
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Monoclinic crystal structure of α-RuCl_{3} and the zigzag
antiferromagnetic ground state

R. D. Johnson, S. C. Williams, A. A. Haghighirad, J. Singleton, V. Zapf, P. Manuel, I. I. Mazin,
Y. Li, H. O. Jeschke, R. Valentí, and R. Coldea

Phys. Rev. B 92, 235119 — Published 10 December 2015
DOI: 10.1103/PhysRevB.92.235119

http://dx.doi.org/10.1103/PhysRevB.92.235119


The monoclinic crystal structure of α-RuCl3 and
the zigzag antiferromagnetic ground state

R. D. Johnson,1, 2, ∗ S. C. Williams,1 A. A. Haghighirad,1 J. Singleton,3 V. Zapf,3

P. Manuel,2 I. I. Mazin,4 Y. Li,5 H. O. Jeschke,5 R. Valent́ı,5 and R. Coldea1

1Clarendon Laboratory, University of Oxford Physics Department,
Parks Road, Oxford, OX1 3PU, United Kingdom

2ISIS Facility, Rutherford Appleton Laboratory-STFC, Chilton, Didcot, OX11 0QX, United Kingdom
3National High Magnetic Field Laboratory MPA-NHMFL, TA-35,

MS-E536 Los Alamos National Laboratory, Los Alamos, NM 87545, USA
4Code 6393, Naval Research Laboratory, Washington, DC 20375, USA

5Institut für Theoretische Physik, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
(Dated: November 3, 2015)

The layered honeycomb magnet α-RuCl3 has been proposed as a candidate to realize a Kitaev spin
model with strongly frustrated, bond-dependent, anisotropic interactions between spin-orbit entan-
gled jeff = 1/2 Ru3+ magnetic moments. Here we report a detailed study of the three-dimensional
crystal structure using x-ray diffraction on un-twinned crystals combined with structural relaxation
calculations. We consider several models for the stacking of honeycomb layers and find evidence
for a parent crystal structure with a monoclinic unit cell corresponding to a stacking of layers with
a unidirectional in-plane offset, with occasional in-plane sliding stacking faults, in contrast with
the currently-assumed trigonal 3-layer stacking periodicity. We report electronic band structure
calculations for the monoclinic structure, which find support for the applicability of the jeff = 1/2
picture once spin orbit coupling and electron correlations are included. Of the three nearest neigh-
bour Ru-Ru bonds that comprise the honeycomb lattice, the monoclinic structure makes the bond
parallel to the b-axis non-equivalent to the other two, and we propose that the resulting differences
in the magnitude of the anisotropic exchange along these bonds could provide a natural mechanism
to explain the spin gap observed in powder inelastic neutron scattering [Banerjee et al.], in contrast
to spin models based on the three-fold symmetric trigonal structure, which predict a gapless spec-
trum within linear spin wave theory. Our susceptibility measurements on both powders and stacked
crystals, as well as magnetic neutron powder diffraction show a single magnetic transition upon
cooling below TN ≈13 K. The analysis of our neutron powder diffraction data provides evidence for
zigzag magnetic order in the honeycomb layers with an antiferromagnetic stacking between layers.
Magnetization measurements on stacked single crystals in pulsed field up to 60 T show a single tran-
sition around 8 T for in-plane fields followed by a gradual, asymptotic approach to magnetization
saturation, as characteristic of strongly-anisotropic exchange interactions.

I. INTRODUCTION

There has been considerable recent interest in materi-
als that realize strongly-anisotropic, bond-dependent in-
teractions as the resulting frustration effects could poten-
tially stabilize novel forms of cooperative magnetic order
or a spin liquid state.1 A canonical Hamiltonian is the Ki-
taev spin model on the honeycomb lattice,2 where each
bond carries an Ising interaction, but where the Ising axes
are reciprocally orthogonal for the three bonds meeting
at each lattice site, leading to an exotic quantum spin liq-
uid state with fractional spin excitations. In a pioneering
set of papers3,4 it was proposed that Kitaev physics may
be realized in A2IrO3 (A = Na, Li) materials with a
tri-coordinated, edge-sharing bonding geometry of IrO6

octahedra. Here the combined effect of strong spin-orbit
coupling at the Ir4+ 5d5 site and near-cubic crystal field
of the O6 octahedra stabilize jeff = 1/2 Ir moments, and
superexchange via two near 90◦ Ir-O-Ir paths is predicted
to couple (to leading order) only the magnetic moment
components normal to the plane of the Ir-O-Ir bond, with
three such near-orthogonal planes meeting at each Ir site.
Evidence for dominant Kitaev interactions in such mate-

rials has been observed in the structural polytypes β- and
γ-Li2IrO3 where the Ir ions have the same local tri-fold
coordination as in the planar honeycomb, but now form
fully-connected three-dimensional networks, so-called hy-
perhoneycomb and stripyhoneycomb, respectively. In
both structural polytypes complex counter-rotating and
non-coplanar incommensurate magnetic orders have been
observed,5,6 which cannot be reproduced by isotropic
(Heisenberg) exchanges, but require the presence of dom-
inant ferromagnetic Kitaev interactions7–9 supplemented
by additional smaller interactions. In contrast, the lay-
ered honeycomb iridate Na2IrO3 shows a very different
magnetic order, with spins arranged in zigzag ferromag-
netic chains aligned antiferromagneticaly,10–12 believed
to be stabilized by the competition between many inter-
actions including a strong ferromagnetic Kitaev term and
further neighbor interactions.13 In Na2IrO3 evidence for
the presence of strong Kitaev interactions has been pro-
vided by measurements of the diffuse scattering at tem-
peratures above the magnetic ordering transition tem-
perature, which observed a locking of the polarization of
spin fluctuations with the wavevector direction.14

α-RuCl3 has been proposed15 as a candidate Kitaev
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material in a 4d analogue of the layered honeycomb iri-
dates. This might be surprising at first as the spin-orbit
coupling is expected to be considerably weaker in Ru
compared to Ir (due to the smaller atomic number), but
it was argued15 that i) the crystal field of the Cl6 octahe-
dra may potentially be much closer to cubic in α-RuCl3
as layers are only very weakly bonded (by van der Waals
interactions), in contrast to Na2IrO3 where the O6 octa-
hedra are strongly trigonally squashed due to the strong
bonding to the adjacent hexagonal Na+ layers, and ii)
correlation effects in a narrow band could potentially en-
hance the effects of spin-orbit coupling.

