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Abstract

We study the dynamics of the half-filled zeroth Landau level of Dirac fermions using

mirror symmetry, a supersymmetric duality between certain pairs of 2+1-dimensional

theories. We show that the half-filled zeroth Landau level of a pair of Dirac fermions

is dual to a pair of Fermi surfaces of electrically-neutral composite fermions, coupled

to an emergent gauge field. Thus, we use supersymmetry to provide a derivation of

flux attachment and the emergent Fermi liquid-like state for the lowest Landau level

of Dirac fermions. We find that in the dual theory the Coulomb interaction induces a

dynamical exponent z = 2 for the emergent gauge field, making the interactions classi-

cally marginal. This enables us to map the problem of 2+1-dimensional Dirac fermions

in a finite transverse magnetic field, interacting via a strong Coulomb interaction, into

a perturbatively controlled model. We analyze the resulting low-energy theory using

the renormalization group and determine the nature of the BCS interaction in the

emergent composite Fermi liquid.
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1 Introduction

Composite fermions provide an intuitive picture for much of the fascinating physics that

occurs when strongly interacting electrons are confined to a two-dimensional plane that is

pierced by a strong transverse magnetic field [1–4]. The dynamics of correlated electrons
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in a magnetic field is traded for that of composite fermions in reduced effective magnetic

flux, interacting through an emergent gauge field. (See Refs. [5–7] for a closely related

theoretical construction in which composite bosons are substituted for the electrons.) A

mean-field treatment of the emergent gauge interaction allows for the interpretation of the

gapped abelian fractional quantum Hall states as integer quantum Hall states of composite

fermions.

When the inverse electrical filling fraction ν−1
NR (of the assumed spin-polarized non-

relativistic electrons), i.e., the ratio of the external magnetic field per flux quantum to

the electron density, is an even integer, the composite fermions may feel vanishing effective

magnetic field within the mean-field approximation and can form a Fermi surface [8, 9].

There is strong experimental evidence for the existence of this metallic phase at half-filling

of the lowest and first Landau levels in systems with weak disorder [10–15]; there is evidence

for similar gapless states at other even denominator fractions as well [16]. See Ref. [17]

regarding the transition to insulating behavior at stronger values of disorder. Because a two-

dimensional spin-less Fermi liquid is localized in the presence of arbitrarily weak chemical

potential disorder [18] (and weak external field), this metal cannot be a Fermi liquid [19, 20].

Refs. [21, 22] provide support for this conclusion by inferring diverging effective masses from

magnetoresistance data.

The presence of a Fermi surface of composite fermions in zero effective magnetic field

suggests the possibility of a pairing instability, if the pertinent interactions are attractive

[23]. Indeed, the non-abelian fractional quantum Hall state of Moore and Read [24] is a

candidate state at νNR = 5/2 [25] and can be understood to result from p-wave (angular

momentum l = 1) pairing of the composite fermions [23, 26]. Thus, the composite Fermi

liquid represents the gapless parent state from which the most well understood and readily

observed (experimentally) examples of systems exhibiting topological order descend [27, 28].

Because of the attractiveness of this general picture, it is crucial to strengthen our un-

derstanding of the duality that relates electrons to composite fermions [29–35]. We shall

view the non-relativistic fermions, appropriate for the physics of two-dimensional electronic

systems in GaAs heterostructures described above, as the low-energy limit of a relativistic

system perturbed by symmetry-breaking interactions. We note that half-filling of the lowest

Landau level in a non-relativistic system corresponds to placing the chemical potential at

the Dirac point in a relativistic system, i.e., half-filling of the Dirac fermion zeroth Landau

level. Thus, it is worthwhile to first understand the duality for relativistic fermions and this

is what we shall do in this paper. This is interesting given the correlated physics that can

occur in graphene [36] and on the surfaces of time-reversal invariant topological insulators

[37–41].

The duality that we study was proposed in a supersymmetric context by Intriligator and

Seiberg [42] (with various extensions appearing in [43–46]). A useful interpretation of the
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equivalence in terms of dual partition functions was provided by Kapustin and Strassler

[47]. A proof of the duality was essentially given by Borokhov, Kapustin, and Wu [48] by

matching the Hilbert space of the two theories. Additional evidence for the duality was

provided recently by a matching of 3-sphere partition functions by Kapustin, Willett, and

Yaakov [49]. Following convention, we refer to the duality as mirror symmetry. As we review

in the next section, mirror symmetry provides dual descriptions of equivalent physics. In

the absence of symmetry-breaking perturbations, it relates two supersymmetric field theories

to one another. We refer to these theories as theory A, which is conventionally called the

“magnetic theory,” and theory B, conventionally called the “electric theory.”

In this work, we will deform mirror symmetry by the addition of an external magnetic

field to theory A. (The study of mirror symmetry in the presence of external sources was

initiated in [50, 51]). A background magnetic field in theory A breaks supersymmetry and

reduces the effective low-energy physics to that of two flavors of Dirac fermions at zero

density, i.e., half-filling of the zeroth Landau level. The bosonic superpartners are effectively

projected out of the low-energy physics in the limit of zero Landau level mixing, i.e., as

B → ∞.1 The removal of the bosonic superpartners has the benefit of reducing the physics

to that which is closely related to systems that can be realized experimentally. We note,

however, that these two Dirac fermions carry opposite charge under the U(1)J ≡ U(1)EM
symmetry that we identify with electromagnetism and so the exact low-energy theory that

we study cannot be strictly identified with those found in an actual experimental system.

The magnetic field in theory A translates into a non-zero density of composite fermions

in theory B. Again, this breaks the supersymmetry of theory B. The bosonic superpartners,

along with the additional matter fields, of theory B are removed in the strong coupling

limit of interest, as we shall explain, thereby leaving us with the physics of composite Dirac

fermions at finite density interacting through an emergent gauge field at low energies. The

Dirac fermions of theory B are electrically neutral. This provides a dynamical derivation of

flux attachment and the composite Fermi liquid picture in the present model.

Fluctuations of the electromagnetic gauge field are naturally traced through the duality.

These interactions have two important effects which can be clearly seen in theory B. First,

the fluctuating electromagnetic gauge field strongly modifies the dispersion of the emergent

gauge field of theory B and renders the interaction between the emergent gauge field and

the composite fermions marginal. In particular, a strong Coulomb interaction in theory

A is mapped into a perturbatively small fermion–boson coupling in theory B. Second, this

fluctuating Coulomb field mediates a BCS pairing interaction that we find to be repulsive.

Therefore, at least away from asymptotically low energies, the emergent composite Fermi

liquid is stable to pairing; additional interactions are necessary to induce attraction. Thus,

we are able to understand the low-energy dynamics of the strongly interacting quantum Hall

1Corrections due to Landau level mixing may be numerically small even for finite B [52].
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system using our weakly-coupled dual.

The remainder of this paper is organized as follows. In §2, we review the relevant aspects

of mirror symmetry. In §3, we deform mirror symmetry by the addition of a magnetic field,

and describe its application to the half-filled zeroth Landau level problem of Dirac fermions.

