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Topological insulators in the presence of strong Coulomb interaction constitute novel phases of
matter. Transitions between these phases can be driven by single-particle or many-body effects. On
the basis of ab-initio calculations, we identify a concrete material, i.e. Ca2PtO4, that turns out to be
a hole-doped weak topological insulator. Interestingly, the Pt-d orbitals in this material are relevant
for the band inversion that gives rise to the topological phase. Therefore, Coulomb interaction
should be of importance in Ca2PtO4. To study the influence of interactions on the weak topological
insulating phase, we look at a toy model corresponding to a layer-stacked 3D version of the Bernevig-
Hughes-Zhang model with local interactions. For small to intermediate interaction strength, we
discover novel interaction-driven topological phase transitions between the weak topological insulator
and two Dirac semimetal phases. The latter correspond to gapless topological phases. For strong
interactions, the system eventually becomes a Mott insulator.

PACS numbers: 71.10.Fd, 71.20.-b, 71.30.+h, 73.20.-r

I. INTRODUCTION

Two classes of materials, which are in the center of fo-
cus of condensed-matter physics, are topological insula-
tors (TIs) and strongly correlated systems. So far, their
studies have taken rather disjunct paths: the striking
feature of the TIs, namely the existence of stable (Dirac)
surface/edges states in a bulk insulating system, has first
been predicted on the basis of “non-interacting” band
models1–5. In the case of the “Bernevig-Hughes-Zhang”
(BHZ) model6, it has then triggered the first experimen-
tal realization of a two-dimensional (2D) quantum-spin-
Hall (QSH) system based on CdTe/HgTe/CdTe quantum
wells7. In this model, as well as in other semiconduc-
tor materials8–10 a “band-inversion” mechanism is cru-
cial, where conduction and valence bands are inverted by
spin-orbit coupling (SOC). This “non-interacting” path
was soon carried over to 3D TIs11–16, where the search
for the corresponding 2D massless Dirac states is addi-
tionally spurred by the quest for a deeper understanding
of topological states of matter as well as wider spintronics
applications.

Notable exceptions in this path to TIs are a recent im-
plementation of local correlation effects into the 2D BHZ
model, the Kane-Mele-Hubbard model as well as propos-
als for a Kondo TI state17–27. In the study of the 2D
BHZ model, some of us showed that a system with topo-
logically trivial parameters in the absence of interactions,
i.e. a band insulator, can be driven into a QSH phase by
local electronic correlations28. Interestingly, this transi-
tion can even become of first-order29.

Here, we demonstrate on the basis of density-
functional theory (DFT) that a weak TI phase can be
achieved in a concrete 5d transition-metal compound,
i.e. hole-doped Ca2PtO4. This discovery stimulates us
to study electronic correlation effects embedded in a toy
model for 3D weak TIs, which is a many-body general-
ization of the layered BHZ model. We expect that the

concrete material example combined with our many-body
study of the layered BHZ model will provide a rich ma-
terial playground for a deeper understanding of the com-
petition between topology and interactions, in particular,
in weak TIs. Somewhat surprisingly, we predict a topo-
logical phase transition from a weak TI phase to a Dirac
semimetal (DSM) phase that is driven by interactions.
The DSM phase is characterized by 3D bulk Dirac points
that are of topological origin. The reason is that their
existence (even in the non-interacting limit) is forced by
the change of a 2D topological invariant as a function of
one wave vector, e.g. kz, if the 2D invariant is calculated
for a fixed value of kz.

When the most general on-site electronic correlations
are included in our model via a DMFT calculation, we
obtain a rich physics for small to intermediate interac-
tions: Both the weak TI and the DSM phases are stable
and the transitions between them can even be driven by
electronic interaction. To the best of our knowledge, this
is the first prediction for transitions between a trivial
band-insulator to a DSM phase to a weak TI triggered
by Coulomb interactions.

This article is organized as follows. In Sec. II, we
present our DFT calculation of Ca2PtO4 which turns out
to be a hole-doped weak TI. In Sec. III, we then draw our
attention to an effective model corresponding to layers of
quantum spin Hall systems. This model allows us to
investigate interaction-induced topological phase transi-
tions between weak TIs and DSMs. Finally, we conclude
in Sec. IV.

