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Sagar Vijay, Jeongwan Haah, and Liang Fu
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We introduce exactly solvable models of interacting (Majorana) fermions in d ≥ 3 spatial dimen-
sions that realize a new kind of fermion topological quantum order, building on a model presented
in ref. [1]. These models have extensive topological ground-state degeneracy and a hierarchy of
point-like, topological excitations that are only free to move within sub-manifolds of the lattice.
In particular, one of our models has fundamental excitations that are completely stationary. To
demonstrate these results, we introduce a powerful polynomial representation of commuting Ma-
jorana Hamiltonians. Remarkably, the physical properties of the topologically-ordered state are
encoded in an algebraic variety, defined by the common zeros of a set of polynomials over a finite
field. This provides a “geometric” framework for the emergence of topological order.

Topological phases of matter are remarkable quantum
states with quantized properties that are stable under
local perturbations and can only be measured by non-
local observables [2]. The most celebrated example is
the fractional quantum Hall state, discovered more than
thirty years ago [3]. The field of topological matter has
now become an exciting research frontier at the cross-
roads between theoretical physics, quantum information
and material science.

Our theoretical understanding of topological matter is
largely built on topological quantum field theory (TQFT)
[4]. In this framework, the action of quantum fields in
a space-time manifold is independent of its metric, but
depends crucially on its topology. Canonical quantiza-
tion of these fields in a multiply-connected space yields
a finite-dimensional Hilbert space, describing the degen-
erate ground-states of topological matter. Wilson lines
describe the world-lines of quasi-particle excitations, and
the expectation value of “knotted” Wilson lines deter-
mines the quasi-particle braiding statistics. A hallmark
of topologically-ordered states in two dimensions is the
presence of mobile quasi-particles with fractional statis-
tics, or anyons [5].

Exactly solvable models often provide ideal play-
grounds and valuable insights in theoretical studies of
topological phases. In the past, a wide array of non-
chiral topological phases in two dimensions have been
obtained in spin models [6, 7], whose universal proper-
ties are captured by topological quantum field theories.
Recently, an exotic quantum phase with extensive topo-
logical ground state degeneracy was discovered by Haah
in three-dimensional (3D) spin models [8]. A remarkable
property of this phase is that all topological excitations
are strictly localized in space, a feature which lies beyond
the paradigm of topological quantum field theory.

In this work, we introduce a wide range of
translationally-invariant, solvable Hamiltonians of inter-
acting Majorana fermions that exhibit a new kind of
fermion topological quantum order. These models have
extensive topological degeneracy and a hierarchy of topo-
logical excitations that are only free to move within sub-
manifolds of the full lattice. In one particular Hamilto-

nian in d = 3 spatial dimensions, the fundamental excita-
tions are strictly localized, while composites of these ex-
citations are free to move along one- and two-dimensional
surfaces. The fundamental excitations are termed “frac-
tons”, as they behave as fractions of a mobile particle.
Due to its fermionic nature, the topological order in our
model enables an electron to break up into these immo-
bile fractons; this appears to be the ultimate form of
electron “fractionalization” in three dimensions.

To systematically search for these models, compute
their ground-state degeneracy on a d-dimensional torus
and study their excitations, we introduce a purely alge-
braic description of commuting Majorana Hamiltonians.
We demonstrate that on a d-dimensional lattice with a
two-site basis and a single interaction term per unit cell,
an ideal Majorana Hamiltonian generally exhibits exten-
sive topological degeneracy. We emphasize that each of
our models may be written in terms of complex fermions
by choosing appropriate pairings of Majorana fermions
over the entire lattice. Our models also admit a local
mapping to a boson model with identical topological de-
generacy and a similar dimensional hierarchy of excita-
tions, after projecting out half of the Hilbert space. We
note that one of our models has similar phenomenology
to a spin model studied in ref. [11, 12].

Our approach to studying ideal Majorana Hamiltoni-
ans provides a novel geometric framework for topological
order, beyond topological quantum field theory. Remark-
ably, a commuting Majorana Hamiltonian on a torus
specifies an algebraic variety – defined as the common
zeros of a collection of polynomials over a finite field –
that encodes all physical properties of the topologically-
ordered state. While a TQFT assigns a ground-state
sector to an isotopy class of smooth, closed curves on a
manifold, our models associate ground-state sectors with
curves based on finer equivalence relations, resulting in
extensive topological degeneracy in dimensions d ≥ 3.
We emphasize that our models are distinct from the ex-
otic phase realized by Haah’s code [8] and related models
[10], due to the presence of mobile topological excitations
that are composites of fractons. As a related matter,
separating a set of isolated fractons “optimally” only re-
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quires creating a finite number of mobile excitations dur-
ing intermediate steps. Unlike Haah’s code, this energy
cost is independent of the distance of separation.

Universal features of our interacting Majorana mod-
els clearly demonstrate that they are in distinct phases
from non-interacting stacks of lower dimensional systems.
We consider one of our Hamiltonians – the Majorana
cubic model – as a concrete example. First, in a non-
interacting stack of lower-dimensional systems, all point-
like topological excitations necessarily appear at the ends
of string-like operators (Wilson lines). In contrast, the
immobile fracton excitation in the cubic model can only
appear in isolation at the corners of membrane-like opera-
tors. This feature alone rigorously establishes this model
as distinct from any stack of lower-dimensional systems.
Second, the topological ground-state degeneracy D for
the Majorana cubic model on an L × L × L torus sat-
isfies log2D = 3L − 3, for any L. The universal, sub-
leading correction to log2D is a unique signature of this
exotic phase that is impossible to obtain using a stack
of lower-dimensional systems that respect the same lat-
tice symmetries of our model; for example, logD must
simply double as the system size doubled for a stack of
lower-dimensional systems. We emphasize that both of
the above features are independent of energetics. Even
the low-energy effective theory of a stacked system with
a similar excitation spectrum would still be describing an
identifiably distinct quantum phase of matter, as these
universal properties would be different. For similar rea-
sons, the remaining Majorana models identified in our
paper may not be obtained by a stacking procedure.

