (Mn1−xZnxO, x = 0.5) [13] 2.30

(GGA+U) + GW [7,13] 2.13, 2.38
DMC (QP) (this work) 3.55± 0.17
DMC (OP) (this work) 3.84± 0.14

TABLE I. Compiled existing data and current DMC results
on the band gaps of MnO ZB and RS polymorphs.

F. Optical Excitation Energies

Lastly we turn to the DMC calculation of the opti-
cal excitation energies for both polymorphs. Interest
in the polymorphs of MnO has grown recently thanks
to computational suggestions that for d5 oxides the
zincblende polymorph, although metastable, should have
a smaller band gap and a favorable band like hole trans-
port mechanism7. Subsequent non-equilibrium growth of
Mn1−xZnxO alloys in the wurtzite structure and photo-
electrocatalytic device measurements have recently con-
firmed the predictions13. A summary of previously re-
ported band gaps, both from experiment and computa-
tion, is given in Table I.

To these results, we now add the the band gaps of the
two phases as obtained from DMC using a procedure that
has previously been used successfully22,48,49. For both
phases, we calculate both the quasiparticle gap (QP) and
the optical gap (OG). We obtain the quasiparticle gap by
calculating the difference between the electron affinity
(EA) and the ionization potential (IP):

EA = E(N + 1)− E(N) , (1)

IP = E(N)− E(N − 1) ,

QP = EA− IP .

Here, N denotes the number of electrons in the neutral
solid, (N+1) denotes addition of an electron, and (N−1)
denotes removal of an electron. The trial wave functions
for the DMC calculations to obtain E(N+1), E(N), and
E(N−1) in the expressions above are all built from DFT
Kohn-Sham orbitals obtained from charge neutral DFT
calculations. For the case of E(N + 1) (or E(N − 1)),

DMC simulations of the charged system is carried out
by adding an additional electron to the lowest unfilled
orbital (or removing an electron from the highest filled
orbital). Strictly the QP gap should be calculated in
the limit N → ∞; instead we use a 32 atom supercell.
Both RS and ZB exhibit an indirect gap, but due to zone
folding for the 32 atom supercells the gap becomes direct
Γ → Γ in both cases. Thus we have calculated the QP
gap according to Eq. (1) by evaluating the energies at
the Γ point.

The optical gap is obtained as

OP = EΓ→Γ − Eo . (2)

In this expression Eo denotes the ground state energy
and EΓ→Γ denotes the energy of the first optically excited
state. We estimate the energy difference by evaluating Eo

and EΓ→Γ at Γ, and EΓ→Γ is calculated by promoting an
electron from the highest occupied Kohn-Sham orbital at
Γ to the lowest unoccupied orbital in the construction of
the Slater determinant. For the OG, once again 32 atom
supercells are used. For both phases, the OP and the
QP obtained in this manner are close, within error bars
of each other.

According to Table I, compared to previously reported
DFT and GW values our DMC results are high (but our
gap for the rock salt phase is similar to Kolorenc and Mi-
tas’s previous DMC results47). While DMC also predicts
that ZB has a lower gap by around 1 eV than RS, the
DMC gaps themselves appear to overestimate the exper-
imental values by 0.5 – 1 eV. We suggest several possible
reasons for this. The first is that finite size effects affect
the calculated values. A second possibility is that the
trial wave functions generated for excited states may not
be as good as those generated for the ground state. If the
nodal structure of the excited state wave function is more
complex, then nodal errors will result in an overestimated
gap.

In fact, we note that the case of MnO is particularly
challenging for DMC. According to the picture from Za-
anen, Sawatsky, and Allen50, the 3d transition metal ox-
ides can be classified as either Mott-Hubbard insulators
or charge transfer insulators, based on the degree of 3d
orbital filling. The early 3d elements form Mott-Hubbard
insulators, for which the gap appears across states of
d orbital character (upper and lower Hubbard bands).
The late 3d elements form charge transfer insulators, for
which the gap appears across O 2p and TM 3d states.
The case of d5 MnO lies just at the transition, suggest-
ing that the VBM has mixed p − d character. Since the
excited state calculation requires removing an electron
from the VBM, the sensitivity to the trial wave func-
tion is expected to be particularly strong. We suspect
that obtaining a better description of the gap depends
strongly on generating trial wave functions which more
accurately capture the nature of the VBM.
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V. CONCLUSIONS

In this work, we have utilized FN-DMC to elucidate the
electronic properties and stability of the RS and ZB poly-
morphs of MnO. We find that DMC predicts a ground
state energy ordering of these two phases in agreement
with experiment without the use of any parameters. The
energy ordering is insensitive to the choice of the trial
wave function, even though different DFT trial wave
functions predict very different phase stabilities. DMC
lattice constants are also in good agreement with experi-
ment. Analysis of the site resolved charge fluctuations il-
lustrate some of the primary problems with conventional
DFT and show that hybrid functionals make improve-
ments. Finally, we find that the DMC calculated band
gaps indicate that the tetrahedrally coordinated phase
has a lower gap, but that (within our approach) DMC
overestimates the gap according to experiment. We at-
tribute this to the challenge of capturing proper descrip-
tion of p−d hybridization in the trial wave functions used
in the DMC calculations.
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