II. CA2PTO4, A HOLE-DOPED WEAK TI

In the first part of this work, we motivate the study
of correlation effect on weak-TIs and Dirac semimetal
phases by presenting a concrete material system as the
starting point. As a principle, when examining the ex-
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FIG. 1. (Color online) Electronic structure of Ca2PtO4 along
the high-symmetry direction N( 1
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yellow region shows the topological band gap which contains
two inversions at Γ and Z between the bands with mainly
O-pz (red circle) and Pt-dxy (green circle) characters.

perimental possibility of realizing an interacting topologi-
cal phase, electronic correlations and strong SOC should
ideally coexist. Most of the TIs discovered in 3D are,
however, semiconductors, whose nontrivial topology is
generated by the strong SOC of heavy elements, such as
bismuth or mercury. On the other hand, strong electronic
correlations usually appear in the incompletely filled d-
or f -electron shells with narrow energy bands. Thus, it
would be desirable to find a nontrivial topology from a
d − p band inversion. Then, electronic correlations and
topology could both matter. In fact, such a transition
can appear in 5d transition-metal-oxides. In this respect,
perovskite iridates30–33 have been theoretically predicted
to be a possible host for a correlated TI phase. Here,
we propose that platinum oxides can be another promis-
ing platform for studying correlated TIs. Compared to
iridates, this is rather unexplored territory. The exam-
ple discussed below, i.e. the hole-doped transition metal
compound Ca2PtO4, shows that a weak TI phase can
appear in platinum oxides which has not been found ex-
perimentally in iridates so far.

In this work, we consider the K2NiF4-type struc-
ture of Ca2PtO4 with space group I4/mmm. The lat-
tice parameters taken from an ab-initio geometry opti-
mization34, are a = 3.87 Å and c = 11.42 Å. The

FIG. 2. (Color online) (a). The presence of spin-orbital cou-
pling induces a band-inversion between O-pz (red line) and
Pt-dxy (green line) bands, which characterises the nontriv-
ial topology of this system. (b) A topological invariant can
be defined for the topological gap shown in the light-yellow
region of Fig. 1. It is found, that this gap possesses a weak-
topological nature. The +/- sign associated with each high-
symmetry point is the parity products for the bands below
the topological gap at this TRIM. In the coordinate system
defined in Fig. 3, the topological invariant is given as 0; (111).

density-functional theory (DFT) calculations were car-
ried out within the full-potential linearized augmented
plane-wave (FP-LAPW) method35, implemented in the
package WIEN2k36. KmaxRMT = 9.0 and a 10× 10× 10
k-mesh were used for the ground-state calculations. RMT

represents the smallest muffin-tin radius and Kmax is the
maximum size of reciprocal-lattice vectors. Spin-orbit
coupling is included by a second variational procedure.
The generalized gradient approximation (GGA) poten-
tial37,38 is used in all calculations. The surface elec-
tronic structures are further calculated using the max-
imally localized Wannier functions (MLWFs)39, employ-
ing the WIEN2WANNIER40 interface. The MLWFs are
constructed in a non-self-consistent calculation with an
8× 8× 8 k-mesh.

In Fig. 1, we display our electronic structure results
of Ca2PtO4 along a high-symmetry path that connects
the eight time-reversal invariant momenta (TRIMs). The
majority of the states shown are from Pt and O orbitals,
whereas the Ca states only appear at above 4 eV. DFT
predicts the system to be a metal with one single band
crossing the Fermi level (EF = 0) being of Pt dx2−y2
character.

In addition, we observe the striking presence of a topo-
logical gap at around -4.5 eV. As shown in the light-
yellow region in Fig. 1, there is a well-established energy
gap of size 100 meV, the unique feature of which is that
it is due to two band inversions at Γ and Z. They are
characterized by the interchange of the band characters
(shown as the switch of the green and red colors occur-
ing at the Γ and Z points of Fig. 1 from the band below
to that above the gap in the yellow region.) Specifically,
both these inversions involve O-pz (red circle) and Pt-
dxy (green circle) bands. This topological gap is purely
induced by the strong SOC of Pt.