I. OVERVIEW

Due to the length of this paper, we begin with a de-
tailed summary of our findings. We consider exactly
solvable Hamiltonians of interacting Majorana fermions
that realize exotic forms of topological order. On a d-
dimensional lattice with a basis, these Hamiltonians will
be the sum of a single type of local operator over all
lattice sites

H = −
∑

m

Om (1)

so that all operators mutually commute and square to
the identity, i.e.,

[Om,On] = 0, (2)

(On)2 = +1. (3)

The operator On is required to be a product of an even
number of Majorana fermions, so that the fermion parity
of the entire system is conserved. A ground state |Ψ〉 of
(1) will satisfy the constraint that

Om |Ψ〉 = |Ψ〉 , (4)

for all m.
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FIG. 1. Majorana Cubic Model: The Majorana cubic
model is defined on a cubic lattice, as in (a), with a single
Majorana fermion per lattice site (colored red). The operator
On is the product of the 8 Majorana fermions at the vertices of
a cube. The Hamiltonian is a sum of these local operators over
every other cube (colored blue) in a checkerboard pattern. As
any pair of operators either share exactly one edge or none, all
operators mutually commute. We choose to label the cubic
operators A, B, C, and D as shown in (b). Acting with a
single Majorana operator γj creates these four excitations.

In Section II, we introduce a purely algebraic approach
to systematically search for and study topological order
in commuting Majorana Hamiltonians (1). A similar ap-
proach has been used previously to study topological or-
der in commuting Pauli Hamiltonians [9]. We represent
the operator O appearing in (1) as a set of Laurent poly-
nomials over the field F2, which consists of two elements
{0, 1} with Z2 addition and multiplication. We derive a
mathematical condition for a set of such polynomials to
represent a commuting Majorana Hamiltonian with topo-
logical order. This polynomial representation enables us
to analytically determine the topological ground state de-
generacy on a d-dimensional torus and deduce properties
of topological excitations using algebraic methods.

Using this polynomial approach, we demonstrate the
following remarkable results. First, a topologically-
ordered commuting Majorana Hamiltonian on a lattice
with a two-site basis may be entirely specified by a sin-
gle polynomial over F2. The ground state degeneracy for
such a Hamiltonian on a d-dimensional torus of size L,
which we denote by D0, will generally take the asymp-
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totic form:

log2D0 = cLd−2 +O(Ld−3) (5)

for some constant c. We perform an exhaustive analy-
sis and discover a class of commuting Majorana fermion
models on a three-dimensional lattice with a two-site ba-
sis, which exhibit extensive topological degeneracy of the
form (5) with d = 3.

Remarkably, despite being translationally invariant,
our models admit fundamental point-like excitations that
are strictly localized in space, and cannot move with-
out paying a finite energy cost to create additional ex-
citations. Composites of these fundamental excitations,
however, are topological excitations that are free to move
within sub-manifolds of the d-dimensional lattice. We
term these fundamental excitations that behave as frac-
tions of mobile particles, “fractons.” Furthermore, we re-
fer to bound states of fractons that can only move freely
along an n-dimensional manifold as “dimension-n” par-
ticles. In particular, a dimension-2 particle can be an
anyon with well-defined fractional statistics.

To motivate further study of ideal Majorana Hamilto-
nians, we now describe in detail the phenomenology of
fracton excitations and their composites in the simplest
of our models, the Majorana cubic model. As shown in
Figure 1(a), here the operator On is the product of the
eight Majorana fermions at the vertices of a cube. The
Hamiltonian is simply the sum of these operators over a
face-centered-cubic (fcc) array of cubes, forming a three-
dimensional checkerboard. Since adjacent cubes share a
common edge with two vertices, operators On on differ-
ent cubes are mutually commuting, and their common
eigenstate defines the ground state. For convenience in
later analysis, we choose to identify four species of cube
operators – A, B, C, and D – as shown in Figure 1(b).

A fundamental excitation in the Majorana cubic model
is obtained when the eigenvalue of a cube operator On

is flipped. The product of On over all cubes of a single
type (A, B, C, or D) is equal to the fermion parity Γ of
the entire system and is fixed.

Γ =
∏

p∈A
Op =

∏

p∈B
Op =

∏

p∈C
Op =

∏

p∈D
Op, (6)

Therefore, a single cube-flip excitation cannot be created
alone, and is a topological excitation. Remarkably, the
fundamental cube excitation in this model is completely
immobile, as we observe through the following physical
argument. In the cubic model, acting on the ground-state
with a single Majorana fermion flips the eigenvalues of
four adjacent cube operators, as shown in Figure 1(b).
This four-cube excitation may trivially move by acting
with a Majorana bilinear. If the fundamental cube ex-
citation were mobile, then it would be possible to move
it in any arbitrary direction, as the cube operator it-
self preserves all lattice symmetries. In this case, the
cube excitation would have well-defined (fermion or bo-
son) statistics, and a four-cube bound-state could never

Excitation Type Statistics Operator

ABCD Majorana Fermion γ

AA,BB,
CC,DD

Dim.-2 Anyon Boson
Pair of Adjacent

Wilson Lines

AB, AC,
AD, BC,
BD, CD

Dim.-1 Particle ——–
Single Wilson

Line

A, B, C, D Fracton ——– Membrane

TABLE I. Hierarchy of excitations in the Majorana cubic
model. The fundamental cube excitation is a fracton, while
two-fracton bound-states can behave as particles that are ei-
ther free to move along one- or two-dimensional surfaces. The
operator that creates each type of excitation is indicated.

be a fermion. Therefore, it must be the case that the
fundamental cube excitation is frozen. A rigorous proof
of the immobility of the fundamental excitation is given
in Section IV using the polynomial representation of the
ideal Majorana Hamiltonian.

We now analyze the fracton bound-states in the Majo-
rana cubic model in detail, along with the mutual statis-
tics of the excitations. Using the labeling of the cube
operators shown in Figure 1(b), we find the hierarchy of
quasiparticles shown in Table I in the Majorana cubic
model. The fundamental fracton excitation appears at
the corners of membrane-like operators and may only be
created in groups of four. Two-fracton bound-states can
form dimension-1 particles or dimension-2 anyons. Re-
markably, a dimension-2 anyon has π mutual statistics
with a fracton lying in its plane of motion. As a result,
while the fracton is immobile, its presence may be de-
tected by a braiding experiment. Furthermore, the exact
location of a single fracton within a finite volume V may
be determined by braiding dimension-2 anyons in the
three mutually orthogonal planes around the boundary
∂V . In this way, the exact quasiparticle content within
V is effectively encoded “holographically”, and may be
determined by ∼ O(`) braiding experiments, where ` is
the linear size of a box bounding V .