The magnetic properties of α-RuCl3 are currently
the subject of much experimental and theoretical
investigation.15–22 Early studies have established the ex-
istence of two distinct structural polytypes: the α poly-
type with edge-sharing RuCl6 octahedra forming stacked
honeycomb layers with magnetic order below ≈14 K
[Ref. 23], and the β polytype with face-sharing RuCl6
octahedra arranged in chains, which shows no magnetic
ordering down to the lowest temperatures measured.24

However, detailed studies of the three-dimensional crys-
tal structure of the layered (α) polytype have proved diffi-
cult because of the prevalence of diffuse scattering due to
stacking faults,25 an inevitable consequence of the weak
bonding between adjacent honeycomb layers. A trigonal
space group P 3112 with a 3-layer stacking periodicity is
usually presupposed based on an early structural study,26

although this structural model has been questioned by
later studies.27–29 In particular, Ref. 28 reported a mon-
oclinic C2/m stacking of honeycomb layers for the re-
lated halide IrBr3 (AlCl3 structure type30) and proposed,
by analogy, a similar structural framework for α-RuCl3,
but no lattice parameters or any other structural de-
tails were provided. The difficulty in reliably solving the
crystal structure stems from the fact that in principle
several candidate stacking sequences of the honeycomb
layers may be possible (monoclinic, trigonal, rhombo-
hedral - to be discussed later) and it is experimentally
rather challenging to reliably distinguish between them
in the presence of stacking faults and/or when samples
may contain multiple twins. Having a reliable determina-
tion of the full three-dimensional crystal structure is im-
portant for understanding the underlying electronic and
magnetic properties, as electron hopping terms, and con-
sequently magnetic interactions and anisotropies, appear
to be quite sensitive to the stacking sequence of layers
and to weak distortions inside each layer, as we will show
later in Sec. V.

Previous studies on single crystals of α-RuCl3 have ob-
served two anomalies near 8 and 14 K in both magnetic
susceptibility and heat capacity16,18,19 (with the transi-
tion near 8 K attributed16 to the onset of zigzag magnetic
order as in Na2IrO3), whereas studies on powder samples
showed only one anomaly near TN ≈13 K [Refs. 23 and
24], raising the question of why the powders and single
crystals show distinct behaviors. To date, the ground
state magnetic structure is yet to be reported for sam-

ples that exhibit a single magnetic phase transition upon
lowering temperature.

Here, we report comprehensive results and an exten-
sive discussion of x-ray diffraction measurements on un-
twinned crystals of α-RuCl3 that display a single mag-
netic phase transition upon cooling to low temperatures,
in agreement with powder samples. We find that the
crystal structure is monoclinic, with space group C2/m.
Features in the diffraction pattern necessitated by the
assumed trigonal P 3112 model are clearly absent. The
monoclinic structure of α-RuCl3 is found to be iso-
structural to the layered honeycomb materials Na2IrO3

[Ref. 11] and α-Li2IrO3 [Ref. 31]. From neutron pow-
der diffraction data, we present evidence of a magnetic
propagation vector, k=(0,1,0.5), consistent with zigzag
or stripy long-range magnetic ordering. We find that the
calculated magnetic diffraction pattern expected for the
stripy model is inconsistent with the experimental data
and conclude that the zigzag model with antiferromag-
netic stacking gives the best account of the true magnetic
structure. Furthermore, we characterize the stability of
the zigzag order in applied magnetic field and construct
a magnetic phase diagram for field applied in the honey-
comb layers. To complement the x-ray diffraction studies
we report electronic band structure calculations to check
the stability of the crystal structure and determine the
resulting magnetic ground state of the Ru3+ ions.

The paper is organized as follows: Sec. II presents the
methods employed. Single crystal diffraction results are
given in Sec. III, with the space-group determination and
stacking faults analysis presented in Sec. III A, the struc-
tural refinement discussed in Sec. III B, and comparison
to other structural models drawn in Sec. III C. Follow-
ing this, in Sec. IV we focus on the magnetic order at low
temperatures through discussion of susceptibility, pulsed-
field magnetization and neutron powder diffraction re-
sults. In Sec. IV C we discuss the implications of the
monoclinic symmetry for the low-energy spin excitations
and in Sec. V we present results of ab-initio electronic
structure calculations. Finally, conclusions are summa-
rized in Sec. VI.

II. METHODS

Crystals of α-RuCl3 were grown by vacuum sublima-
tion from commercial RuCl3 powder (Sigma Aldrich, Ru
content 45-55%) sealed in a quartz ampoule and placed
in a three-zone furnace with the end temperatures 650
and 450◦C. Those temperatures were chosen in order to
obtain phase-pure α-RuCl3 (the β polytype transforms
irreversibly into the α phase above 395◦C [Ref. 23]) and
to ensure that the Cl2 gas pressure in the ampoule did not
exceed atmospheric pressure. The grown polycrystalline
samples contained many flat-plate crystal pieces, often
with a hexagonal shape and up to 1 mm in diameter.
Single crystal x-ray diffraction in the range 80-300 K (un-
der N2 gas flow) was performed on many of those crystal
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platelets using a Mo-source Oxford Diffraction Supernova
diffractometer.

Magnetometry measurements were made under static
fields using both a Quantum Design Magnetic Proper-
ties Measurement System (MPMS) and vibrating sam-
ple magnetometer (VSM). Pulsed-field magnetization ex-
periments were performed on a stack of aligned crystal
platelets in both H ⊥ c∗ (field in the honeycomb lay-
ers) and H ‖ c∗ geometries (field normal to honeycomb
layers). We employed an improved version of the setup
described in Ref. 32, placed within a 3He cryostat with a
base temperature of 0.4 K and the 60 T short-pulse mag-
net at NHMFL Los Alamos.33 The magnetization values
measured in the pulsed-field experiments were calibrated
against VSM data collected on the same sample.

Neutron powder diffraction measurements to obtain in-
formation about the magnetic structure were performed
using the time-of-flight diffractometer WISH at the ISIS
Facility in the UK. Approximately 5 g of powder α-RuCl3
(extracted from the crystal growth ampoule described
above) was placed in an aluminium can, mounted in
a standard Helium-4 cryostat with a base temperature
of 2 K, with additional measurements collected using a
closed-cycle refrigerator with a base temperature of 6 K.