As shown in Fig. 2(a), without SOC, the O-pz (red
line) and Pt-dxy (green line) bands overlap at Γ and Z.
In the presence of SOC, the hybridization of these two
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FIG. 3. (Color online) (a) The topological surface states show
two Dirac cones at the (001) surface and no Dirac cone at the
(111̄) surface characterizing the weak topological nature of
Ca2PtO4. (b) The number of Dirac cones for a given surface
can be determined from the relative sign of the projected pairs
of the bulk TRIMs.

bands opens an energy gap, which leads to the inversion
of the two bands at those two TRIMs. The appearance
of an even number of band-inversions in a 3D system can
give rise to a weak TI41. Thus, Ca2PtO4 can become a
weak TI given that the Fermi level is shifted down into
the topological gap around -4.5 eV. To more accurately
verify the topological nature of this material system at
the DFT level, we calculate the four topological invari-
ants ν0; (ν1, ν2, ν3) through the examination of the parity
products (δi) of the occupied states at all eight TRIMs
(see Eqs. (3), (4), (5)). As there is a well-defined energy
gap for the band-inversions, the separation of the occu-
pied and unoccupied bands at this energy level justifies
the definition of the topological invariant. Ca2PtO4 re-
spects inversion symmetry. Thus, we can simply identify
the parities of all occupied bands below this topological
gap to calculate the topological invariant. The products
of the parities for all occupied bands below the topolog-
ical gap (i.e. δi in Eq. (4))are marked as +/- sign in
Fig. 2(b) for each TRIM. The coordinate system of the
BZ is chosen to be the same as that in Fig. 3(b). The
four Z2 indices ν0; (ν1, ν2, ν3) are then easily calculated as
0; (111). The strong topological index ν0 = 0, while the
other three weak topological indices are nonzero which,
thus, confirms Ca2PtO4 to be a weak TI.

A characteristic feature of a weak TI, as compared to

the strong TI, is that the topological surface states (TSS)
do not appear at every surface. This behavior is demon-
strated for Ca2PtO4 in Fig. 3. Two surfaces, i.e. (001)
and (111̄), are considered and shown in red and green
colors, respectively. Evidently, two Dirac cones appear
at the (001) surface while there is no TSS found at the
(111̄) surface.

The analysis of the TSS is slightly different from the
computation of the four Z2 topological invariants. Tak-
ing the (001) surface as an example, the surface Brillouin
zone (SBZ) has four TRIMs Λa, i.e. 1Γ, 2X, 1M . They
are the projections of pairs of bulk momenta Γa1, Γa2,
that differ by Gc/2, onto the (001) plane. As a result,
the relative sign at the SBZ TRIMs πa are given as the
product of the corresponding Ma, i.e. πa = δa1δa2. For
example, Γ is the projection of the bulk TRIMs Γ and X
on the (001) surface (see Fig. 3(b)), πΓ is then computed
as δΓδX = −1. Similarly, one can derive the relative
signs at πM = −1 and πX = 1. Thus, there will be two

Dirac cones at Γ and M , while there is no TSS at X.
In Fig. 3(a), the TSS are displayed from a slab calcula-
tion of 8 nm thickness in the given direction. In practice,
this is achieved by projecting the DFT Bloch bands to
the Pt-d and O-p orbitals, which gives rise to a tight-
binding model with only the target orbitals as a basis.
Thus, compared to the full DFT parameter space, this
basis set is much smaller and, thus, it becomes feasible
for a larger slab calculation. In a similar fashion, at the
(111̄) surface, one can understand that the momenta 2N
project onto X, 2X onto M , Γ and Z onto Γ. Thus,
at all four surface TRIMs, the relative signs πa are pos-
itive. Consequently, there is no TSS at this surface, see
Fig. 3(a) for comparison.

An obvious problem of this system is that the predicted
topological gap lies deep in the valence band. Thus, it
will be a challenge in experiments to bring the Fermi level
down to the topological gap region. Nevertheless, the co-
existence of a weak topological insulating phase and the
correlated d-orbital in this concrete material shows the
possibility of constructing of a correlated weak-TI in re-
alistic material systems. In this work, we will not further
explore the possibility of chemical doping or substitution
to bring the Fermi level down to the topological gap. As
shown in what follows, we will consider a 3D model which
resembles as much as possible the topology of this ma-
terial system. In fact, we consider correlation effects in
this model in a more explicit way. This consideration al-
lows us to predict correlation-induced topological phase
transitions.