In §4, we study the low-energy dynamics of theory B, set up a renormalization group analysis,

and determine the nature of the superconducting interaction. We conclude in §5 and provide

an Appendix that elaborates upon some aspects of the formalism used in the main text.

2 Mirror symmetry in 2 + 1 dimensions

We begin by reviewing mirror symmetry for D = 2 + 1 dimensional supersymmetric theo-

ries [42, 43, 47]. For our purpose, it will be sufficient to consider the simplest mirror pair,

namely U(1) supersymmetric QED (SQED) with one flavor, and the theory of a free hyper-

multiplet; we follow mostly the analysis of Kapustin and Strassler [47]. We then describe

how to include electromagnetism.

2.1 Theory A

“Theory A” (sometimes also called the magnetic theory), which will be identified below with

the elementary electrons of the quantum Hall system, is the theory of a free hypermultiplet

with N = 4 supersymmetry (i.e., 8 supercharges). Each conserved supercharge is a fermionic

operator that commutes with the Hamiltonian and together generate the supersymmetry

algebra. In N = 2 notation, this is given by two chiral multiplets (V+, V−), each of which

contains a complex scalar v± and a 3D Dirac fermion Ψ±. A crucial role will be played by a

U(1)J global symmetry, under which the supermultiplets V± have charges±1. This symmetry

will be identified with 3 + 1 dimensional electromagnetism. The theory has nonabelian

SU(2)L×SU(2)R R-symmetries, under which (v+, v
∗
−) and (Ψ+,Ψ

∗
−) transform as (2, 1) and

(1, 2), respectively. This is summarized in (2.1).

SU(2)L SU(2)R U(1)J

(v+, v
∗
−) 2 1 1

(Ψ+,Ψ
∗
−) 1 2 1

(2.1)

The Lagrangian is simply that of free fields,

L(A) =
∑

±

(

|∂µv±|2 + iΨ̄± 6∂Ψ±

)

, (2.2)
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where Ψ̄± = Ψ†γ0. We work in metric signature (+−−), and a convenient choice for gamma

matrices is

γ0 = σ3 , γ
1 = iσ1 , γ

2 = iσ2 . (2.3)

The current of the U(1)J ≡ U(1)EM symmetry is given by

Jµ =
∑

±

q±
(

Ψ̄±γµΨ± + iv±∂µv
∗
± − iv∗±∂µv±

)

, (2.4)

where q± = ±1. We will shortly add an external magnetic field and charge density.

2.2 Theory B

“Theory B” (a.k.a., the electric theory) is D = 2 + 1 dimensional SQED with N = 4

supersymmetry and a charged hypermultiplet. It will provide a concrete realization of duality

and flux attachment for the quantum Hall fluid, in terms of composite fermions and an

emergent gauge field. The N = 4 vector multiplet contains an N = 2 vector multiplet

V = (aµ, σ, λ) and an N = 2 neutral chiral multiplet Φ = (φ, ψφ). Here σ is a real scalar, φ

is a complex scalar, and λ and ψφ are Dirac fermions. The N = 4 charged hypermultiplet

contains N = 2 chiral multiplets of opposite charge, Q± = (u±, ψ±). The fermions ψ± will

play the role of composite fermions in the QHE.

The U(1)J ≡ U(1)EM global symmetry of theory B arises from dualizing the field strength,

Jµ =
1

2π
ǫµνρ∂

νaρ , (2.5)

whose conservation law is equivalent to the Bianchi identity for the emergent gauge field. It

acts as a shift on the dual photon γ, where fµν = ∂µaν − ∂νaµ = ǫµνρ∂
ργ. In the duality,

the U(1)J global symmetries of both theories are identified. The gauge field then arises

from dualizing the matter current (2.4) of theory A. The rest of the fields are neutral under

U(1)J ≡ U(1)EM. On the other hand, the symmetries SU(2)L × SU(2)R act as (3, 1) on the

triplet of scalars (σ, φ) (recall that σ is real and φ is complex), λ, ψφ are in the bifundamental,

(u+, u
∗
−) transform as (1, 2), and (ψ+, ψ

∗
−) are in the (2, 1). This is summarized in (2.6).

SU(2)L SU(2)R U(1)J

e2πiγ/g
2

1 1 1

φij = (σ, φ) 3 1 0

λia = (λ, ψφ) 2 2 0

ua = (u+, u
∗
−) 1 2 0

ψi = (ψ+, ψ
∗
−) 2 1 0

(2.6)
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The Lagrangian of theory B is fixed by the symmetries and is nontrivial due to the

interactions between the charged hypermultiplet and the emergent vector multiplet:

L(B) = LV (V) + LH(Q,V), (2.7)

where the kinetic terms for the vector superfield are

LV (V) =
1

g2

(

−1

4
f 2
µν +

1

2
(∂µφij)

2 + iλ̄ia 6∂λia +
1

2
D2

(ab)

)

(2.8)

and the hypermultiplet part of the Lagrangian reads

LH(Q,V) = |Dµua|2+ iψ̄i 6Dψi−φ2
ij |ua|2− φijψ̄iψj +

√
2(iλiau

∗
aψi+h.c.) +D(ab)u

∗
aub . (2.9)

Here Dµ = ∂µ+ iq±aµ and D(ab) are the auxiliary fields from the vector multiplet; integrating

them out leads to a quartic potential V = g2

2
(u∗aub)

2 for the hypermultiplet scalars.

2.3 Mirror symmetry

In 2 + 1 dimensions the gauge interaction is classically relevant; as a result, theory B flows

to strong coupling at low energies. Mirror symmetry states that the low energy limit of

theory B admits a dual description as the model of a free hypermultiplet given by theory

A. This can be proved by a formal path integral calculation in the limit g2 ≫ E [47]. More

physically, theory A arises as the low energy description of theory B along the “Coulomb

branch” of its moduli space where the emergent gauge field is deconfined; the power of

supersymmetry here is that such an effective theory is one loop exact – both perturbatively

and nonperturbatively.

Theory A has a “Higgs branch”,2 a moduli space of vacua parametrized by the complex

fields v±. Such moduli spaces are protected by supersymmetry, but will be shortly lifted

by the addition of a magnetic field to realize the Landau levels. On the other hand, theory

B has a Coulomb branch where the triplet of scalars φij, together with the dual photon

γ, have nonzero expectation values. Along these directions, the U(1) gauge symmetry is

preserved, and the charged hypermultiplet fields become massive. The duality maps the

Coulomb branch of theory B to the Higgs branch of theory A; note that there is no Higgs

branch for theory B due to the constraints Dab = 0 which give the absolute minimum of the

potential.