The electronic structure calculations were performed
with the all electron full potential Wien2k code.34 We
set the basis-size controlling parameter RKmax equal to
8 and considered a mesh of 8 × 6 × 8 k points in the
first Brillouin zone (FBZ) for the self-consistency cycle.
The density of states were calculated with 12×12×12 k
points in the FBZ. All calculations were doubled checked
with the FPLO code.35

III. CRYSTAL STRUCTURE

A. Space group and stacking faults

The x-ray diffraction pattern was measured for many
crystal platelets extracted from several growth batches.
In all samples studied (over fifty), one could invariably
observe sharp reflections and weak diffuse scattering in
rods along the direction surface normal to the crystal
plates, as characteristic of a layered crystal structure with
stacking faults.36 The positions of the sharp Bragg reflec-
tions could be consistently indexed by a monoclinic unit
cell with space group C2/m both at room temperature
and the lowest temperature measured (80 K) with lattice
parameters given in Table I. Some samples were found
to have a single structural domain, some were found to
contain two monoclinic twins rotated by ≈120◦ about
the direction normal to the plates (c∗), and other sam-
ples contained multiple structural domains. For the un-
twinned crystals the diffraction patterns had the empiri-
cal selection rule for observed Bragg peaks h+ k = even,
as characteristic of C-centering in the ab plane, and the
peak intensities were symmetric under a 2-fold rotation
around b∗ and mirror-plane reflection normal to b∗, as

expected for a 2/m Laue class. Taken together this in-
formation identifies the space group as C2/m.

Representative data at 300 K from an un-twinned crys-
tal (of ≈ 80µm diameter) is shown in Fig. 1D-F, for var-
ious diffraction planes. Note that all sharp Bragg peaks
are in good agreement with calculations (panels G-I) for a
C2/m structure. In addition to sharp Bragg peaks, rods
of diffuse scattering are also clearly visible along l (see
panels E-F), with the general selection rule k = 3n+1 or
3n+2 (n integer) and h+k = even (due to C-centering).
Diffuse scattering with the same selection rule was also
observed in Na2IrO3 and attributed to faults in the stack-
ing sequence of honeycomb Na1/2IrO3 layers.11 By anal-
ogy, we attribute the above diffuse scattering observed in
α-RuCl3 as originating from occasional shifts in the ab
plane by ±b/3 between stacked RuCl3 honeycomb lay-
ers. The intensities of the sharp Bragg peaks located
at integer l positions on those diffuse scattering rods are
expected to have a reduced intensity compared to a fully-
ordered structure due to some transfer of intensity into
the diffuse rod.36 For the quantitative structural refine-
ment we will show that it is helpful to distinguish between
different families of Bragg peaks, and for this purpose we
label the above family of Bragg peaks whose intensities
are affected by diffuse scattering from sliding stacking
faults as in Na2IrO3, as ‘SFa’ (peaks affected by Stack-
ing Faults of type ‘a’, to distinguish them from another
family of type ‘b’, to be discussed below).

Upon cooling to low temperatures (80 K) no new
diffraction peaks appear, but a second family of diffuse
scattering rods becomes apparent. This is most clearly
seen by comparing Figs. 1A and D, note the diffuse scat-
tering rod near (2,0,-2) (panel A, labelled peak position),
which is prominent at low temperature, but only just vis-
ible at 300 K (panel D). Note also in Fig. 1C the strong
diffuse scattering along (1,±3, l) positions, almost absent
at 300 K (panel F). This type of diffuse scattering was
not detected at 300 K in Na2IrO3 [Ref. 11] and has a
different selection rule (k = 3n and h = 3m+1 or 3m+2
with n, m integers and h+k = even) compared to the dif-
fuse scattering of type ‘a’ discussed previously. At 80 K
both families of diffuse scattering rods have compara-
ble intensities (see Fig. 1C). As before, the Bragg peaks
located at integer l positions on this second family of
diffuse scattering rods are expected to be reduced in in-
tensity compared to a fully-ordered structure. We label
this family of Bragg peaks as ‘SFb’ (peaks affected by
Stacking Faults of type ‘b’).

Finally, a third family of Bragg peaks exist that are
sharp at all temperatures measured, such as (00n) (n in-
teger) in Fig. 1A, so appear not to be affected by the
presence of stacking faults. These have the general re-
flection condition h = 3m and k = 3n (n,m integers
and h+ k = even), and we label them ‘NSF’ (peaks Not
affected by Stacking Faults).
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FIG. 1. (Color online) Observed x-ray diffraction patterns (log intensity scale) for an un-twinned crystal of α-RuCl3 at 80 K
(A-C), 300 K (D-F), shown for three different planes, compared with calculations (G-I) for the monoclinic C2/m structural
model (Fig. 2) and the trigonal P 3112 model (J-L). All wavevectors are labelled in r.l.u. units of the monoclinic cell and a∗

h,
b∗
h and c∗

h denote reciprocal lattice vectors of the hexagonal primitive cell of the trigonal structure (for the relation between
the hexagonal and monoclinic axes see Sec. III C). Note the sharp peaks in the data are in good agreement with the monoclinic
model (compare D-F with G-I), whereas the “supercell” peaks expected in the case of the trigonal model (K-L) at fractional
positions l = n + 1/3, n + 2/3 (n integer) are clearly absent from the data, instead only diffuse scattering is found in those
places.

B. Structural refinement at 80 K

To obtain a reference, fully-ordered 3D structure with
no stacking faults we must refine a structural model
against only those diffraction peaks that are unaffected
by the presence of stacking faults. These are the fam-
ily labelled NSF, as defined above. In the following, we
focus primarily on the data collected at 80 K. Out of a
total 1451 Bragg peaks measured, 135 are NSF peaks,
of those just 32 are symmetry inequivalent after data re-
duction in space group C2/m. Despite the small number

of reflections a full refinement using FULLPROF37 of a
structural model, with starting atomic positions for Ru
and Cl taken to be those of Ir and O in the structure
of Na2IrO3, converged well. Hence, the data was found
to be fully consistent with the same structural motif as
that found in Na2IrO3 with honeycomb layers of edge-
sharing RuCl6 octahedra stacked vertically with an in-
plane offset (see Fig. 2), with Ru in place of Ir, Cl in
place of O, and removing Na altogether. However, de-
tailed tests showed that the refinement was in fact not
sufficiently sensitive to the y-position of the Ru ion, or
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TABLE I. α-RuCl3 crystal structure parameters at 80 K.