We now proceed to explore the hierarchy of excitations
in detail.

Dimension-1 Particle: The dimension-1 particle
may be created by acting with a single Wilson line oper-
ator, defined by the product of the Majorana operators
along a straight path `. Up to an overall pre-factor of
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FIG. 2. Dimension-1 Particle: Excitations (colored) may
be created by acting with Wilson line operators. In (a), a
straight Wilson line creates pairs of dimension-1 particles at
the endpoints. The dimension-1 particle may hop freely in the
direction of the Wilson line, by acting with Majorana bilinear
terms. Remarkably, the dimension-1 particle cannot hop in
any other direction without creating additional excitations.
Introducing a “corner” in the Wilson line, as in (b), creates
an additional topological excitation localized at the corner.

±1,±i, we write the Wilson line operator as

Ŵ` ∝
∏

n∈`
γn. (7)

As shown in Figure 2(a), the straight Wilson line anti-
commutes with two cube operators at each of its end-
points; the two cube excitations at a given endpoint are
of different types. As a result, Ŵ` creates pairs of exci-
tations of the form AB, AC, AD, BC, BD, or CD. Re-
markably, these two-fracton bound-states are only free to
move along a line, by simply extending the Wilson line
operator Ŵ` by acting with a Majorana bilinear along the
path `. If we try to move this two-fracton bound-state in
a plane, we must introduce a corner in the Wilson line,
which localizes an additional topological excitation at the
corner, as shown in Figure 2(b); the excitation cannot be
removed by the action of any local operator. As the pat-
tern of excitations produced by a Wilson line Ŵ` is sen-
sitive to the geometry of `, the two-fracton bound-states
AB, AC, AD, BC, BD, and CD are restricted to move
along a line and behave as dimension-1 particles. We em-
phasize that they cannot move in a higher-dimensional
space without creating additional cube excitations.

Dimension-2 Anyon: Acting with a pair of adjacent

Wilson lines Ŵ
(1)
` and Ŵ

(2)
`′ along parallel paths ` and
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FIG. 3. Dimension-2 Anyon: Acting with two adjacent
Wilson line operators Ŵ1 and Ŵ2 creates pairs of excita-
tions at the endpoints of the same type (AA, BB, CC or
DD). These two-fracton excitations are free to move in a
two-dimensional plane orthogonal to the shortest line seg-
ment connecting the pair of Wilson lines. Furthermore, in
(b) we may detect a fracton (colored blue) by braiding a
dimension-2 anyon around a closed loop enclosing the frac-
ton. As the braiding operator, a pair of closed Wilson line
operators Ŵ1Ŵ2, is equal to the product of the enclosed cube
operators as shown above. Therefore, the braiding produces
an overall minus sign if an odd number of fractons are en-
closed.

`′, respectively, also creates a pair of two-fracton bound-
states localized at the ends, as shown in Figure 3(a). At

each end of the path, however, the operator Ŵ
(1)
` Ŵ

(2)
`′

now creates pairs of cube excitations of the same type
(AA, BB, CC or DD). These two-fracton bound-states,
where each fracton is of the same type, are allowed to
move freely in the two-dimensional plane orthogonal to
the shortest line segment connecting the two paths ` and
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FIG. 4. Membrane Operator & Fracton Excitations:
Acting with a product of Majorana operators on a surface Σ
creates localized excitations at the corners of the boundary
∂Σ as shown above.

`′ without creating additional excitations; this is shown
in Figure 3(b). We note that detailed geometric fea-
tures of a single Wilson line, such as the presence of
sharp corners, determine the pattern of excitations cre-
ated from the ground-state. However, when acting with
an appropriate pair of adjacent Wilson lines, the excita-
tions created at the sharp corners may be annihilated.
Therefore, a pair of adjacent Wilson lines may be de-
formed in the plane with no energy cost. We conclude
that the AA, BB, CC and DD two-fracton bound-states
are dimension-2 anyons.

Braiding a dimension-2 anyon around a closed loop in
the plane is equivalent to acting with the product of cube
operators within the two-dimensional region enclosed by
the loop; this is shown for a particular choice of loop in
Figure 3(c). As a result, braiding a dimension-2 anyon
around a closed loop enclosing a single fracton in the
plane produces an overall minus sign. The ability to de-
tect a fracton with a dimension-2 anyon produces non-
trivial mutual statistics between the dimension-2 anyon
and other particles in the excitation spectrum of the Ma-
jorana cubic model. First, a dimension-2 anyon has π
mutual statistics with any dimension-1 particle in the
same plane, as braiding the dimension-2 anyon in a closed
loop will only detect one of the two fractons that make up
the dimension-1 particle. Furthermore, the dimension-2
anyon has π mutual statistics with dimension-2 anyons
that are free to move in adjacent, parallel planes.

Fractons and Membrane Operators: Acting with
Majorana operators on a flat, two-dimensional membrane
Σ creates fracton excitations at the corners of the bound-
ary of Σ, as shown in Figure 4. We write the membrane
operator up to an overall pre-factor of ±1,±i as

M̂ ∝
∏

n∈Σ

γn. (8)

For a rectangular membrane in the x-y plane, the bound-
ary ∂Σ is a closed, rectangular loop with dimensions `x
and `y. We note that if `x and `y are both even, then

the fracton excitations created at the corners of ∂Σ will
all be of the same type. Alternatively, if `x is odd and `y
is even, then the pairs of fracton excitations separated in
the y-direction will be of the same type, while fractons
separated in the x-direction will be distinct.
Extensive Topological Degeneracy: Using the al-

gebraic representation of the Majorana cubic model, we
compute its ground-state degeneracy D0 to be

log2D0 = 3L− 3 (9)

on an L × L × L three-torus, with periodic boundary
conditions imposed in the x, y, and z directions, with
each cube having unit side length. Pairs of string-like
Wilson loop operators wrapping non-trivial cycles of the
torus – corresponding to tunneling dimension-2 anyons –
distinguish the ground-state sectors. As the number of
distinct dimension-2 anyons grows linearly with system
size, the ground-state degeneracy is necessarily extensive.