An explicit derivation of theory A from theory B may be obtained as follows [53]. Away

from the origin φij = 0 of the Coulomb branch, we may integrate out the heavy hypermulti-

plets of theory B to obtain a nonlinear sigma model for (φij , γ). Due to nonrenormalization

2This nomenclature is related to the fact that in generalizations of mirror symmetry to many flavors, this

is a branch along which gauge symmetries are spontaneously broken.
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theorems of supersymmetry, and the absence of nonperturbative effects for U(1) SQED, this

model is exact at one loop. Theory A can then be obtained explicitly by taking the low en-

ergy limit of the nonlinear sigma model along the Coulomb branch of theory B. This gives,

in the low energy limit |φ|/g2 ≪ 1,

vi ≡
(

v+
v∗−

)

=

√

|~φ|
2π
e2πiγ/g

2

(

cos θ
2

eiϕ sin θ
2

)

, ~φ = |~φ|(cos θ, sin θ cosϕ, sin θ sinϕ), (2.10)

and for the fermions

Ψa ≡
(

Ψ+

Ψ∗
−

)

=
1√
2

λaivi
2π
∑

i |vi|2
. (2.11)

More details of the duality, with possible other applications to phenomena in condensed

matter physics, were recently reviewed in [50, 51] (building on earlier work of [53], which

also explored connections to modern ideas in condensed matter physics). Remarkably, the

duality continues to hold even at the origin of the Coulomb branch when φij = 0 where

theory B is a strongly interacting conformal field theory. For this case, monopole operators

of theory B can be obtained and identified with the free fields of theory A [48].

This is the content of mirror symmetry for this pair of theories. Even though we have

presented this as an infrared duality (theory B flows to theory A at energies much smaller

than g2), the correspondence can in fact be extended to all energy scales. In this case, theory

A is deformed by irrelevant operators in powers of E/g2 that encode the nontrivial sigma

model along the Coulomb branch of theory B (the so-called Taub-NUT geometry).

In this duality there is a natural direction for the RG, with theory B providing the

weakly coupled UV fixed point, and theory A emerging as the low energy description at

scales E ≪ g2. However, we will find that in the presence of an external magnetic field

both descriptions turn out to be useful in the IR. In particular, theory A will provide the

elementary electrons of the quantum Hall system and theory B will display a Fermi surface of

composite fermions coupled to an emergent gauge field aµ. In fact, after turning on Coulomb

interactions with strength e, we will derive a new strong/weak duality with e→ 1/e.

2.4 Adding electromagnetism

To proceed, we will weakly gauge the global U(1)J ≡ U(1)EM symmetry and identify it with

electromagnetism in the quantum Hall system of interest. In theory A, this adds a gauge

field Aµ with a 4D kinetic term, so that the action becomes

S(A) =
∑

±

∫

d3x
{

|(∂µ + iq±Aµ)v±|2 + Ψ̄±γ
µ(i∂µ − q±Aµ)Ψ±

}

− 1

4e2

∫

d4xF 2
µν . (2.12)

Again, q± = ±1, and e is the 4D electromagnetic coupling. From the viewpoint of the 3D

theory, Aµ behaves as a background gauge field.
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The works [50, 51] studied in detail the effects of adding external sources to mirror sym-

metry, and our analysis here will follow similar steps. The main point is that the U(1)J
background gauge field, under which the free hypermultiplet fields of theory A carry elemen-

tary charge, appears as a BF interaction involving the emergent gauge field of theory B. As

a result, after weakly gauging the U(1)J and allowing for a background Aµ, the action for

theory B becomes

S(B) =

∫

d3x

{

∑

±

ψ̄±γ
µ(i∂µ − q±aµ)ψ± − 1

4π
ǫµνρaµFνρ + . . .

}

− 1

4e2

∫

d4xF 2
µν . (2.13)

where ‘. . .’ are the additional terms shown in (2.7). Indeed, recalling the identification of

U(1)J currents discussed before, the BF term is the same as the coupling between the matter

current and the external gauge field in theory A,

− 1

4π

∫

d3x ǫµνρaµFνρ =

∫

d3xJµA
µ . (2.14)

The coefficient in the BF action is fixed by the normalization of aµ chosen in (2.5).

We will find that this correspondence is essential for the derivation of the duality between

Dirac fermions at ν = 1/2 and the composite fermion model. Eq. (2.14) will implement flux

attachment in a dynamical and adiabatic way.

3 Duality for the half-filled zeroth Landau level

We are now ready to analyze the half-filled zeroth Landau level for Dirac fermions. For this,

we will go beyond the relativistic mirror symmetry of §2 and turn on a magnetic field and

a finite density of fermions. Our strategy will be to derive first the most important features

of the duality and exhibit how flux attachment works with the BF coupling (2.14). We will

do this by working in a formal limit g2 → ∞ in theory B, which sets to zero the kinetic

terms for the gauge field and its superpartners in (2.8).3 Imposing the equations of motion

of the constraint fields will then reveal very simply the appearance of a Fermi surface for

composite fermions. Next in §4 we will take into account finite g effects and will analyze the

low-energy dynamics for the Fermi surface excitations interacting with the emergent gauge

field (and its superpartners).

3This approach was also used for the proof of mirror symmetry in [47].
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3.1 The quantum Hall system

Let us first turn on a magnetic field for electromagnetism (the U(1)J symmetry) in theory

A of §2,
B =

1

2
ǫzijFij . (3.1)

From the action (2.12), the Landau levels for the fermions and scalars are

E
(n)
fermion = ±

√
2nB , E

(n)
boson = ±

√

(2n+ 1)B . (3.2)

Importantly for our purpose, the fermions have a zeroth Landau level with E = 0, but

the scalars are gapped. The low energy dynamics in the zeroth Landau level will then be

dominated by the two oppositely charged Dirac fermions, with no traces from the scalars

required by supersymmetry. In this way, even though we start from a supersymmetric system,

after turning on the magnetic field (which breaks SUSY explicitly) the resulting theory has

no light scalars. Already at the classical level, the scalars are stabilized at the origin,

〈v±〉 = 0 . (3.3)

Projecting down to the zeroth Landau level, the matter content of the theory is then

simply that of two oppositely charged relativistic Dirac fermions. This field content is related

to systems such as graphene (where, in distinction, the charges of the electrons are the

same), and also as a “parent” theory from which non-relativistic fermions can be obtained

by additional deformations – a point which we plan to analyze in future work. It is necessary

to stress also the appearance of an even number of fermions, making the theory regularizable

(in a symmetry-preserving manner at weak coupling) and, thus, free of the parity anomaly

[54–56]. The even number of fermions will also appear below in a slightly different way in

theory B. This is an important difference with recent works [57, 58] that study duality in a

system that features a single Dirac fermion in 2+1 dimensions and are, therefore, realized

(at weak coupling) on the boundary of a 3+1 dimensional spacetime in order to escape the

parity anomaly constraint [59].

Consider moving away from the zero density Dirac point by turning on a U(1)J ≡ U(1)EM
chemical potential µF = 〈A0〉. The filling fraction of the Dirac fermions,

ν =
n

B/2π
, (3.4)

where n is the charge density, proportional to µ2
F . When the chemical potential is placed

at the origin, µF = 0, the zeroth Landau level is said to be half-filled. For simplicity, we

will focus on configurations with vanishing SU(2)R charge, for which the Ψ+ and Ψ∗
− levels
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are equally occupied.4 We are interested in the regime ν ≪ 1, which corresponds to filling

fractions νNR ∼ 1/2 for each species of non-relativistic fermion.