Cell parameters

Space group: C2/m

Z = 4

a, b, c (Å) 5.9762(7) 10.342(1) 6.013(1)

α, β, γ (◦) 90 108.87(2) 90

Volume (Å3) 371(2)

Atomic fractional coordinates from DFT

Atom Site x y z

Ru 4g 0 0.33441 0

Cl1 8j 0.75138 0.17350 0.76619

Cl2 4i 0.73023 0 0.23895

Selected bond lengths and angles from DFT

Ru1-Ru2 3.42513 Å

Ru2-Ru3 3.46080 Å

Ru1-Cl2-Ru2 92.5954◦

Ru2-Cl1-Ru3 93.9310◦

Fitted isotropic atomic displacement parameters

Atom Uiso(Å2)

Ru 0.005(1)

Cl1 0.006(2)

Cl2 0.006(2)

Data collection

SFa SFb NSF

# measured refl. 991 325 135

# independent refl. 189 68 32

Rint(C2/m) 8.0% 3.3% 2.9%

Fit to NSF peaks

(Criterion for observed reflections: I > 3.0σ(I))

# observed reflections: 32

# fitted parameters: 3

the precise distortions of the Cl6 octahedra, so the inter-
nal atomic fractional coordinates could not be uniquely
determined from the x-ray data alone. The atomic po-
sitions are key to understanding the underlying physics
as the exchange interactions (and their anisotropy) are
expected to be strongly dependent on the geometry of
the Ru-Cl-Ru bonds. So to construct a robust struc-
tural model we use ab-initio density functional theory
(DFT) calculations to predict the atomic positions that
give the lowest energy ground state using as input the
experimentally determined space group and lattice pa-
rameters, and then check consistency of this constrained
structural model with the intensities in the x-ray diffrac-
tion data. For the DFT structural relaxation calculations

we employed the projector augmented wave method as
implemented in the VASP package38 with the general-
ized gradient approximation (GGA)39, as well as the full
potential local orbital (FPLO) method.35

FIG. 2. (Color online) Monoclinic crystal structure of α-
RuCl3, showing the unit cell as a black outline, Ru as grey
balls and Cl as green.(a) Projection onto the ac plane. (b)
Basal layer projected onto the ab plane.

The atomic fractional coordinates predicted by DFT
within the above empirical constraints are given in Ta-
ble I. The refinement of the structural model against the
80 K NSF peak intensities was repeated with atomic frac-
tional coordinates fixed to those DFT values, with only
isotropic displacement parameters and a global scale fac-
tor left free to vary. A reliability factor of RF 2 = 4.2%
was obtained, which compared to a value of RF 2 = 3.7%
achieved for the completely free refinement (when atomic
coordinates were also allowed to vary), demonstrates that
the theoretically predicted atomic coordinates are fully
consistent with the x-ray diffraction data. Fig. 3 shows
the observed structure factors squared, |F |2, for all fam-
ilies of diffraction peaks compared to those calculated
from the fit against only the NSF peaks. The excel-
lent agreement with the NSF peak intensities at 80 K
is clear (Fig. 3b, black symbols). Furthermore, one can
see that intensities of both SFa (blue) and SFb (red)
peaks are systematically overestimated, consistent with
the expectation that some of their nominal intensity has
been transferred into the diffuse scattering in their vicin-
ity. Fig. 3a shows the same fit, but performed against the
room temperature data set (with empirically- determined
lattice parameters a = 5.9856(4)Å, b = 10.3557(5)Å,
c = 6.0491(4)Å, β = 108.828(7)◦ and assuming atomic
fractional coordinates fixed to the DFT predicted values
listed in Table I). Even at this temperature, the struc-
tural model agrees well with the x-ray data (RF 2 = 5.5%
for NSF peaks), and the intensities of the SFb peaks (red
symbols) appear to be also almost quantitatively repro-
duced by the model, as at this temperature the diffuse
scattering near SFb peaks is almost absent, so the in-
tensity of SFb peaks is expected to be only very weakly
reduced compared to a perfectly-ordered structure.

The obtained crystal structure allows us to naturally
understand the strong periodic modulations in the inten-
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FIG. 3. (Color online) Observed structure factor squared val-
ues of all three families of diffraction peaks compared to those
calculated by fitting the C2/m monoclinic structural model
with fixed theoretical atomic fractional coordinates to data
measured at a) room temperature, and b) 80 K.

sity of x-ray diffraction peaks, in particular the rather
conspicuous period-4 repeat in the intensity of peaks
along l in the (h0l) plane (see Fig. 1D) with almost ex-
tinct peaks at (0, 0,±2) and (±2, 0, 0) positions. The
near-absence of intensity at those positions is due to an
almost total cancellation of the scattering from the Ru
ion with that from the three Cl ions with atomic scatter-
ing amplitudes fRu : fCl in ratio almost 3 : 1. In detail,
the Ru ion is located at z = 0, whereas the Cl ions are
at z ' 1/4 and 3/4 (see Table I), so the structure factors
for (00l) reflections follow (to a good approximation) a
period-4 sequence of values fRu + 3fCl, fRu, fRu − 3fCl,
fRu, fRu + 3fCl . . .. In the limit of small wavevectors Q,
the atomic scattering factors are given by the number
of electrons, so fRu : fCl = 44 : 17 ≈ 3 : 1, such that
to good approximation the structure factors are multi-
ples of 4, 1, 0, 1, 4 . . . for l = 0, 1, 2, 3, 4 . . .. Similarly,
one can show that a period-4 modulation in intensity
along l occurs in general for (h0l) peaks, with zeros at
h + l = 4n + 2 (n integer and h even) explaining all
the near-extinctions and apparent intensity modulations
seen in Fig. 1D. We note that such near extinctions do
not occur in the diffraction pattern of the iso-structural
Na2IrO3, as the scattering factors of Ir and O are much
more anisotropic (ratio almost 10:1) and Na is also con-
tributing to the diffraction peak intensities.