III. 3D TOPOLOGICAL MODEL

Differently from the strong TI, a weak TI can be adi-
abatically connected to stacked layers of 2D TIs41. This
feature motivates us to construct, in 3D, a half-filled weak
TI model by coupling layers of 2D topological systems,
i.e. 2D BHZ models, with a nearest-neighbor hopping
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FIG. 4. (Color online) (a) Bulk electronic structure of the
weak TI model defined in Eq.(1) along a high-symmetry path
of a cubic lattice with the BZ plotted is in (b). Two band-
inversions (presented as the interchange of color) at Γ and Z
give rise to topologically distinct surfaces: i.e. at the (100)
surface (c), there are two Dirac cones at SBZ momentum

points Γ and X
′
, at the (001) surface (d) there is no Dirac

cone.

tz along the stacking (z) direction. Subsequently, we
study the interaction-driven topological phase transitions
of this model.

The “non-interacting” Hamiltonian on a cubic lattice
is hence given by

H(k) = [M − (cos kx + cos ky + tz cos kz)]σz ⊗ I
+λ sin kx · σx ⊗ Sz + λ sin ky · σy ⊗ I , (1)

where M is the mass parameter, λ denotes the SOC
strength. 0 < tz < 1 is the hopping amplitude along the
stacked direction (z) perpendicular to the in-plane (xy)
hopping. When tz is taken as zero, Eq. (1) reduces to the
2D BHZ model. This model is different from those tradi-
tionally introduced for the 3D strong TIs42–44 in that it is
still block-diagonal in spin. Note that the Pauli matrices
σx,y,z denote an orbital space degree of freedom and the
Pauli matrices Sx,y,z refers to the physical spin.

Despite the simple form of this toy model, by tuning
the parameters M , tz and λ in Eq. (1), a qualitatively
similar electronic structure with a weak topological insu-
lator phase – like the one of Ca2PtO4 – can be obtained.
In Fig. 4 (a), the bulk electronic structure displays two
band inversions at Γ (0,0,0) and Z (0,0,π) with M = 1.5,

tz = 0.2, and λ = 0.3. These two inversions, when pro-
jected onto different surfaces, can give rise to different
numbers of TSS, i.e. a similar situation like what we
observed in Ca2PtO4 (see Fig. 3). In Fig. 4 (c) and (d),
(100) and (001) surfaces are taken as an illustration. At

(100), Γ and Z project into Γ and X
′

separately, thus,
there are two Dirac cones in the surface Brillouin Zone
(SBZ) of the (100) surface. In contrast, at the (001) sur-
face, there is no TSS, as Γ and Z project to the same
Γ.

A. Topological phase diagram at U = 0

In the following, instead of restricting our discussion
to any specific choice of the tuning parameters, we study
first the Hamiltonian in Eq. (1) from a more general per-
spective and explore all possible phases that a topological
system, described by Eq. (1), can display. In the second
step, we then want to understand how the topological
transitions between these phases are influenced by elec-
tronic correlations.

FIG. 5. (Color online) Depending on the strength of M , the
3D topological model in Eq. (1) displays four topologically
distinct phases, characterized by a different number of band-
inversions as well as the presence (WTI and BI) or the absence
(DSM) of a bulk gap.

The Hamiltonian (1) is time-reversal invariant and at
the time-reversal invariant momenta (TRIM) k = Γi, it
is simplified to

H(k = Γi) = [M−(cos kx+cos ky+tz cos kz)]σz⊗I . (2)

Thus, H commutes with the parity operator P̂ = σz ⊗ I,
implying that the eigenstates of Eq. (2) are also the eigen-
states of the parity operator, from which the Z2 invari-
ants can be easily calculated11: In 3D, there are eight
TRIMs. This leads to four independent Z2 invariants for
systems with an energy gap. One of these invariants, ν0,
can be expressed as the product over all eight points,

(−1)ν0 =

8∏
i=1

δi , (3)

where δi is the product of the parity eigenvalue for all
occupied states at a TRIM Γi. In terms of the Hamilto-
nian (2) which has only one degenerate valence band, it
takes the following simple form11:

δi = −sgn(H(k = Γi)) . (4)
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The other three invariants are given by products of four
δi’s, for which Γi reside in the same plane,

(−1)νk =
∏

nk=1;nj 6=k=0,1

δi=(n1n2n3) . (5)

The Hamiltonian (2) at these momenta reads:

H(Γ) = [M − (2 + tz)]σz ⊗ I ; (6a)

H(2X) = [M − tz]σz ⊗ I ; (6b)

H(M) = [M + 2− tz]σz ⊗ I ; (6c)

H(Z) = [M − 2 + tz]σz ⊗ I ; (6d)