In the simplest version of the duality, µF ≪ B1/2 is required so that the scalars v± remain

gapped. Indeed, the v± may become unstable as ν ∼ 1, because the chemical potential

tends to induce a Bose-Einstein condensate. Fortunately, this is not the regime of interest

in this work. For future reference, we point out that it is possible to turn on additional

supersymmetry breaking deformations to stabilize v± against the chemical potential, and

map them through the duality using the explicit dictionary (2.10). In this way, it may be

possible to study larger filling fractions without the danger of runaways from the elementary

scalars.

3.2 Dual description

By mirror symmetry, Dirac fermions, each at filling fraction ν ≪ 1, admit a dual description

where the background magnetic field and chemical potential couple to the emergent gauge

field via the BF interaction in (2.13). For the duality to be valid, it is necessary to choose

µF and B1/2 much smaller than g2, the energy scale set by the square of the emergent gauge

field coupling constant.

Let us analyze the dynamics at low energies E ≪ g2. We take the formal limit g → ∞,

where the kinetic term for the vector multiplet goes to zero, as explained in [47]. Focusing

first on the hypermultiplet scalars, the F-term and D-term equations of motion set

u+u− = 0, |u+|2 = |u−|2 , (3.5)

and require: 〈u+〉 = 〈u−〉 = 0. This is the familiar fact that the SQED theory with Nf = 1

hypermultiplets has no Higgs branch, as it is lifted by the D and F-term conditions. This

conclusion also follows from the absence of SU(2)L symmetry breaking in theory A. Note

that at finite but large g this constraint is implemented in a smooth way by a potential VD =
g2

2
(u∗aua)

2. This constraint allows us to evade the intuition that a finite density of fermions

is necessarily accompanied by a finite density of bosons in a perturbed supersymmetric field

theory.

Consider next the hypermultiplet fermions. Recall our convention of denoting ψi =

(ψ+, ψ
∗
−) and our gamma matrix choice in (2.3). The relevant equations of motion come

from extremizing with respect to φij and aµ, which give, respectively,

〈ψ̄iψj〉 = 0 (3.6)

and

〈ψ̄iγµψi〉 = − 1

4π
ǫµνρFνρ . (3.7)

4An imbalance in this charge may also be interesting, being dual to turning on expectation values for u±.
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The a0 equation is the Gauss’ law constraint, imposing charge neutrality for the U(1) gauge

symmetry: a finite density of composite fermions cancels the background contribution from

Fµν .

Furthermore, in theory A the SU(2)R charge of the vacuum vanishes, which translates

in theory B into

〈ψ†
iT

A
ijψj〉 = 0 , (3.8)

with TA the SU(2) generators. The vanishing of this charge in theory A is seen classically

from the stabilization of v± at nonzero magnetic field. We expect that the dual statement

(3.8) should be seen quantum-mechanically; here for simplicity we impose this equation from

the beginning.

Eq. (3.7) implies that the magnetic field in the original system becomes a density of the

composite fermions ψi. As a result we obtain an emergent Fermi surface with charge fixed

by the magnetic field:

〈ψ†
+ψ+〉 − 〈ψ†

−ψ−〉 = − B

2π
. (3.9)

We have to ensure that the Fermi surface can be filled consistently with the constraints (3.6)

and (3.8).

Let us denote the two components of a single Dirac fermion by ψ± = (ψ±,↑, ψ±,↓). First,

(3.6) with i 6= j automatically vanishes on the Fermi surface vacuum, because the two fields

create and destroy different types of fermions. The i = j conditions imply,

〈ψ∗
+,↑ψ+,↑〉 − 〈ψ∗

+,↓ψ+,↓〉 = 〈ψ∗
−,↑ψ−,↑〉 − 〈ψ∗

−,↓ψ−,↓〉 = 0 , (3.10)

so that the spin up and spin down fermions for each fermion flavor are filled symmetrically.

On the other hand, the condition (3.8) that the SU(2)L current J3
0 vanishes requires that

the Fermi surfaces of the two flavors of fermions are equally filled,

〈ψ†
+ψ+〉 = −〈ψ†

−ψ−〉 . (3.11)

The currents J±
0 vanish trivially on the Fermi surface vacuum because, again, they are

bilinears in fermions with different flavors.

In this way, Dirac fermions in 2+1 dimensions in the presence of a magnetic field at zero

density are dual to a Fermi liquid of composite fermions (neutral under electromagnetism)

interacting with an emergent gauge field and its superpartners. For B > 0, we obtain a Fermi

surface of antiparticles of ψ+ fermions and a Fermi surface of particles of ψ− fermions, and

vice versa for B < 0. Thus, time-reversal, which maps the applied magnetic field B → −B
of theory A, switches the sign of the induced chemical potential of theory B.5 This provides

a derivation of the duality between the half-filled zeroth Landau level (for each species of

5See Ref. [60] for further details on the mapping of discrete symmetries across the duality.
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fermion) and a composite Fermi liquid in the context of a particular UV completion. Flux

attachment happens dynamically and adiabatically as a function of g2. It does not occur

due to a Chern-Simons term for aµ (here forbidden by symmetries), but rather it happens

through the BF coupling (2.13), as we just found. Furthermore, a chemical potential µF in

the original (electronic) system gives a nonzero filling fraction ν, Eq. (3.4), and in the dual

description it becomes a density of magnetic monopoles. This was studied in [50].

This constitutes a full dynamical duality between the quantum Hall system and the

emergent non-Fermi liquid. The proposed dual of theory B has a specific matter content and

interactions, and is a consequence of mirror symmetry. We note the presence of the gauginos

λia in the low-energy effective theory. At vanishing external field B = 0 and away from the

origin φij = 0, we reviewed in (2.11) how the gauginos bind with the dual photon and give

rise to the elementary excitations of theory A. We expect the B 6= 0 case to be analogous

to the case with φij = 0 at vanishing external field in the sense that an identification of

the theory A excitations proceeds through a careful study of the monopole operators of

theory B. Note also that there is an even number of composite fermions, making the theory

regularizable in a manner that preserves the discrete symmetries of the IR theory and, thus,

free of the parity anomaly [54–56].

In the recent paper [60] that partially motivated our work, Son proposed that the half-

filled zeroth Landau level for a Dirac fermion has a dual in terms of a single composite fermion

interacting with an emergent gauge field, which in turn has a BF coupling of the type we

found above. These elements appear in our proposal as well. This was also studied from

the point of view of three-dimensional topological insulators in [57, 58]. Such constructions

could not establish a dynamical duality between the quantum Hall and Fermi surface systems,

something that here we find as a consequence of supersymmetry. In fact, as we discussed

in §2, the quantum Hall system emerges as the effective nonlinear sigma model description

along the Coulomb branch (expectation values of the dual photon and its partners) of the

theory for the Fermi surface excitations interacting with the emergent gauge field. In the

remainder of the work we will study the consequences of this duality.