To summarize, the x-ray diffraction patterns uniquely

identify the monoclinic C2/m space group both at
room temperature and the lowest temperature measured
(80 K), and quantitative structural refinement using fixed
atomic fractional coordinates predicted by DFT, per-
formed only against the sharp diffraction peaks whose in-
tensity is not affected by the presence of stacking faults,
gives a very good description of the data. The corre-
sponding crystal structure is shown in Fig. 2 and consists
of monoclinically-stacked RuCl3 honeycomb layers as in
AlCl3 [Ref. 30] and Na2IrO3. The real materials are un-
derstood to have occasional stacking faults with respect
to this reference monoclinic structure.

C. Other Structural Models

The current structural model assumed for α-RuCl3
(trigonal space group P 3112 [Ref. 26], conventionally de-
scribed in a hexagonal unit cell) differs from the mono-
clinic C2/m structure primarily in the stacking sequence
of the honeycomb layers, with a three-layer stacking pe-
riodicity as opposed to single layer in C2/m. We note
that the dimensions of the unit cell are, in general, an
insufficiently robust criterion to reliably distinguish be-
tween those two structural models as the monoclinic unit
cell metric is in fact very close to hexagonal, i.e. b '

√
3a

to within better than 0.2%, and 3c × cosβ ' −a to
within 2%. When the latter equation is satisfied ex-
actly one has eclipsed (straight-on-top) stacking at the
3rd honeycomb layer, so an alternative hexagonal cell
with a 3-layer periodicity along the direction normal to
the layers could in principle provide an approximate met-
ric to index the positions of Bragg diffraction peaks. In
this case the transformation between the hexagonal (sub-
script h) and symmetrized monoclinic unit cell vectors
(subscript m) is given by am = −ah−bh, bm = ah−bh,

cm = (ah + bh + ch)/3, where am = ah, bm =
√

3ah,
β = π/2 + atan(ah/ch), and cm = ch/(3 sinβ).

However, the internal atomic arrangement in the mon-
oclinic and trigonal structures is different due to the dis-
tinct symmetries of the corresponding space groups, and
these differences would be directly observed in the mea-
sured single crystal diffraction patterns. In particular,
the two structures have a distinct stacking sequence of
the honeycomb layers: for two adjacent layers both the
symmetrized monoclinic and trigonal structures would
appear identical, but for every subsequent layer in the
trigonal structure the direction of the in-plane offset (de-
fined by the monoclinic angle, β) would rotate by 120◦

around the direction normal to the layers. The result-
ing 3-layer stacking periodicity in the trigonal structure
would lead to the appearance of extra supercell peaks
along the c∗-axis, which, in the monoclinic basis, would
occur at non-integer positions l = n + 1/3 and n + 2/3
(k = 3m+1 or 3m+2, and h+k = even with h,m,n inte-
gers) in addition to, and with the same intensity as, the
nominal peaks at integer l = n positions (see Fig. 1K-
L). The absence of supercell peaks in our diffraction
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data [compare Fig. 1E-F with K-L) conclusively rules
out the proposed P 3112 model. For completeness, we
note that an alternative rhombohedral stacking sequence
of the honeycomb layers with space group R3̄ proposed18

for α-RuCl3 by analogy with the low-temperature phase
of CrCl3 [Ref. 40], also has a 3-layer stacking periodic-
ity so would also predict supercell peaks at non-integer
l = n + 1/3 and n + 2/3 positions, not observed in the
data, so this rhombohedral structure can similarly be
ruled out for the crystals studied here.

We note that if a sample contained three monoclinic
twins of equal weight and rotated by 120◦ around c∗,
then there would be no striking qualitative difference be-
tween the diffraction pattern from monoclinic and trig-
onal/rhombohedral structural models. Furthermore, un-
der the symmetry constraints of those candidate struc-
tures there would be only slight variations in intensity
due to differences in the displacements of the Cl or Ru
ions from their idealized positions, which are expected
to be small and likely below the experimental sensitiv-
ity. As such, measuring un-twinned crystals has proved
to be crucial in the present study to qualitatively, and
quantitatively, determine the correct monoclinic refer-
ence structure for the samples reported here.

IV. MAGNETIC PROPERTIES

A. Susceptibility and magnetization

The magnetic susceptibility of a stack of single crys-
tals representative of those used in our structural study
(Sec. III), and a 12.8 mg powder, was measured on heat-
ing (after zero-field cooling) from 2 K up to 300 K.
Only a single anomaly was observed for both samples
near 13 K [see Fig. 4a], which is indicative of long-
range antiferromagnetic ordering of the ruthenium mag-
netic moments. Our powder data is fully consistent (in
absolute units) with data previously reported on pow-
der α-RuCl3 samples.24 Previous single crystal studies
have reported two magnetic transitions near 8 and 14 K
[Refs. 16, 18, and 19], which have been attributed to ei-
ther a mixture of two coherent stacking orders, with each
order associated with a single transition, respectively,17

or alternatively to a single phase that supports an un-
expected magnetic ground state.16 Here, to the contrary,
we find that the low-field magnetic susceptibility of sin-
gle crystals is consistent with that of the powder, both
displaying a single transition to magnetic order at low
temperatures.

Pulsed-magnetic-fieldM(H,T ) data are shown for field
sweeps up to 15 T at various constant temperatures T
in Fig. 5b. The data shown was recorded during the
rising part of the field pulses; M(H) curves from the
rising and falling portions of the field pulse were indis-
tinguishable within the limit of experimental sensitivity
(i.e. there was little or no hysteresis). For H ⊥ c∗ the
low-temperature M(H) curves show a pronounced steep-

FIG. 4. (Color online) a) Magnetic susceptibility as a func-
tion of temperature for a stack of single crystals (red circles,
H ⊥ c∗) representative of those used in the x-ray diffraction
experiments described in Sec. III, and the powder sample used
in the neutron diffraction experiments discussed in Sec. IV B
(black triangles), in a magnetic field H = 1000 Oe. b) Tem-
perature dependence of the integrated intensity of the two
magnetic reflections observed in neutron powder diffraction
pattern in Fig. 7, normalized to an average of unity at low
temperatures. The dashed line is a guide to the eye.

ening at about 8 T, characteristic of a field-induced phase
transition, which gradually shifts down in field and fades
as the temperature increases. This trend is more clearly
seen in the full phase diagram shown in Fig. 5a), which
displays maximum values (solid symbols) of the differ-
ential susceptibility (dM/dH) as a function of H and
T . The inset to Fig. 5a) shows complementary M(H,T )
data recorded in the VSM as temperature sweeps in fixed
field. The same transition is seen as a peak in M(T ) that
disappears at fields above 8 T. This trend is also drawn
in the main pane of Fig. 5a), which completes a con-
tinuous phase boundary (dashed line) consistent with a
single enclosed antiferromagnetic phase for α-RuCl3 at
low temperatures and modest magnetic fields applied in
the honeycomb layers.