H(2A) = [M + tz]σz ⊗ I ; (6e)

H(R) = [M + 2 + tz]σz ⊗ I . (6f)

At each TRIM, the Hamiltonian is proportional to the
parity operator P̂ = σz ⊗ I, thus, they obviously have
the same eigenstates. Furthermore, at each TRIM, two
of these states form one occupied Kramers pair and the
two other ones correspond to an empty Kramers pair. If
M > 2 + tz, at all eight TRIMs, the occupied Kramers
pair has an eigenvalue of −1. Therefore δi = 1 at all eight
TRIMs and the topological invariants are simply 0; (000),
this is the trivial band insulator (BI) phase shown in
Fig. 5. For 2−tz < M < 2+tz there is a bulk-band linear
crossing between Z and Γ [see Fig. 6 (a, b)] and the sys-
tem is a Dirac semimetal. According to the classification
for 3D Dirac semimetals, the DSM in our model belongs
to the first class that is created via a band inversion45,
which is topologically nontrivial. In these phases, the
definition of the 3D topological invariants that we used
to characterize the weak TI phase is not valid any more
(because of the gapless bulk). However, a 2D topologi-
cal invariant can be calculated for any fixed kz plane, as
long as a gap remains open in the 2D case. Additionally,
a mirror Chern number can be defined to characterize the
nontrivial topology of these phases45. More specifically,
the 3D DSM has its topological origin in the 2D Z2 in-
variants (for a fixed value of kz) of the corresponding 2D
BHZ model. Two 2D topological invariants can then be
defined at a kz > kcz and kz < kcz, where at kcz the bulk
bands cross. These two 2D topological invariants differ
which is the reason why the bulk gap has to close at kcz.

The appearance of the bulk-band linear crossing is one
striking feature of this 3D topological model, which is
resulting from the different inversions at Z and Γ. The
kz = 0 and kz = π planes are different only at Γ and
Z, as one is inverted and the other one is not. Thus,
when changing kz = 0 to kz = π, the topology has to
be changed from a nontrivial one to a trivial one. One
way of changing the topology is to close the bulk gap.
Since there is a band inversion at Γ, this DSM phase is
still topologically nontrivial45. The difference to a strong
TI is the absence of a finite bulk gap in the DSM. Thus,
the corresponding topological surface states in the DSM
phase are embedded in the bulk bands. Due to the pres-
ence of the bulk Dirac points, when surface states are
concerned, the bulk Dirac cone can energetically connect

FIG. 6. (Color online) The bulk band dispersion and the TSS
on the (100) surface for the two DSM phases. (a, b) When
tz < M < (2−tz), there is a bulk-band linear crossing between
Γ and Z. As a result, there is a flat band at the Fermi level
in this plot between Γ̄ - X̄ ′ connecting the Dirac cones from
surface and bulk, respectively; (c, d) when M < tz, the linear
crossing is between A and X. The flat band connects the bulk
Dirac point at A and the topological surface Dirac cone.

to the topological surface Dirac cone resulting a flat band
inside the topological gap, see Fig. 6 (b) and (d) for TSS
in the two DSM phases.

If tz < M < (2 − tz), a weak TI phase appears, in
which the occupied Kramers pair at both Γ and Z have
eigenvalues 1. The corresponding topological invariants
are then 0; (001). For M < tz a DSM phase appears
again, in which the bands at the two X points are also
inverted. Similarly to the difference between Γ and Z for
tz < M < (2− tz), now, the topology of the kz = 0 and
kz = π planes only differ at X and A. Thus, by changing
kz from 0 to π, we have to go through a bulk gap closing
between A and X [see Fig. 6 (c, d)].

Thus, as a function of the mass parameter M (for a
fixed value of interlayer coupling tz), we find four topolog-
ically distinct phases, characterized by a different number
of band inversions. These phases are shown in Fig. 5. We
identify a weak TI phase, two DSM phases, as well as a
trivial BI phase. It is symmetric with respect to posi-
tive and negative values of M . For negative values of M ,
bands at more TRIMs will be inverted. However, the dif-
ferent phases remain. Thus, in the following many-body
investigations, we only focus on the positive choice of M .
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B. Interacting topological phase diagram

For the ”non-interacting” 3D layered BHZ model, the
topological phase transition is driven by the value of M .
In what follows, we want to show that the same transi-
tions can be triggered by electronic correlations as well.
To this aim, we add the most general local interaction
term to Eq. (1), i.e.