3.3 Mapping of filling fractions

Having established the exact mapping between global quantities across the duality, we now

use it to compute the mapping of filling fractions near half-filling of the zeroth Landau level

by starting from theory A (in the UV), in a state with a small total charge density J0 in a

strong magnetic field B. The bosons have been gapped out. What remains are two copies

of charged fermions (Ψ+,Ψ
∗
−) of equal charge, with individual charge densities J±, and total

electrical charge J0 = J+ + J−. Notice that (Ψ+,Ψ
∗
−) also carry opposite charges under the

12



Cartan subgroup6 of SU(2)R, whose charge density is given by JR0 = J+ − J−. In other

words, preservation of the global symmetry SU(2)R enforces equal charge densities between

the two fermions: J+ = J−. Each individual Dirac fermion has filling fraction,

2 ν± =
J0

B/2π
. (3.12)

Now we go to the dual description: theory B in the formal g → ∞ limit. There are two

electrically neutral fermions (ψ+, ψ
∗
−) charged equally under the emergent gauge field aµ.

The global quantities (J0, B) are mapped over via the BF coupling:

LBF = − 1

4π
ǫµνρaµFνρ = − 1

2π
a0

(

1

2
ǫijFij

)

+
1

2π
A0

(

1

2
ǫijfij

)

= − 1

2π
a0 B +

1

2π
A0B̃ , (3.13)

where B̃ is the magnetic field of the emergent gauge field.

Taking the equation of motion with respect to a0 gives the charge density under the

emergent gauge symmetry:

J̃0 = J̃+ + J̃− = − B

2π
. (3.14)

In particular, (ψ+, ψ
∗
−) carry opposite charges under the Cartan of SU(2)L symmetry that

is also present in theory A. Neutrality under this global symmetry enforces J̃+ = J̃− = J̃0/2.

The charge density of the original U(1)EM appears in the dual theory as:

J0 =
δS

δA0
=

B̃

2π
. (3.15)

Therefore in theory B we have two copies of fermions (ψ+, ψ
∗
−), whose charge densities under

the emergent aµ equally split J̃0, subject to B̃ of the emergent magnetic field. The dual

filling fraction is therefore given by

2 ν̃± =
J̃0

B̃/2π
= −B/2π

J0

= − 1

2 ν±
. (3.16)

The factor of 2 in the mapping of filling fractions is essential to give the correct particle-hole

symmetric (with respect to the lowest Landau level of non-relativistic fermions) interpre-

tation of conjugate Jain-sequence pairs near half filling for each (non-relativistic) species.

In [60], this was accomplished by doubling the charge of the single composite fermion, and

we expect the same ensues if one restricts the allowed flux configurations as in [57, 58].7

6That is, the maximal commuting subgroup which for SU(2) is U(1).
7We thank D. Son for discussions on this point.
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3.4 Dualizing the Coulomb interaction

The other element that will play an important role in our duality is the mapping of the

Coulomb interaction of theory A into theory B. Before introducing electromagnetism, both

theories have a conserved U(1)J symmetry that is identified by the duality. This global

symmetry can then be weakly gauged by introducing the electromagnetic field Aµ and adding

a 3+1-dimensional kinetic term for this field. In particular, A0 will mediate a Coulomb

interaction that can be determined on both sides of the duality. Incidentally, here we consider

the canonical kinetic term
∫

d4xF 2
µν that leads to a long range Coulomb force, but other types

of forces with varying range can be obtained by modifying the action for Aµ.

In theory A, the Coulomb interaction between charge-densities is induced by integrating

out the fluctuating part of the U(1)EM ≡ U(1)J field A0:

S(A) ⊇ 1

2e2

∫

dω d3k A0(ω, k) |~k|2 A0(−ω,−k)−
∫

dω d2k J0(ω, k)

∫

dk3A0(−ω,−k) ,
(3.17)

where J0 = Ψ†
+Ψ+ −Ψ†

−Ψ−.
8

Integrating out A0 gives the Coulomb interaction,

SCoulomb = −π
2

∫

dω d2k J0(ω, k)
e2

|~k|
J0(−ω,−k), (3.18)

in the static limit. This contains both repulsive and attractive terms since Ψ+ and Ψ− carry

opposite charges under the electromagnetic gauge field. Notice that the interaction is pro-

portional to 1/|~k| instead of 1/|~k|2 because A0 and J0 have kinematics in a different number

of spatial dimensions. (3.18) can be obtained by computing the Coulomb interaction in po-

sition space LCoulomb ∼ −J0(t, x) e2

|x−y|
J0(t, y), restricting x and y to two spatial dimensions

and Fourier-transforming back to 2+1 D. SCoulomb is enhanced for small momentum transfer

|~k| → 0.

Now we use mirror symmetry to map J0 across the duality. The Coulomb interaction

is translated by writing J0, which gives the topological charge in theory B, in terms of the

emergent gauge field:

J0(x) =
1

2π
ǫij∂iaj(x), J0(ω, k) =

1

2π
i ǫij kiaj(ω, k) , (3.19)

where we have written the Fourier transformed field in the second equality.

8Recall that the matter current has support only on a two-dimensional plane, so that Jµ depends on

(k1, k2) but not on k3. In contrast, the electromagnetic field also propagates along x3. The integral over k3
in the last term is the Fourier-transform of the delta-function interaction δ(x3)Jµ(t, x1, x2)A

µ(t, x1, x2, x3).

14



The Coulomb interaction therefore appears as a kinetic term for the spatial components

of the emergent gauge field:

SCoulomb = − e2

8π

∫

dω d2k aj(ω, k)
ǫijkiklǫ

lm

|~k|
am(−ω,−k) . (3.20)

In this first analysis we are working in the limit g2 → ∞, so we may neglect the gauge field

kinetic term compared to (3.20). We then integrate out the spatial components ai using

SCoulomb, which will in turn generate a current-current interaction in theory B. To do this,

we diagonalize the kinetic matrix by decomposing ai into longitudinal (aL) and transverse

(aT ) components:

ai(ω, k) = −ik̂iaL(ω, k)− ik̂jǫjiaT (ω, k) , (3.21)

where

aL(ω, k) = ik̂jaj(ω, k) , aT (ω, k) = ik̂jǫjiai(ω, k) . (3.22)

k̂i is the unit vector in momentum space, k̂i = ki/|~k |.
We can then express the pertinent terms in the action of theory B using this basis:

S(B) ⊇ −
∫

ω,k

J̃ i(ω, k)ai(−ω,−k) +
e2

8π

[

ǫijkiaj(ω, k)
] 1

|~k|
[

ǫlmklam(−ω,−k)
]

= −
∫

ω,k

J̃T (ω, k)aT (−ω,−k) + J̃L(ω, k)aL(−ω,−k) +
e2

8π
aT (ω, k)|~k|aT (−ω,−k),

(3.23)

with J̃ i = ψ̄+γ
iψ+−ψ̄−γ

iψ−, the current of the U(1) interaction mediated by ai. We see that

only aT obtains kinematics from the Coulomb interaction. Ignoring the classical kinetic term

for the gauge field, as we discussed before, we integrate out aT and obtain the current-current

interaction in theory B:

S
(B)
int =

2π

e2

∫

dωd2k J̃T (ω, k)
1

|~k|
J̃T (−ω,−k) , (3.24)

where J̃T is given by the expression,

J̃T (ω, k) = iǫij k̂iJ̃j(ω, k)

= iǫij k̂i
∑

±

q±

∫

dp0 d
2p ψ̄±(p0, p)γjψ±(p0 + ω, p+ k) , (3.25)

with q± = ±1.