We emphasize that the algebraic approach allows us
to systematically search for topologically-ordered, ideal
Majorana Hamiltonians, rigorously characterize the na-
ture of excitations, and calculate the ground-state de-
generacy in a wide range of Majorana models using tech-
niques in algebraic geometry. As a result, the next two
sections of this work introduce and focus on the polyno-
mial representation of ideal Majorana Hamiltonians and
draw broad conclusions based on this representation. In
Section III, we present the 6 distinct three-dimensional
Majorana models with nearest-neighbor interactions that
are topologically-ordered. In particular, one of our mod-
els, which may naturally be written in terms of complex
fermions on an fcc lattice, has a fundamental excitation
that may only freely move along a line in the (1,1,1) di-
rection.

We conclude, in Section IV, with a proof of the pres-
ence of fractons in the Majorana cubic model, and briefly
outline the phenomenology of excitations in the remain-
ing models.

II. TOPOLOGICAL ORDER IN COMMUTING
MAJORANA HAMILTONIANS

In this section, we introduce a representation of the op-
erators in the ideal Majorana Hamiltonian (1) as a vector
of Laurent polynomials over the finite field F2. The alge-
braic representation provides an important starting point
for studying and classifying Majorana Hamiltonians. We
demonstrate that the following conditions, that

(i) All operators in the ideal Hamiltonian mutually
commute, and

(ii) Degenerate ground-states of the Hamiltonian are lo-
cally indistinguishable

may be phrased entirely in the polynomial representa-
tion. The ground-state degeneracy of an ideal Majorana
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Hamiltonian (1) on the torus can be computed as the
dimension of a quotient ring [9].

We demonstrate that an ideal Majorana Hamiltonian
obeying (i) and (ii) on a lattice with a two-site basis
and a single interaction term per unit cell may be spec-
ified by a single polynomial over F2. We use this result
to systematically search for and characterize commuting
Majorana Hamiltonians. In d = 3 dimensions, we find 6
distinct, non-trivial models with nearest-neighbor inter-
actions, extensive topological degeneracy, and a dimen-
sional hierarchy of excitations.

A. Algebraic Representation

To study commuting Majorana Hamiltonians, we rep-
resent the operator O appearing in Eq. (1) as a polyno-
mial over the field F2. A similar mapping has been in-
troduced in the context of Pauli Hamiltonians [9]. Con-
sider a d-dimensional lattice with translation operators
{t1, . . . , td} and an n-site unit cell. We restrict n to be
an even integer so that there is a well-defined number
of complex fermions per lattice site. We label the Ma-
jorana fermions within the unit cell at the origin as γj
for j = 1, 2, . . . , n. All other Majorana fermions on the
lattice are obtained by acting with translation operators.

Any Hermitian operator acting on this lattice may be
written as a sum of products of Majorana operators. For-
mally, we may write a summand O as

O =

n∏

j=1

∏

{ni}
(tn1

1 · · · tnd

d · γj)
cj(n1,...,nd)

(10)

with ni ∈ Z and cj(n1, . . . , nd) ∈ {0, 1}. For simplicity,
we have omitted the prefactor ±1,±i in the expression
for O, which plays no role in our analysis. We introduce a
purely algebraic representation of this operator by noting
that any product of translation operators may be writ-
ten as a monomial, e.g. tn1

1 · · · tnd

d ⇐⇒ xn1
1 · · ·xnd

d . In
this way, the action of the translation group is naturally
represented by monomial multiplication.

Recall that distinct Majorana fermions anti-commute
and that each Majorana operator squares to the identity.
Therefore at each site within a unit cell, the identity 1

and γ under multiplication form the group Z2, with the
two operators represented by the group elements 0 and 1,
respectively. In this representation, the operator equal-
ity γ2 = 1 maps to the Z2 group addition 1 + 1 = 0.
This simple algebra of Majorana fermions allows us to
write any product of Majorana operators as the sum of
monomials – representing the location of each Majorana
operator via the action of the translation group – with
Z2 coefficients. As an example, consider a lattice with
a single site per unit cell, and the Majorana operator γ
at the origin. A Majorana bilinear admits the following
polynomial representation:

γ · (tm1
1 tm2

2 · · · tmd

d · γ) ⇐⇒ 1 + xm1
1 xm2

2 · · ·xmd

d . (11)

(a) (b)

FIG. 5. The Majorana plaquette model, as studied in [1].
Consider a honeycomb lattice with a single Majorana fermion
on each lattice site. We define an operator Op as the product
of the six Majorana fermions on the vertices of a hexagonal
plaquette p, as shown in (a). The colored plaquettes in (b)
correspond to the three distinct bosonic excitations (A,B, or
C) that may each be created in pairs by acting with Wilson
line operators.

In this notation, operator multiplication corresponds to
polynomial addition with Z2 coefficients.

For the general case of a unit cell with n sites, we
represent a product of Majorana operators as a vector of
polynomials over F2, with the j-th entry of the vector
representing the action of the translation group on γj ,
the j-th Majorana fermions in the unit cell at the origin.
For example, the operator (10) may be written as

S(x1, ..., xd) =
∑

{ni}
xn1

1 · · ·xnd

d




c1(n1, ..., nd)
c2(n1, ..., nd)

...
c2n(n1, ..., nd)


 (12)

Adopting the terminology in Ref. [9], we refer to S as the
“stabilizer map” for the remainder of this work.

To illustrate the algebraic representation of operators
in commuting Majorana Hamiltonians, we present a con-
crete example. Consider the Majorana plaquette model
in Ref. [1], which is defined on a two-dimensional honey-
comb lattice with one Majorana fermion per site and a
Hamiltonian of the form (1) where Op is the product of
the six Majorana fermions at the vertex of a hexagonal
plaquette p. We show a single hexagonal plaquette on the
lattice in Figure 5(a), along with the Majorana fermions
γa and γb within the two-site unit cell. The correspond-
ing stabilizer map S(x, y) for the six-Majorana operator
is given by:

S(x, y) =




1 + x+ y

1 + x+ xȳ


 . (13)

Here, we adopt the notation that ȳ ≡ y−1, x̄ ≡ x−1.
As shown in Ref. [1], this Hamiltonian exhibits a novel
form of Z2 topological order with fermion parity-graded
excitations and exact anyon permutation symmetries.