HU = U
∑
i,α

niα↑niα↓,σ + U ′
∑
i,α<β

niασniβσ̄

+(U ′ − J)
∑

i,α<β,σ

niασniβσ

+J
∑
i,α 6=β

(c†iα↑ciβ↑c
†
iβ↓ciα↓ + c†iα↑c

†
iα↓ciβ↓ciβ↑) .(7)

Here, i is the site index of a 3D cubic lattice, α, β span the
orbital basis of this Hamiltonian. A rotational invariant
form ofHU is chosen by us, i.e. U ′ = U−2J and J is fixed
to a rather large but not untypical value for transition-
metals, i.e. U/4.

Evidently, Eqs. (1) and (7) comprise the interacting
many-body Hamiltonian for a TI that can demonstrate
various topological phases as shown in Fig. 5 for U = 0.
In addition to this non-interacting case, there is another

FIG. 7. (Color online) The occupancy of orbitals changes from
〈n〉 = 2 (fully occupied)/〈n〉 = 0 (empty) to 〈n〉 = 1 (equally
occupied) with the increase of interaction, which indicates the
band- to Mott-insulator transition.

FIG. 8. (Color online) The interacting phase diagram of the
3D topological model based on Eqs. (1) and (7). Five differ-
ent phases are identified. At sufficiently large M and U , the
conventional band insulator and the Mott insulator phases
dominate. In between, the competition between Coulomb in-
teraction and topological order gives rise to interesting phases
such as a region of a weak TI phase and two regions of DSM
phases. The topological surface states (TSS) with parameters
given by the corresponding colored symbols can be found in
the Fig. 9. As we carefully explain there, the phase bound-
aries are subject to an approximation for large values of U .

limit where an explicit solution of the full Hamiltonian is
known. When U → ∞, the paramagnetic ground state
will be a Mott insulator, which destroys all nontrivial
topological phases present at weak interactions. When
U 6= 0, we have to solve the Hamiltonian at finite U
numerically. Here, we employ dynamical mean-field the-
ory (DMFT)49 with the continuous-time hybridization-
expansion (CT-HYB)50,51 quantum Monte Carlo as an
impurity solver. The CT-HYB solver is based on the im-
plementation discussed in previous works of us52,53. To il-
lustrate the correlation effect, we set the SOC strength to
λ = 0.3 and the inter-layer coupling to tz = 0.5 through-
out the calculations and explore the interacting phase
diagram as functions of M and U .

Before discussing the results in Fig. 8, we briefly de-
scribe the influence of electronic correlations on TIs
and explain how the transition boundaries in Fig. 8
have been obtained. Similarly to their non-interacting
counterparts, the topology of correlated TIs can be de-
fined by means of an “effective Hamiltonian” heff(k) =
−G−1(k, ω → 0) 46–48, which, in the DMFT language,

reads heff(k) = H(k) + Σ̂(ω → 0). For any nonzero
value of M , the imaginary part of the self-energy always
extrapolates to zero for ω → 0. The influence of cor-
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FIG. 9. (Color online) (left) The topological states at the (100) surface with (a) U = 4.0,M = 3.0; (b) U = 7.0,M = 3.0; (c)
U = 8.0,M = 3.0; (d) U = 4.0,M = 1.0. From (a) to (c), the topological phase transitions are driven by the increase of U .
(right) Same as the left plot, but for (001) surface. At the two DSM phases, the bulk gaps are closed, thus the TSS at these
two phases are embedded in the bulk bands.

relations on the electronic structure is therefore mainly
encoded in <Σ̂(ω → 0). Thus, the transitions between
the BI, the DSM and the WTI phases in Fig. 8 are de-
termined simply from an inspection of the topology of
H(k) + <Σ̂(ω → 0). A full analysis would actually
require a study of the local spectral function obtained
from both the real and the imaginary parts of Σ̂(ω) or
a careful examination of the temperature scaling of the
Green’s function. Here we have taken a simplified route
and looked only at the gap closing induced by the rigid
shift <Σ̂(ω → 0), which is accurate mostly in the weak-U
region of the phase diagram. We note that the precise
location of the phase boundaries is not of our prime in-
terest here, as we are interested in the general trend of
the phase transformation as a function of U . In the Mott
phase, we have however used the even more clearcut con-
dition nα = nβ = 122. As for the two-orbital model
defined in Eqs. (1) and (7) at half-filling, in the BI, DSM
and WTI phases one of the two orbitals are completely
occupied and the other one is empty. While in the Mott
phase, due to the strong Coulomb repulsion between elec-
trons, each orbital is preferably occupied by one electron.
Thus, the interaction induced band- to Mott-insulator
transition can be monitored by the evolution of the or-
bital occupancy which changes from 2(0) to 1, see Fig. 7.
The value of U at where nα = nβ = 1 starts to be satis-
fied gives the boundary of the Mott phase in Fig. 8.