This finishes the derivation of the dual Coulomb interaction in theory B in the limit of

g2 ≫ 1. We note the e → 1/e mapping of the electric interaction strength between theory

A and theory B. This strong/weak duality will be used in §4 to derive a perturbatively

controlled dual of the quantum Hall system with strong Coulomb interactions.
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3.5 Quantum corrections to scalar fields

At the classical level, theory B contains fundamental scalars φij (parametrizing the Coulomb

branch) and hypermultiplet scalars u±. Scalar masses are not generated in the supersym-

metric theory, but since we have broken SUSY by turning on the magnetic field (the finite

density in theory B), we expect that quantum effects will induce nonzero masses.

It is important to check if these quantum masses are positive definite, to ensure that the

theory is stable. In Appendix A.4 we calculate the one loop corrections to u± in the presence

of the ψ± Fermi surfaces, obtaining

m2
u ∝ g2kF > 0 . (3.26)

Therefore, the hypermultiplet scalars become massive at one loop and can be safely integrated

out at low energies. The fact that m2
u > 0 can be understood intuitively as follows. In the

low energy theory E ≪ kF , the Yukawa interaction u†λ̄ψ is suppressed by powers of E/kF ,

because the gauginos have momenta around the origin, while for the fermions p ∼ kF . In

the effective theory near the Fermi surface that will be developed in more detail below, the

u fields retain their interactions with the other scalars (such as |u|2φ2) but not with the

fermions. The Coleman-Weinberg potential from loops of scalars induces a positive mass

squared, which is proportional to the interaction strength times the cutoff of the EFT. This

reproduces (3.26).

We could also incorporate quantum corrections to the masses of Coulomb branch scalars,

but instead we will simply turn on soft supersymmetry breaking masses to lift the φij. This

can be done consistently with the duality because the explicit map between the Coulomb

branch of theory B and the Higgs branch of theory A is known; see (2.10).9 Since |φ| ∼ |v|2,
supersymmetry breaking masses for φ map to quartic interactions for the scalars in theory

A. This deformation is innocuous, because the scalars in theory A were already lifted by the

magnetic field, and were not of interest for our purpose. To summarize, by deforming our

starting theory A with additional quartic interactions for v±, the emergent Coulomb branch

scalars become massive and can be integrated out from the low energy theory.

When we construct the low energy theory near the Fermi surface we will then ignore

the scalar fields in theory B, and only keep the interactions with the gauge field (whose

masslessness is ensured by gauge invariance). As we just discussed, we will also neglect the

kF–suppressed interactions with the relativistic gauginos.

9Note that we cannot do the same for the hypermultiplet scalars, because we cannot map such deforma-

tions into theory A.
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4 Low energy dynamics

In this section we study the low energy dynamics of the dual Fermi surface of composite

fermions interacting with the emergent gauge field. We do not consider the possible effects

of the gauginos. We set up a renormalization group approach and show that the emergent

gauge field flows from a dynamical exponent z = 3 at one loop and with e2 ≪ 1 to z = 2

scaling in the limit of e≫ 1. In this new scaling regime, the gauge interaction is classically

marginal, enabling us to set up a controlled perturbative expansion in 1/e2. This will provide

a useful weakly coupled dual of the original strongly coupled quantum Hall system. We

will then study the induced interaction mediated by the emergent gauge field. We find

a repulsive BCS interaction in all angular momentum channels indicating the stability to

superconducting pairing. Additional interactions are necessary for attraction.

4.1 Dynamics near the Fermi surface

To proceed, let us restrict to a low energy theory of light excitations near the Fermi surface

for the composite fermions of theory B. The Appendix shows how to project the original

Dirac fermions ψ± in order to keep only the low energy degrees of freedom, to the effect that

for ψ+ (ψ−) only the antiparticles (resp. particles) remain. We also review there the one

loop renormalization of the gauge field kinetic term due to loops of particles and holes near

the Fermi surface and define in more detail the renormalization group scaling.

We work in Landau gauge, ∂µaµ = 0, and in this section only we adopt Euclidean

signature for clarity. The effective action for the light excitations about the Fermi surface

(with B > 0) takes the form

S = Sa + Sf + Sint , (4.1)

where the kinetic terms are

Sa =

∫

dτd2x
1

4g2
f 2
µν (4.2)

Sf =

∫

dp0dp⊥dθ
{

χ∗
−(p)(ip0 − |p⊥|)χ−(p) + ξ∗+(−p)(ip0 − |p⊥|)ξ+(−p)

}

. (4.3)

Here ξ∗+ is the antiparticle component of ψ+, and χ− is the particle component of ψ−; see

(A.13). We work in a spherical RG towards the Fermi surface, decomposing the fermion

momentum as ~p = (kF + p⊥)(cos θ, sin θ). The dispersion relation is independent of θ at

leading order in 1/kF , so θ acts as a flavor index (omitted in χ and ξ). See [61, 62] for more

details.

The interaction terms between the emergent gauge field and the low energy excitations
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may be deduced from the expression for the current J̃µ in (A.17):

Sint = −i
∫

p1,p2

{

1

2

(

1 + e−i(θ(p1)−θ(p2))
)

a0(p2 − p1) + e−
i

2
(θ(p1)−θ(p2))aT (p2 − p1)

}

×

×
(

χ∗
−(p2)χ−(p1) + ξ∗+(−p1)ξ+(−p2)

)

(4.4)

where
∫

p
≡
∫

d3p/(2π)3. Importantly, both light excitations have the same charge under aµ.

Also, the interaction with the longitudinal component vanishes because J̃L = 0.

These are the classical terms in the action; in order to determine the low energy dynamics,

it is necessary to take into account the quantum corrections to the gauge boson propagator.

There are three contributions to the gauge boson kinetic terms, which we will now study

in more detail: the classical term 1
g2
f 2
µν , Landau damping and Debye screening from the

finite density of composite fermions, and the quadratic term (3.20) induced by the Coulomb

interaction. Let us discuss first the effects of Landau damping and screening, and afterwards

consider the Coulomb piece.

As reviewed in Appendix A.2, the gauge field splits into electric and magnetic compo-

nents, with inverse propagators

D−1
el, mag(k) = k2 +Πel, mag(k) . (4.5)

At one loop and for |k0| ≪ |~k|, the renormalization effects from the Fermi surface screen the

electric component,

Πel(k) ≈M2
D (4.6)

where the Debye mass M2
D ∝ kF . See (A.21). Therefore, at low scales this component

becomes massive and will be neglected. On the other hand, for the magnetic gauge boson

we have

Πmag(k) ≈M2
D

|k0|
|~k|

. (4.7)

Combining this result with the tree-level kinetic term gives rise to the well-known dynamical

exponent z = 3 for the gauge boson.