The pulsed-field data shown in Fig. 5b) for H ‖ c∗ ex-
hibit M(H,T ) values that are a factor 5−6 times smaller
than those recorded on the same sample under compara-
ble conditions for H ⊥ c∗. This is likely to be due to Ru
g-factor anisotropy.18 Note that there is no sign of the
phase transition observed in the other field orientation,
leading us to conclude that it is a feature observed only
when the field lies in the honeycomb plane.

Having measured the magnetization along the two non-
equivalent directions on the same sample enables us to
reliably put both data sets in absolute units by cali-
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bration against the susceptibility data measured on a
powder sample [Fig. 4a) black symbols] under the same
conditions of applied field and temperature, thus avoid-
ing the inherent uncertainties associated with measur-
ing the precise mass of very small (of order ∼0.1 mg)
crystals. The powder susceptibility is expected to reflect
the spherically-averaged value, obtained as χpowder =
(2/3)χ‖ + (1/3)χ⊥ = χ‖(2 + r)/3, where r = χ⊥/χ‖
is the susceptibility anisotropy. The single crystal data
sets in Figs. 4a) (red symbols) and Fig. 5b-c) were then
scaled to satisfy the above relations with the powder sus-
ceptibility data at µ0H = 0.1 T and 15 K, where the
susceptibility anisotropy under those conditions was ob-
tained as r = 0.157 from the pulsed field data.

Fig. 5c) shows M(H,T ) data recorded in 60 T pulsed-
field shots; as is the case with the lower-field data, there
is little or no hysteresis between up- and down-sweeps
of the field, and so, for clarity, only data recorded on
the rising part of the field pulse are shown. The M(H)
anisotropy persists to high fields, though the data for
H ⊥ c∗ show signs of the approach to saturation. There
are no further phase transitions visible up to 60 T in
either field direction.

The shape of the magnetization curve at high field as
observed by the upper traces in Fig. 5c) with a gradu-
ally decreasing differential susceptibility upon increasing
field suggests an asymptotic approach to magnetization
saturation. Such a behaviour of the magnetization near
saturation is commonly seen41,42 when the spin Hamil-
tonian does not have rotational symmetry around the
applied field direction. In this case the total spin along

the field direction SξT =
∑
i S

ξ
i is not a good quantum

number (the operator does not commute with the spin

Hamiltonian [SξT,H] 6= 0, where ξ denotes the direction
of the applied field H and i runs through all the magnetic
sites) and as a consequence even in the limit of very high
fields quantum fluctuations are still present and reduce
the magnetization from its fully-available value, with sat-
uration strictly reached only in the asymptotic limit of
infinite field. This is qualitatively different from the case
when the spin Hamiltonian does have rotational symme-
try around the field direction, for example the case of
purely Heisenberg interactions, H =

∑
ij JijSi · Sj . In

this case the total spin along the field direction is a good
quantum number, magnetization saturation is an exact
plateau phase where quantum fluctuations are entirely
absent, and the approach to magnetization saturation
from below is via a sharp phase transition at a criti-
cal field HC , with the susceptibility in general increas-
ing upon increasing field up to HC , then being strictly
zero above it. The observed shape of the magnetization
curve at high field (upper traces in Fig. 5c) is consistent
with the former scenario with an asymptotic approach to
saturation and could be taken as evidence for the pres-
ence of strongly anisotropic, non-Heisenberg exchanges
in α-RuCl3, of Kitaev42 or another strongly-anisotropic
form.

B. Magnetic Neutron Powder Diffraction

Neutron powder diffraction data were collected deep in
the ordered phase (6 K) and in the paramagnetic region
(20 K) with high counting statistics to allow a quantita-
tive refinement. Additional data to monitor the tempera-
ture dependence and extract an order parameter was col-
lected with lower statistics at 2 K intervals in the range
2-14 K. Fig. 7 shows the purely magnetic contribution
to the neutron diffraction pattern at 6 K obtained af-
ter subtracting off the 20 K paramagnetic pattern. Two
clear magnetic diffraction reflections are observed at d-
spacings d = 3.88 and 7.67 Å. The integrated intensity
of the two reflections is plotted as a function of tempera-
ture in Fig. 4b. Both peaks show the same temperature
dependence, and clearly demonstrate the onset of long-
range magnetic order below TN ≈ 13 K. Furthermore,
both magnetic susceptibility and neutron diffraction data
are consistent with a single magnetic ordered phase down
to the lowest temperature measured (2 K).

Both magnetic reflections could be indexed with the
propagation vector k = (0, 1, 0.5) with reference to the
C2/m structural unit cell. This finding alone provides
key information on the ground state magnetic structure
of our α-RuCl3 samples. The value kz = 0.5 determines
that the magnetic moments in neighbouring honeycomb
layers are aligned antiferromagnetically. Within a honey-
comb layer there are four symmetry equivalent ruthenium
ions per unit cell, labelled 1-4 in Fig. 2b) and Fig. 6.
The four sites can be considered as two pairs of sites,
(1 and 2) and (3 and 4), intra-related by mirror sym-
metry operations at (x, 1

2 , z) and (x, 0, z), respectively,
and inter-related by the C-centering translation vector
t = (1