Next, we consider the action of an arbitrary operator
W on the ground state |Ψ〉 of the commuting Majorana
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Hamiltonian. When W anticommutes with an operator
On in the Hamiltonian, it flips its eigenvalue and thus
creates an excitation. We use a polynomial to record
the locations of all excitations in the state W |Ψ〉; each
location is labeled by the translation vector connecting
it to the origin. Specifically, for a Hamiltonian with
stabilizer map S(x1, · · · , xd) and an arbitrary operator
W with a polynomial representation P (W ) of the form
(12), we define the “excitation map” E(x1, . . . , xd) so
that E(x1, . . . , xd) · P (W ) ∈ F2[x±1

1 , · · · , x±1
d ] describes

the excitations created by W . In the Supplemental Ma-
terial [13], we demonstrate that E is simply given from
the stabilizer map as follows:

E(x1, . . . , xd) = S(x1, · · · , xd) (14)

where S(x1, . . . , xd) ≡ [S(x1, . . . , xd)]T .
As an example, the excitation map for the Majorana

plaquette model is given by E(x, y) = (1 + x̄+ ȳ, 1 + x̄+
x̄y). Below, we show the action of the operator γa at the
origin in the Majorana plaquette model, which creates
three adjacent excitations as specified by the red points.
The locations of the excitations are obtained by perform-
ing the matrix multiplication of E with the polynomial

representation

(
1
0

)
of γa:

E(x, y) ·
(

1
0

)
= 1 + x̄+ ȳ. (15)

Therefore, the action of γa may be represented by the
polynomial 1+ x̄+ ȳ, labeling the locations of the flipped
plaquettes; here, the plaquette operator corresponding to
the origin (i.e. the location “1”) is to the right of γa, as
can be seen from its polynomial representation (13).

A dictionary that summarizes the relationship between
Majorana operators and polynomials is given in Table II.

B. Topological Order and Ground-State
Degeneracy in the Algebraic Representation

The polynomial representation of Majorana operators
serves as a starting point for constructing commuting
Majorana Hamiltonians that exhibit topological orders.
As we demonstrate in the Supplemental Material [13], for
a translationally invariant Majorana Hamiltonian with a
single operator per lattice site, all operators mutually
commute if and only if its stabilizer map S(x1, · · · , xd)
satisfies the condition

S(x1, . . . , xd) · S(x1, . . . , xd) = 0. (16)

More generally, if the Hamiltonian contains multiple op-
erators per lattice site {O(i)}, then we may define a set
of stabilizer maps for each type of operator {Si}, so that

the condition Si(x1, . . . , xd) · Sj(x1, . . . , xd) = 0 for all i,
j, guarantees that all terms in the Hamiltonian commute.

Operator Polynomial

Majorana Fermion Vector over F2

γj

[j = 1, . . . , n for each
site in the unit cell]

~ej

[n-dimensional unit vector
with jth entry equal to 1]

Translation Monomial Multiplication

tn1
1 tn2

2 · · · t
nd
d γj xn1

1 xn2
2 · · ·x

nd
d ~ej

Multiplication Addition in F2[x1, · · · , xd]

γj · tnkγ` ~ej + (xk)n ~e`

TABLE II. Summary of the polynomial representation of Ma-
jorana operators. An arbitrary operator in d spatial dimen-
sions, written as the product of Majorana fermions, may be
represented as a vector with entries in the (Laurent) polyno-
mial ring F2[x±1

1 , · · · , x±1
d ].

We next formulate a necessary and sufficient alge-
braic condition for topological order in commuting Ma-
jorana Hamiltonians, which requires that any degener-
ate ground-states of a topologically-ordered Hamiltonian
cannot be distinguished by local operators. The local in-
distinguishability is equivalent to the condition that, for
any local operator Mi

ΠGSMi ΠGS = c(Mi) ΠGS (17)

where ΠGS is the projector onto a ground-state sector and
c(Mi) is a constant that only depends on the operator.
For our case, consider an operator MI that is the product
of Majorana operators, and P (Mi), the polynomial rep-
resentation of Mi. If Mi anti-commutes with any term in
the Hamiltonian, thenMi creates excitations when acting
on the ground-state, and we have ΠGSMi ΠGS = 0. If Mi

commutes with the Hamiltonian, then P (Mi) ∈ kerE,
as Mi creates no excitations. In this case, the condi-
tion ΠGSMi ΠGS = c(Mi)ΠGS is guaranteed if Mi may
be written as a product of operators already appearing
in the Hamiltonian. More generally, any local operator
M that commutes with the Hamiltonian then takes the
form:

M =
∑

i

Mi (18)

where each term Mi is the product of operators already
appearing in the Hamiltonian. This condition is neces-
sary for distinct ground-state sectors to be locally indis-
tinguishable.
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In our polynomial representation, we enforce the con-
dition (17) by requiring that the stabilizer and excitation
maps satisfy the following condition on an infinite lattice

kerE ∼= im S. (19)

Recall that the image of S is the set of all polynomial
linear combinations of S(x1, ..., xd), taking the form of

∑

{ni}
xn1

1 · · ·xnd

d S(x1, . . . , xd), (20)

and representing all operators that can be written as a
product of the commuting operators appearing in the
Hamiltonian. On the other hand, the kernel of the ex-
citation map E is the set of all operators that do not
create any excitation when acting on the ground state.
The above algebraic condition (19) for topological order
is thus equivalent to the statement that any operator
that creates no excitations on a ground state on an in-
finite lattice is necessarily a product of operators {On}
already appearing the Hamiltonian. In other words, there
are no non-trivial, locally conserved quantities, and any
degenerate ground-states of the Hamiltonian are locally
indistinguishable. In summary, imposing the commuta-
tivity (16) and local indistinguishability (19) conditions
on a stabilizer map produces an ideal Majorana Hamil-
tonian with topological order.