Let us now include the effects of the Coulomb interaction. For this, we need to combine

(4.5) with (3.20). The electric component is a combination of a0 and aL; at energy scales

much smaller than the Debye mass, this field becomes massive and can be neglected. On

the other hand, for the magnetic component we obtain

amag
0 = 0 , amag

i (k) = ik̂nǫniaT (k) . (4.8)

In other words, the magnetic component is equivalent to a scalar field aT . Therefore, the

kinetic Lagrangian capturing the tree level term plus Landau damping plus the Coulomb
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interaction reads

Lmag =
1

2
amag
i (k)

(

(
k2

g2
+Πmag(k))δij +

e2

4π
|~k|−1ǫimkmǫjnkn

)

amag
j (−k)

=
1

2
aT (k)

(

k2

g2
+Πmag(k) +

e2

4π
|~k |
)

aT (−k) . (4.9)

Plugging in (4.7), we obtain a nontrivial flow for the dynamical exponent. At high

momenta |~k| ≫ e2g2, the Coulomb piece is subdominant and the gauge boson has z = 3

scaling (or z = 1 if the frequency is sufficiently large). However, at low momenta |~k| ≪ e2g2,

the Coulomb piece dominates over the classical k2/g2 term. As a result, at low energies we

find a z = 2 dispersion relation and a propagator independent of g2:

D−1
T (k0, k) ≈M2

D

|k0|
|~k|

+
e2

4π
|~k| . (4.10)

(Given the relation, J0 ∼ aT , the positive sign in the second term results from noting that

J0 becomes iJ0 when written in Euclidean signature.) The propagation is now dominated by

the interplay between Landau damping and the effective Coulomb contribution. This will

have crucial consequences on the low energy dynamics.

In summary, the low energy effective action near the Fermi surface and in the z = 2

scaling regime for the gauge boson is

S =
1

2

∫

d3k a(k)

(

M̃2
D

|k0|
|~k|

+ |~k|
)

a(−k) (4.11)

+

∫

dp0dp⊥dθ
{

χ∗
−(p)(ip0 − |p⊥|)χ−(p) + ξ∗+(−p)(ip0 − |p⊥|)ξ+(−p)

}

+ i

∫

dp0dp⊥dθ dp
′
0dp

′
⊥dθ

′ g̃(θ′ − θ) a(p− p′)
(

χ∗
−(p)χ−(p

′) + ξ∗+(−p′)ξ+(−p)
)

.

Here we have redefined the boson field,

a(k) ≡ 1

ẽ
aT (k) , M̃

2
D ≡ ẽ2M2

D (4.12)

in terms of the new coupling

ẽ ≡
√

4π

e2
. (4.13)

Furthermore, the angle-dependent cubic coupling is

g̃(θ′ − θ) ≡ ẽ exp[−i(θ′ − θ)] . (4.14)

In terms of this z = 2 gauge boson, we have an expansion in powers of ẽ, since the g

dependence disappears. Furthermore, combining the z = 2 scaling with the fermionic RG
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towards the Fermi surface shows that g̃ is classically marginal; see Appendix A.3. This is very

different from what happens with un-deformed mirror symmetry at zero density in theory

B or, equivalently, vanishing magnetic field in theory A: the relativistic gauge coupling is

classically relevant and quickly leads theory B into a strongly coupled phase, whose weakly

coupled dual is theory A. Instead, now the cubic coupling has become classically marginal

and hence in the limit of weak ẽ (i.e., for strong Coulomb interactions in theory A), we have

a perturbatively controlled theory. Therefore, there is a range of parameters where theory

B is actually the weakly coupled description in the IR. This is a strong/weak duality with

respect to the electromagnetic coupling 1/e.

We note that the emergence of a marginal interaction is reminiscent of the effects of

an unscreened Coulomb interaction observed in earlier treatments of the composite fermion

approach to the half-filled Landau level of non-relativistic fermions and related systems

[8, 63–67].

4.2 Superconductivity of composite fermions

We are now ready to study the 4-Fermi interactions induced by the interaction with the

Coulomb field. At low-energies, these will be dominated by the BCS channel; attractive

interactions grow towards the IR and cause a superconducting instability [61]. We will find

the BCS interaction to be repulsive in all angular momentum channels. Therefore, additional

physical ingredients are necessary for a BCS instability.

Following our previous approach, we proceed in two steps. First we discuss the physics

when g2 → ∞, ignoring the boson kinetic term and focusing only on the Coulomb interaction.

This will allow us to identify explicitly the possible 4-Fermi channels. We will then use

the effective field theory (4.11) to perform a renormalization group analysis of the BCS

interactions, including quantum effects from the emergent gauge boson in a Wilsonian way.

4.2.1 BCS interaction

In the limit g2 → ∞, it is sufficient to evaluate the current-current interaction (3.24) between

the excitations near the Fermi surface. As discussed previously, when a magnetic field B > 0

is turned on in theory A, the light excitations of theory B come from antiparticles ξ∗+ of ψ+

and particles χ− of ψ−. As discussed in Appendix A.1, we may write the current (3.25) in

terms of the projected low-energy fields,

J̃T (k) = i

∫

p1,p2

δ(3)(k + p2 − p1) e
− i

2
(θ(p1)−θ(p2))

(

χ∗
−(p2)χ−(p1) + ξ∗+(−p1)ξ+(−p2)

)

. (4.15)
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With this result, we are ready to evaluate the 4-Fermi interaction in Eq. (3.24) near the

Fermi surface:

S
(B)
int = −2π

e2

∫

pi,p′i

δ3(p1 + p′1 − p2 − p′2)
exp

[

− i
2
(θ(p1) + θ(p′1)− θ(p2)− θ(p′2))

]

|~p1 − ~p2|
×
(

χ∗
−(p2)χ−(p1) + ξ∗+(−p1)ξ+(−p2)

) (

χ∗
−(p

′
2)χ−(p

′
1) + ξ∗+(−p′1)ξ+(−p′2)

)

. (4.16)

There are three possible BCS pairings: 〈χ−χ−〉, 〈ξ+ξ+〉 (intra-species terms), and 〈χ−ξ+〉
(i.e., an inter-species coupling). For the first two, the BCS channel sets ~p1

′ = −~p1, ~p2 ′ = ~p2,

and the overall angular dependence is proportional to e−i(θ(p1)−θ(p2)). For inter-species pairing,

~p1
′ = ~p2, ~p2

′ = ~p1, and the angular dependence in the exponential factor cancels out.

Therefore, the BCS potential becomes

VBCS =
π

kFe2
1

| sin θ(p1)−θ(p2)
2

|

[

e−i(θ(p1)−θ(p2))
(

χ∗
−(p2)χ

∗
−(−p2)χ−(−p1)χ−(p1) + (χ− ↔ ξ+)

)

+

+
(

χ∗
−(p2)ξ

∗
+(−p2)ξ+(−p1)χ−(p1) + (p1 ↔ p2)

)

]

. (4.17)

This indicates that the leading intra-species interaction in the l = 1 channel is repulsive.

Likewise, the leading l = 0 inter-species interaction is repulsive. Repulsive behavior is also

found for other angular momentum modes activated by | sin(∆θ/2)| in (4.17). The same

conclusion was reached in Ref. [68] for a similar system.10

4.2.2 Renormalization group treatment

Let us now take into account the full dynamics of the z = 2 boson, performing an RG

treatment of the BCS interaction. We expect this to be useful and nontrivial because the

boson-fermion coupling is classically marginal in our system. The renormalization of a

Fermi surface coupled to a gapless boson through a nearly marginal interaction was recently

addressed in [69], and applied to the BCS coupling in [70]; we will adopt the same framework

here. See [68, 71] for a related approach.