2 ,
1
2 , 0). The relative orientation of the magnetic

moment pairs, (1 and 2) and (3 and 4), is uniquely de-
termined by the phase 2πk · t, i.e. for kx = 0 and ky = 1
the two pairs are aligned antiferromagnetically. Further-
more, for this k-vector the relative orientation of mo-
ments within a given pair is strictly parallel or antipar-
allel by symmetry, however these two scenarios are not
differentiated by the propagation vector alone and must
be tested against the diffraction data. For parallel align-
ment within each pair the resulting magnetic structure is
a ‘stripy’ antiferromagnet with spins forming ferromag-
netic stripes (ladders) along a alternating in orientation
along b. In the case of antiparallel alignment within each
pair the magnetic structure consists in ‘zigzag’ ferromag-
netic chains along a arranged in an antiferromagnetic
pattern along b, as illustrated in Fig. 6. Symmetry anal-
ysis performed using BasIreps, part of the FULLPROF
package,37 for the propagation vector k gives magnetic
basis vectors containing moments aligned along the b-
axis (the unique 2-fold axis of the crystal structure) or
in the ac plane. If the transition from paramagnetic to
magnetic order is continuous then the magnetic structure
would be expected to adopt just one of those two con-
figurations, which can be directly tested by the magnetic
diffraction data.
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FIG. 5. (Color online) a) Magnetic phase diagram for single crystal α-RuCl3 in magnetic field H ⊥ c∗. Solid points mark the
maxima in the differential susceptibility dM/dH derived from data shown in panel b) (upper traces). Open symbols mark the
maximum in M(T ) VSM temperature sweeps, as shown in the pane inset for constant magnetic field values close to the phase
boundary. The dashed line is a guide to the eye phase boundary between the zigzag antiferromagnetic phase (yellow shading)
and paramagnetic (PM, blue shading). b) M(H,T ) data recorded in the rising part of 15 T field pulses at a series of constant
temperatures. At lower temperatures, the steep rise in M(H) is strongly suggestive of a field-induced phase transition near
8 T. c) M(H,T ) data recorded in the rising part of 60 T field pulses in both the antiferromagnetic and paramagnetic phases.

FIG. 6. (Color online) The zigzag magnetic structure of α-
RuCl3. The magnetic moments of ruthenium atoms colored
red and blue are aligned antiparallel and oriented within the
ac-plane. Ru-Ru connections are drawn in thick black lines
to illustrate the honeycomb layers, and the C2/m monoclinic
unit cell is drawn in thin gray lines.

The two magnetic reflections observed in the differ-
ence diffraction data in Fig. 7 at d = 3.88 and 7.67 Å
are indexed as (-1,2,0.5) and (0,1,0.5), respectively. The
peak at higher d-spacing was found to be significantly
broader than that at 3.88 Å. We assign this broaden-
ing to the effects of stacking faults, as discussed above.
Without a fully quantitative model of the stacking faults
we cannot rule out the possible existence of otherwise un-

observed weak magnetic reflections close to background
levels. However, all statistically significant reflections can
be fit using a peak specific broadening model, hence al-
lowing for the zigzag and stripy models, and the moment
direction, to be tested.

FIG. 7. (Color online) Neutron powder diffraction data mea-
sured at 6 K, with the 20 K paramagnetic data subtracted.
The diffraction pattern for both zigzag (black solid line) and
stripy (brown dashed line) models are calculated and plotted
for a moment oriented along c∗, a similar level of agreement
for the zigzag structure could be obtained for a general mo-
ment direction in the ac plane. Inset: fit to the (001) nuclear
Bragg reflection, unaffected by stacking faults, used for cali-
brating the magnetic diffraction intensities.
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The solid and dashed lines in Fig. 7 show the calculated
diffraction patterns for both magnetic structures. In both
cases the relative intensity of the two observed reflec-
tions could only be reproduced with magnetic moments
oriented within the ac-plane, however, within experimen-
tal uncertainties the fit to the data was not sufficiently
sensitive to the precise moment direction in this plane.
Furthermore, one can immediately rule out the stripy
model (dashed line), which predicts strong magnetic re-
flections for any moment direction at d-spacing positions
where no such reflections are observed in the data, be-
yond any ambiguity inherent to peak broadening effects.
To estimate the ordered Ru magnetic moment magnitude
we calibrate the magnetic diffraction intensities against
the (001) nuclear reflection (Fig. 7 inset), which is un-
affected by stacking faults (see Sec. III), and fit the Ru
moment magnitude within the zigzag model (black line
in Fig. 7). In the fit to the reference (001) structural
peak only an intensity scale factor was varied with all
the internal crystal structure parameters kept fixed to
the values at 80 K (Table I), only adjusting for the effect
of the lower temperature in the neutron measurements
by a slight reduction in the lattice parameters, estimated
by fitting the nuclear peak positions observed in the neu-
tron diffraction data at low d-spacing (not shown). Using
this procedure we find the lower limit for the magnetic
moment to be 0.64(4) µB, with the actual value being
dependent on the precise moment direction, which the
present data only constraints to be in the ac plane. De-
spite not knowing the exact moment direction, the sym-
metry of the ground state magnetic structure is now well
established as zigzag in-plane order with antiferromag-
netic stacking along c, in qualitative agreement with pre-
vious studies.16,17 In monoclinic symmetry the magnetic
structure is described by the magnetic super-space group
Cc2/m, with basis transformation [[1,0,2],[0,-1,0],[0,0,-2]]
and origin shift (-1/2,0,-1/2) with respect to the parent
C2/m unit cell.

C. Implications of Monoclinic Symmetry for the
Magnetic Exchange Interactions

Here we discuss possible implications of the monoclinic
crystal structure for the low-energy spin excitations in
the magnetically ordered phase. Recent inelastic powder
neutron scattering measurements have reported17 disper-
sive magnetic excitations above a gap of ≈1.7 meV and it
was proposed that features observed in the inelastic spec-
trum at intermediate energies above this gap could be
understood based on a minimal Kitaev-Heisenberg model
on the honeycomb lattice, with an antiferromagnetic Ki-
taev exchange K and a ferromagnetic Heisenberg term
J . However, it was pointed out that this minimal model
could not account for the observed spin gap, as for a hon-
eycomb lattice with full three-fold symmetry (as expected
in the trigonal P 3112 structural model) the exchanges
along the three bonds meeting at each lattice site are

symmetry-equivalent, and in this case linear spin-wave
theory predicts a gapless spectrum,17 contrary to that
observed experimentally. We note that the C2/m mon-
oclinic structure breaks the symmetry between the three
bonds in the honeycomb planes, making the b-axis bond
non-equivalent to the other two bonds, which remain
symmetry-equivalent; this opens the possibility that the
magnitude of the anisotropic exchange could be differ-
ent between the two families of bonds. By repeating the
linear spin-wave calculations reported in Ref. 17 we find
that an anisotropy of order 10% in the magnitude of the
Kitaev term between the two families of bonds (larger
in magnitude for the b-axis bond) would be sufficient to
account for the magnitude of the observed spin gap, sug-
gesting that non-equivalence between the different bonds
in the honeycomb plane induced by the underlying mon-
oclinic distortions may provide a natural mechanism to
explain the observed spin gap.