We may compute the ground-state degeneracy of an
ideal Majorana Hamiltonian in the polynomial represen-
tation via constraint-counting. A lattice with 2M Ma-
jorana fermions defines a 2M -dimensional Hilbert space.
On the torus, however, fixing the eigenvalues of the com-
muting operators in the ideal Majorana Hamiltonian only
imposes M − k multiplicatively independent constraints,
since the product of certain operators appearing in the
Hamiltonian will yield the identity. The ground-state de-
generacy is simply given by the space of states satisfying
the constraints, which is precisely 2M/2M−k = 2k. As
each ideal Majorana Hamiltonian in this work consists of
exactly one term for each pair of Majorana modes, we see
that k is directly equal to the number of constraints on
the commuting operators appearing in the Hamiltonian.

For example, in the Majorana plaquette model, we may
group the plaquette operators {Op} into three types (A,
B, and C) as shown in Figure 5(b). On the torus, the
product of the A, B, and C-type operators is identical
and equal to the total fermion parity [1]. This yields the
following two independent constraints:

∏

p∈A
Ôp

∏

p∈B
Ôp =

∏

p∈B
Ôp

∏

p∈C
Ôp = 1, (21)

and produces a 22-fold degenerate ground-state on the
torus. These constraints may be compactly represented
using polynomials labeling the locations of the A, B and
C-type plaquettes. For example, the collection of all A
plaquettes is captured by the polynomial

pA = (1 + xy + x2y2)

(
L−1∑

n=0

x3n

)(
L−1∑

m=0

y3m

)
. (22)

It is straightforward to expand pA to verify that the ex-
ponents of the non-zero terms describe the positions of A
plaquettes. Here, L specifies the periodic boundary con-
ditions in the x and y directions, so that xL = 1, yL = 1.
Similarly, the collections of all plaquettes in B and C are
encoded in ypA and x̄ypA, respectively. The constraints
(21) arise from the fact that (pA + ypA)S = 0, using
Eq. (13) and the boundary conditions.

In terms of the stabilizer map, any multiplicative con-
straint on the operators in the ideal Majorana Hamilto-
nian on the torus is in one-to-one correspondence with a
solution p of the equation p · S = 0, so that the polyno-
mial p is an element of the kernel of S. Therefore, the
number of independent relations is given by

k = dimF2 [ker(S)]. (23)

We rewrite the expression (23) in a more convenient
form for calculations that will also allow us to make gen-
eral statements about the scaling behavior of the ground-
state degeneracy with system size for an ideal Majorana
Hamiltonian of the form (1). As proven in Corollary 4.5
in Ref. [9], Eq. (23) is equivalent to the dimension of the
following quotient ring:

k = log2D = dimF2

(
F2[x1, · · · , xd]

I(S) + bL

)
. (24)

Here, I(S) the ideal generated by the stabilizer map; if
ST = (s1, . . . , s2n) then I(S) is the space of polynomials
in F2[x±1

1 , . . . , x±1
d ] obtained as a linear combination of

{si}:

I(S) ≡
{
p =

2n∑

i=1

cisi

∣∣∣∣∣ ci ∈ F2[x±1
1 , . . . , x±1

d ]

}
. (25)

We will denote the ideal generated by a set {s1, . . . , sn}
by 〈s1, . . . , sn〉. Furthermore, we define the ideal bL ≡
〈xL1 − 1, . . . , xLd − 1〉. As the quotient space identifies the

zero element in F2[x±1
1 , . . . , x±1

d ] with the generators of
I(S)+bL, we observe that the ideal bL is used to enforce
the periodic boundary conditions on a d-dimensional
torus with side-length L.

We emphasize that the ideal I(S) is the space of
excitations that can be created through the action of any
operator on the ground-state. Therefore, the expression
(24) may be physically interpreted as counting certain
superselection sectors of the ideal Majorana Hamilto-
nian. Any p ∈ F2[x±1

1 , · · · , x±1
d ] corresponds to a virtual

eigenstate of the Hamiltonian with excitations at the
locations specified by the polynomial p. Certain states,
however, cannot be created by acting with an operator
on a ground-state |Ψ〉 due to the k constraints on the
commuting operators. For example, in the Majorana
plaquette model, it is impossible to obtain a state with
a single plaquette excitation by acting on the ground-
state, since the products of A, B and C plaquettes
must satisfy (21). As I(S)/(I(S) ∩ bL) is the set of
excitations that can be created by the action of operators
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Algebraic Expression Physical Interpretation

S(x1, .., xd) · S(x1, .., xd) = 0 Commutativity condition,
that all operators {On}
appearing in the
Hamiltonian mutually
commute.

im(S) Set of operators that may
be written as the product of
commuting operators {On}
in the Hamiltonian.

ker(E) Set of operators that create
no excitations when acting
on the ground-state |Ψ〉.

k = dimF2 [ker(S)] The number of independent
relations among the
commuting operators in the
Hamiltonian, when placed
on a torus. The ground
state degeneracy D = 2k.

p ∈ F2[x±1 , . . . , x
±
d ] A configuration of

excitations, specified by
the locations of operators
{On} with flipped
eigenvalue −1.

q ∈ I(S) A configuration of
excitations that may be
created by acting with an
operator on the
ground-state |Ψ〉.

TABLE III. Dictionary of various algebraic quantities and
their physical interpretation in the context of a commuting
Majorana Hamiltonian.

on the ground-state for a finite system, the quotient
space

(
F2[x±1

1 , · · · , x±1
d ]/bL

)
/ (I(S)/(I(S) ∩ bL)) =

F2[x1, · · · , xd]/ (bL + I(S)) is the set of virtual eigen-
states of the Hamiltonian that cannot be deformed into
each other through the action of any local operator. For
the Majorana plaquette model, this quotient space is

F2[x, y]

〈1 + x+ y, x+ y + xy, xL − 1, yL − 1〉
∼= F2

2 (26)

when L mod 3 = 0 so that there are an equal number of
A, B, and C plaquettes. In this case, the trivial vacuum
(0) and a state with a single plaquette excitation (1) on
A, B, or C correspond to the four superselection sectors
in the quotient ring.