The first important observation about Fig. 8 is that
the topological nontrivial phases extend to a finite value
of U . Thus, the topology of such a 3D topological sys-

tem is stable against a “certain amount” of electronic
correlations, which may pave the way for the experimen-
tal realization of correlated TIs. With the increase of
U , each topologically nontrivial phase extends towards
a larger value of M . This behavior can be understood
because the Coulomb interaction modifies the mass pa-
rameter M via <Σ̂(ω → 0). In particular, as an effect
of the nonzero value chosen for the Hund’s coupling J , a
larger value of M is required to maintain the phase.

The second important observation is that, for a fixed
value of M , the Coulomb interaction U may generate
transitions between different topological phases. This is
again due to the inter-orbital interaction which favors
single orbital occupations. The colored spade, diamond
and heart symbols in Fig. 8 correspond to three topolog-
ically distinct phases with the same M , but at different
U values. Among the phase transitions driven by the in-
teraction U , the first one is of particular interest, i.e. it
is the transition from a trivial band insulator to a DSM
and to a weak TI, see Fig. 9(a), (b) and (c). This ob-
servation implies that the Coulomb interaction does not
always destroy but sometimes also induces topological
phases.

Figure 9 displays the TSS of four topologically dis-
tinct phases with parameters given by the corresponding
colored suit symbols shown in Fig. 8. The TSS are cal-
culated for the (100) surface (left plot) and (001) surface
(right plot) in a 40-layer slab. For simplicity and to have
a better low-energy resolution, we have used the effective
one-particle Hamiltonian heff(k) with only the real-part
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of the self-energy <Σ̂(ω → 0) in the calculations. At

ω 6= 0, the nonzero value of =Σ̂(ω) broadens the elec-
tronic bands and smears out the details of the TSS at
large frequencies. However, the topology of the system
is fully determined by heff(k, ω = 0) where =Σ̂(ω) is zero
in all four phases displayed in Fig. 9. In Fig. 9(a)-(c), we
show the TSS with fixed M = 3 and three different val-
ues of U . With the increase of interaction, a topological
nontrivial phase can be transformed to a DSM by invert-
ing the bands at the Γ point and further to a WTI with
invariants 0; (001) by also inverting the bands at the Z
point. In Fig. 9(d), we show another type of DSM, the
corresponding parameters are taken as M = 1, U = 4.
Its TSS also contains two Dirac cones, but their loca-
tions in the SBZ are different from that in Fig. 9(c) (see
also Fig. 5 for the difference of band inversions). The
left four plots in Fig. 9 are the TSS at the (100) surface,
which all contain a well-defined band gap, however this is
not the case for the (001) surface. At the (001) surface,
the two DSM phases are gapless. In combination with
the left plots, one can easily understand that the TSS in
the two DSM phases are embedded in the bulk states.

IV. CONCLUSION

In summary, we have investigated the stability of 3D
topological phases in the presence of electron-electron
interactions. Our study is motivated by the discovery
that, on the basis of a DFT band structure calculation,

the hole-doped compound Ca2PtO4 is a weak TI with
the band inversions induced by the Pt-dxy and O−pz or-
bitals. This finding in principle opens up a new direction
in the search for 3D interacting TIs, provided that the
expected local correlations in this 5d transition-metal do
not destabilize the topological nature. To verify this, we
have modelled the DFT topological band structure as
the underlying “non-interacting” band structure of a 3D
generalization of the BHZ Hamiltonian, which has then
been augmented by the most general on-site two-orbital
electron-electron interaction. For small to intermediate
interactions, topological phases as well as transitions be-
tween them are induced by the interactions, in particular,
a novel DSM to weak TI transition. For very strong in-
teractions, the system enters the expected “trivial” Mott-
insulating phase.
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