V. ELECTRONIC STRUCTURE

Here we discuss the implications of the monoclinic
crystal structure for the electronic band-structure and
the magnetic ground state of the Ru ions. Within a hon-
eycomb layer the difference in the atomic positions in
the trigonal P 3112 [Ref. 26] compared to the monoclinic
C2/m models is on visual inspection minimal. However,
subtleties of the crystal structure in fact have profound
implications for the nature of the electronic structure.
The trigonal crystal structure features shorter Ru-Ru
bonds, and as a result the calculated electronic structure
is dominated by Ru-Ru direct hopping. On the other
hand, in the present monoclinic structure the dominant
hopping process is one via Cl p states, which, as dis-
cussed in references43–45 for Na2IrO3, leads to the for-
mation of quasimolecular orbitals (QMO) that consist of
a linear combination of t2g states of the six Ru atoms in
a hexagon.

In Fig. 8 we show the nonrelativistic density of states
within GGA projected onto the QMO basis for α-RuCl3
in the C2/m and P 3112 crystal structures, as well as that
for Na2IrO3 for comparison. While α-RuCl3 (C2/m) and
Na2IrO3 are predominantly diagonal in the QMO basis,
this is not the case for α-RuCl3 (P 3112) as can be ob-
served from the strong mixing of QMO states.

To analyze spin orbit and correlation effects we present
in Fig. 9 the electronic structure of α-RuCl3 (C2/m) in
the GGA, GGA+SO (GGA plus inclusion of spin-orbit
effects) and GGA+SO+U (GGA plus inclusion of spin-
orbit effects and on-site Coulomb repulsion U) approxi-
mations as implemented in Wien2k.34 Here, an insightful
comparison with Na2IrO3 may be drawn, as follows. In
Na2IrO3 [Refs. 43 and 44] the combination of accidental
degeneracy of the two highest QMOs, A1g and E2u, com-
bined with strong spin-orbit coupling, largely destroys
the QMO and leads instead to the formation of relativis-
tic jeff = 1/2 orbitals (the QMOs are still relevant as
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FIG. 8. (Color online) GGA density of states projected
onto the quasi-molecular orbital basis of a) α-RuCl3 in the
C2/m structure, b) α-RuCl3 in the P 3112 structure26 and c)
Na2IrO3.

they generate unexpectedly large second and third neigh-
bor magnetic interactions11,14). Adding the Hubbard U
in Na2IrO3 increases the band gap, but does not affect
the electronic structure in any qualitative way. However,
given that the spin-orbit coupling on Ru is much smaller
than on Ir, turning on the spin-orbit coupling leaves the
QMO picture in α-RuCl3 (C2/m) almost intact (Fig. 9b).
Interestingly, adding U dramatically changes the elec-
tronic structure (Fig. 9c). Such an addition effectively
renormalizes the one-electron hopping by a factor of t/U
and increases the effect of spin-orbit coupling that now
becomes an important player. Eventually, the electronic
structure with both spin-orbit and U looks surprisingly
similar to that of Na2IrO3 [Refs. 43–45].

We emphasize that the physics leading to the forma-
tion of this electronic structure in the two systems is qual-
itatively different, which needs to be kept in mind when
comparing physical properties of the two compounds.
While without spin orbit and Hubbard correlation both
systems are molecular-orbitals solids, and with inclusion
of both effects the spin-orbit interaction takes control, in
Na2IrO3 this happens because the spin-orbit coupling is
initially strong, and correlations play a secondary role, in
α-RuCl3 (C2/m) the much stronger correlation conspires
with spin orbit, which otherwise is too weak to overcome
the one-electron hopping effects.

The GGA+SO+U bandstructure for α-RuCl3 (C2/m)
can be projected onto the jeff = 1/2, 3/2 basis as shown
in the density of states in Fig. 9c). While there is some
mixing between the two projections, jeff = 1/2 has the
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FIG. 9. (Color online) Band structure and density of states
of α-RuCl3 in the C2/m structure obtained within (a) GGA,
(b) GGA+SO, and (c) GGA+SO+U (Ueff = 3 eV). The right
panel shows the projected nonmagnetic GGA and GGA+SO
density of states onto the quasi-molecular orbital basis43,44

and the GGA+SO+U density of states onto the relativistic
jeff basis.

dominant contribution at the Fermi level. Therefore, a
description of this system in terms of jeff= 1/2 orbitals
may still be valid. This is in qualitative agreement
with GGA+SO+U calculations reported for α-RuCl3
in the P 3112 structure46 although the two electronic
structures differ quantitatively.

VI. CONCLUSIONS

We have proposed a revised three-dimensional crys-
tal structure for the layered honeycomb magnet α-RuCl3
based on x-ray diffraction on un-twinned crystals com-
bined with ab-initio structural relaxation calculations.
In contrast with the currently-assumed three-layer stack-
ing periodicity, we have found a single layer stacking
periodicity with a monoclinic unit cell, iso-structural to
Na2IrO3, with occasional faults in the stacking sequence.
In powder neutron diffraction and in susceptibility mea-
surements on both powders and single crystals we have
observed a single magnetic transition near 13 K, and
through analysis of the magnetic diffraction pattern we
have confirmed that this phase has zigzag antiferromag-
netic order. Using both static and pulsed magnetic field
experiments we have observed that the zigzag phase is



12

suppressed by relatively small magnetic fields (≈ 8 T)
applied in the honeycomb layers, whereas it is robust
in fields applied perpendicular to the honeycomb layers.
We have discussed how the monoclinic crystal structure
could provide a natural mechanism to explain the spin
gap observed in inelastic neutron scattering experiments
and how the asymptotic shape of the magnetization curve
at high fields near saturation is consistent with proposals
for strongly-anisotropic (non-Heisenberg) magnetic inter-
actions.
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