The expression for the ground-state degeneracy (24)

is convenient as the dimension of a quotient ring may
be computed using algebraic techniques. Most often, we
will determine a Gröbner basis for the ideal I(S) + bL
in order to determine membership in the quotient ring.
For a polynomial ring R, we may define a total mono-
mial ordering (e.g. lexicographic order with x1 � x2 �
. . . � xd); we denote the leading monomial in a poly-
nomial h ∈ R as LM(h) with respect to this ordering.
Given an ideal I = 〈s1, · · · , sn〉 of a polynomial ring,
there exists a canonical choice of generators for the ideal,
known as the Gröbner basis {g1, · · · , gn}, with the prop-
erty that for any f ∈ I, LM(f) ∈ 〈LM(g1), . . . ,LM(gn)〉,
i.e. any element of the ideal has a leading term con-
tained in the ideal generated by the leading terms of the
Gröbner basis. As a result, the dimension of the quotient
ring dim[R/I] is merely given by the number of monomi-
als that are smaller (in the monomial ordering) than all
of the leading terms in the Gröbner basis. This is because
any polynomial p ∈ R may be reduced by the Gröbner
basis until the leading term of the reduced polynomial
satisfies LM(pred) < LM(gi) for all i = 1, . . . , n. There-
fore, each monomial m satisfying m < LM(gi) for all i
corresponds to a unique representative of the quotient
ring R/I.

We note that calculations of the ground-state degen-
eracy for any commuting Majorana Hamiltonians pre-
sented in this work are done by determining a Gröbner
basis for the ideal I(S) + bL. In this way, the calcula-
tion of the degeneracy reduces to counting points in an
algebraic set.

C. Unitary and Stable Equivalence

The polynomial representation of the ideal Majorana
Hamiltonian contains built-in redundancies, since we
may re-define the unit cell or translation operators on
the d-dimensional lattice. For the stabilizer map, the
translation corresponds to multiplication of any entry of
S(x1, . . . , xd) by a monomial. In this way, a stabilizer
map S(x1, . . . , xd) is only defined up to monomial mul-
tiplication on each of its entries. Furthermore, for an
ideal Majorana Hamiltonian with longer-range interac-
tions, we may always enlarge the unit cell. As our focus
will be on Majorana models with nearest-neighbor in-
teractions, we neglect this redundancy in the stabilizer
map.

Equivalence relations, given by local unitary trans-
formations on ideal Majorana Hamiltonians, may also
be considered in the polynomial language. For in-
stance, two ideal Majorana Hamiltonians, defined by sta-
bilizer maps S(x1, . . . , xd) and S′(x1, . . . , xd) are uni-
tarily equivalent if there exists a matrix U such that
S′(x1, . . . , xd) = U · S(x1, . . . , xd) where U ∈ O(n;F2),
an orthogonal matrix over F2 satisfying UTU = 1. This
guarantees that if S(x1, . . . , xd) · S(x1, . . . , xd) = 0, then

S′(x1, . . . , xd) · S′(x1, . . . , xd) = 0 as well. Finally, we
take two stabilizer maps to be stably equivalent if we can
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f1(x, y, z) f2(x, y, z) f3(x, y, z) f4(x, y, z) f5(x, y, z) f6(x, y, z)

f 1 + x+ y + z
1 + z + xy
+yz + xz

1 + x+ y
+yz + xz

1 + y + z
+xy + yz + xz

1 + x+ y + z
+xy + yz + xz

1 + x+ y
+z + yz

O
tx

ty

tz

log2D 3L− 2
6L− 6 (L = 3n)

0 (L 6= 3n)

4L/3 (L = 6 · 2n)
8L/5 (L = 5 · 2n)

...

4L− 4 (L = 2n)
2L− 1 (L = 2n+ 1)

2L− 2 (L = 22n+1 − 1)
2L− 4 (L = 22n − 1)

...

4L/3 (L = 6 · 2n)
8L/5 (L = 5 · 2n)

...

TABLE IV. We find 7 distinct, topologically-ordered ideal Majorana Hamiltonians with nearest-neighbor interactions on a
lattice with a two-site unit cell in d = 3 spatial dimensions. The first model f0(x, y, z) = 1 + y + z (not shown) is a trivial
stack of two-dimensional Majorana plaquette models, considered in Ref. [1]. For the remaining 6 models, the action of the
elementary operator O appearing in the ideal Majorana Hamiltonian is shown above as the product of the Majorana fermions
on the indicated red dots. In the depiction of the Majorana cubic model f1(x, y, z), we have also shown the choice of translation
vectors {tx, ty, tz} on the lattice, originating from one of the sites within the unit cell; to compute the ground-state degeneracy
on an L× L× L torus, we impose periodic boundary conditions by requiring that tLx = tLy = tLz = 1. The topological ground-
state degeneracy (D) of each of these models is extensive. For models f3(x, y, z), f5(x, y, z), and f6(x, y, z), the ground-state
degeneracy on the three-torus is a highly sensitive function of system size, and only the maximum value of the degeneracy is
shown for the indicated choices of L.

obtain one from the other by attaching a trivial (dimer-
ized) set of Majorana fermions. This is expressed as
S(x1, . . . , xd)T ∼ S(x1, . . . , xd)T ⊕ (0, · · · , 0, 1, 1).

III. EXTENSIVE TOPOLOGICAL
DEGENERACY IN d ≥ 3

Using the commutativity (16) and local indistinguisha-
bility (19) conditions, and the built-in redundancy in the
polynomial description, we demonstrate in the Supple-
mental Material [13], that an ideal Majorana Hamilto-
nian defined on a d-dimensional lattice with a two-site
basis is topologically-ordered if the stabilizer map may
be written in the following form, after multiplying each
entry by appropriate monomials:

S =



f(x1, · · · , xd)

f(x1, · · · , xd)


 (27)

where f(x1, · · · , xd) ∈ F2[x±1
1 , · · · , x±1

d ] and f and f̄ are
co-prime, i.e., f and f̄ have no common polynomial fac-
tors. As a result, a topologically-ordered, ideal Majo-
rana Hamiltonian with a two-site basis may be speci-
fied by a single polynomial. For example, the stabilizer
map for the Majorana plaquette model takes the form
ST = (f(x, y), x · f(x, y) ) with f(x, y) = 1 + x+ y.

The dimension of the quotient ring (24) scales as the
dimension of the space of the zeros of the ideal I(S) over
the field extension F2m when L = 2m−1. As a result, for

an ideal Majorana Hamiltonian (1) with a two-site unit
cell, the space of solutions to

f(x1, . . . , xd) = 0, f(x1, . . . , xd) = 0 (28)

generally defines an (d − 2)-dimensional variety, so that
the ground-state degeneracy scales on the d-dimensional
torus with side-length L as log2D = cLd−2 + · · · for some
constant c. We emphasize that this produces a class of
ideal Majorana models with extensive topological degen-
eracy in d = 3 dimensions. Remarkably, while our models
have a two-dimensional Hilbert space and a single inter-
action term per lattice site, this only constrains the full
Hilbert space up to extensive topological degeneracy.

We have exhaustively searched for distinct, ideal Ma-
jorana Hamiltonians with a two-site basis and nearest-
neighbor interactions in d = 2 and d = 3 spatial dimen-
sions. This is straightforward as the orthogonal group
O(2;F2) = {12×2, σ

x} so that the space of local unitary
transformations between these ideal Majorana Hamilto-
nians is trivial. In d = 2 spatial dimensions, the only
such Hamiltonian is the Majorana plaquette model with

f(x, y) = 1 + x+ y. (29)

In d = 3 dimensions, however, we find 7 distinct Ma-
jorana models with a two-site basis and nearest-neighbor
interactions. The first model has the polynomial repre-
sentation f0(x, y, z) = 1 + y + z and is a trivial stack of
two-dimensional Majorana plaquette models. The poly-
nomial representations of the remaining models, along
with their ground-state degeneracies on a torus of side-
length L are shown in Table IV. For simplicity, we have
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imposed periodic boundary conditions by requiring that
tLx = tLy = tLz = 1 for the translation vectors {tx, ty, tz}
shown in the representation of the Majorana cubic model
f1(x, y, z) = 1 +x+ y+ z in Table IV. Each of the mod-
els shown exhibits extensive topological degeneracy and
admits at least one topological excitation that is free to
move in a sub-manifold of the full lattice.

IV. FRACTON EXCITATIONS AND
DIMENSION-n ANYONS

A remarkable feature of these Majorana models is the
presence of fundamental excitations that are either per-
fectly immobile or only free to move in a sub-manifold
of the lattice; attempting to move these excitations by
acting with any local operator will necessarily create ad-
ditional excitations. A bound-state of these immobile ex-
citations, however, forms a particle that can freely move
along a higher-dimensional sub-manifold.

The existence of a fracton fundamental excitation may
be shown rigorously in the polynomial representation of
the Majorana models. An element p ∈ I(S) of the ideal
defined by the stabilizer map corresponds to a set of ex-
citations that may be created by acting on the ground-
state. The fundamental excitation is mobile if and only if
it is possible to create an isolated pair of such excitations.
Therefore, an ideal Majorana model admits fracton exci-
tations if the stabilizer ideal contains no binomial terms,
i.e.

1 + xn1
1 xn2

2 · · ·xnd

d /∈ I(S) (30)

for any ni ∈ Z.
We now apply the polynomial criterion for fracton ex-

citations to the Majorana cubic model and to the model
f5(x, y, z) = 1 + x+ y+ z + xy+ yz + xz, both shown in
Table IV.

A. Fractons in the Majorana Cubic Model

We consider the Majorana cubic model, specified by
the single polynomial f(x, y, z) = 1+x+y+z, so that the

stabilizer map is given by S =
(
f(x, y, z), f(x, y, z)

)T
.

We wish to prove that the ideal generated by the stabi-
lizer map I(S) contains no binomial terms, so that the
fundamental cube excitation is a fracton. This may be
shown by considering the zero-locus of the ideal, i.e., the
solutions to the zeros of the generators of the ideal:

1 + x+ y + z = 0 (31)

xyz + xy + yz + xz = 0. (32)

A polynomial p belong to I(S) only if p vanishes on the
zero-locus of the ideal. Note that solutions to (31) take
the form (x, y, z) = (1, α, α), (α, 1, α) or (α, α, 1), where
α is an arbitrary element in the extension of F2. However,

we see that the binomial 1 + xnymz` vanishes on this
space of solutions only if n = m = ` = 0, in which case
the binomial is zero. Therefore, we conclude that

1 + xnymz` /∈ I(S). (33)

As a result, there is no way to create the fundamental
cube excitation in the Majorana cubic model in pairs.
Therefore, the cube excitation is an immobile fracton; a
single cube excitation cannot be moved without creating
additional excitations.

B. Dimension-1 Fundamental Excitations in
f5(x, y, z)

Now, we consider the isotropic model f5(x, y, z) = 1 +
x + y + z + xy + yz + xz, with stabilizer map defined

by S(x, y, z) =
(
f5(x, y, z), xyz · f5(x, y, z)

)
. From the

excitation map E(x, y, z) ≡ S(x, y, z), we find that the
Majorana bilinear along the (1,1,1) direction creates a
pair of fundamental excitations:

E(x, y, z) ·
(

1
1

)
= 1 + xyz. (34)

Therefore, the fundamental excitation in this model is
clearly not a fracton. We now demonstrate that the
fundamental excitation may only hop freely along the
(1,1,1) direction, without creating additional excitations.
Consider the variety V (I) defined by the stabilizer ideal
I(S) = 〈1 + x+ y + z + xy + yz + xz, xyz + x+ y + z +
xy+ yz+ xz〉, i.e. the zero-locus of the generators of the
ideal over an extension of F2. The following is a point on
the variety:

(x, y, z) =

(
t,

1

1 + t
,
t+ 1

t

)
(35)

with t in an extension of F2. As a result, if 1 + xnym ∈
I(S), we must have from (35) that tn = (1 + t)m for
infinitely many t. This can only be true if n = m =
0. As a result, the fundamental excitation cannot hop
freely in the xy-plane. As the generators of the ideal are
symmetric under exchanging any pair of variables (e.g.
x ←→ y), we conclude that 1 + ynzm, 1 + xnzm ∈ I(S)
only if n = m = 0, so that the fundamental excitation
cannot freely hop in the yz- or xz-planes. From these
results, we are led to the conclusion that

1 + xnymz` /∈ I(S) (36)

when n, m and ` are distinct. Therefore, we have shown
that the fundamental excitation in the model defined by
f5(x, y, z) is restricted to hop along the (1,1,1) direction
of the cubic lattice without creating additional excita-
tions.
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