The key point is that integrating over momentum shells, the exchange of gapless bosons

leads to a tree level contribution to the BCS beta function. Indeed, integrating this exchange

over the tangential direction results in a contribution to the 4-Fermi interaction,

δλ ∝ ẽ2
∫

dk‖
1

|k‖|+ M̃2
D|k0/k‖|

∼ ẽ2 log
Λ2

M̃2
D|k0|

, (4.18)

where Λ is the UV cutoff. The integral over k‖ appears when we change to the angular

momentum basis for the 4-Fermi interactions λℓ. Changes in Λ can then be absorbed as

tree-level contributions to λℓ.

10We thank D. Son for discussions on these 4-Fermi interactions.
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The resulting one loop beta function is

µ
dλℓ
dµ

= fℓ ẽ
2 +

λ2ℓ
2π2

, (4.19)

where fℓ is a constant. In our case, fℓ=0 < 0 for all modes. As a result, the interaction

mediated by exchange of the massless gauge field provides a constant source term at all

energy scales that tends to increase repulsive interactions. In particular, an attractive BCS

interaction weakens as the length scale is increased and there are no superconducting insta-

bilities at this order. One intriguing feature of (4.19) is the existence of a UV fixed point

(i.e., an IR unstable fixed point) at

λ∗ℓ =
√

2π2|fℓ|ẽ2 , (4.20)

which is perturbatively controlled for small ẽ. If this fixed point is not lifted by higher order

quantum corrections, it would be important to understand its dual interpretation in the

quantum Hall system of theory A.

It is interesting to ask what additional interactions must be added to make the BCS

interaction attractive. If the interactions can be made attractive, we expect an enhancement

of the pairing scale similar to that which occurs in QCD at finite density due to exchange of

magnetic gluons [71]. Pairing of (non-relativistic) composite fermions is believed to result in

either the Moore-Read Pfaffian state or its particle-hole conjugate, the Anti-Pfaffian state

[72, 73]. The former occurs in the ℓ = 1 angular momentum channel, while the latter obtains

in the ℓ = −3 channel. While our current analysis cannot determine the ground state of the

theory, it may provide a controlled framework to understand what interactions in theory A

lead to attractive BCS interactions in theory B in the requisite channels.

5 Conclusions and future directions

In this paper, we have demonstrated how mirror symmetry can be applied to study the

physics of 2+1D Dirac fermions in a finite transverse magnetic field at filling fractions ν ∼ 0

for each species, i.e., about the half-filled zeroth Landau level of the Dirac fermions. We

derived a dual description in terms of electrically neutral composite fermions at finite density,

interacting via an emergent gauge field. This dual description is similar, appropriately

modified to the Dirac context, to that which has been advocated by a number of authors

[29–35] for the description of the half-filled Landau level of non-relativistic fermions. (See

Refs. [74, 75] for related instances.) Mirror symmetry provides a concrete derivation of

flux attachment and allows us to understand precisely the interactions between composite

fermions in the emergent non-Fermi liquid.
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Mirror symmetry has the following remarkable implication: the ground state wave func-

tion (singled out by residual interactions at finite g or Coulomb interactions) of the half-filled

zeroth Landau level of Dirac fermions, theory A, describes the non-Fermi liquid ground state

of a finite density of Dirac fermions interacting through an emergent gauge field, theory B.11

In the limit of zero Landau level mixing, vanishing fluctuating Coulomb field, and neglecting

any additional irrelevant interactions, i.e., in the limit where the low-energy theory is non-

interacting, we may easily solve for the theory A reduced density matrix for some spatial

subregion. The implication is that this reduced density matrix is related to the reduced

density matrix of a particular non-Fermi liquid. For instance, we might naively anticipate

a logarithmic violation of the entanglement entropy area law of the theory B (non-)Fermi

liquid to be visible via a simpler calculation in theory A. The equality of 3-sphere partition

functions of theory A and theory B (at vanishing external field in theory A and vanishing

fermion density in theory B) [49] implies the equality of the constant subleading term in the

entanglement entropy of the ground states of the two theories for a disk subregion (when

such perturbations are not present).

In the future, we would like to extend the duality to the study of non-relativistic, rather

than Dirac, fermions. We expect to obtain a non-relativistic theory from our Dirac starting

point in theory A by turning on a finite chemical potential. The addition of mass terms for

either of the ψ± fermions of theory B results in a non-zero (level 1/2) Chern-Simons term for

the emergent gauge field and may bring us intriguingly close to the composite Fermi liquid

theory of Refs. [8, 9], except that the composite fermions carry zero electromagnetic charge.

Furthermore, the nearly marginal coupling of the z = 2 gauge boson to the composite

fermions of theory B suggests the remarkable possibility of a controlled quantum critical

metal, something that we hope to analyze in future work.

In the course of finishing this paper, we became aware of the recent works in Refs. [57, 58]

that study duality of a single Dirac fermion that arises on the bounding surface of a time-

reversal invariant topological insulator. We anticipate that the duality involving a single

Dirac cone can be understood from mirror symmetry by realizing theory A on a domain wall

in 3+1 dimensions and then separating the two Dirac cones spatially by a symmetry-breaking

perturbation.

Finally, we remark that the structure of theory B shares an additional similarity with

the theory proposed to describe a putative second order transition between the composite

Fermi liquid of Refs. [8, 9] and the anti-composite Fermi liquid introduced in [76]. The anti-

composite Fermi liquid was introduced in response to the surprising experiments [77, 78]

that observe magnetoresistance oscillations that imply a (composite) Fermi wave vector tied

to the electron/hole density for νNR < 1/2 or νNR > 1/2, respectively. It is curious that two

flavors of fermions naturally arise out of the simplest example provided by mirror symmetry.

11We thank S. Raghu for related discussions.
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A Relativistic fermions at finite density

In this Appendix we discuss the low energy theory for massless Dirac fermions at finite

density, in 2+1 dimensions. We also review the one loop renormalization of the gauge field

and discuss the RG scaling of the coupled fermion–boson system.

A.1 Light quasiparticles near the Fermi surface

The classical Lagrangian is

L = ψ̄(iγµ∂µ + µFγ
0)ψ (A.1)

so that the equation of motion requires

p0 = −µF ± |~p | . (A.2)

This describes particles (the plus sign above) and antiparticles (the minus sign).

For µF < 0, the antiparticles can have low energy for |~p | ∼ µF , while the particles have

high energies p0 ∼ −µF . This is the situation for the ψ+ fermions of theory B when a

magnetic field B > 0 in turned on in theory A. On the other hand, for µF > 0 it is the

particles that are light and the antiparticles that are heavy. This is the situation for the ψ−

fermions of theory B when the magnetic field B > 0.

We now describe how to construct a low energy theory for the excitations near the Fermi

surface by keeping only the light excitations and projecting out the heavy modes. For this,

we note that the Dirac equation ((p0 + µF )γ
0 + piγ

i)ψ(p) = 0 requires

(

1± γ0
γipi
|~p |

)

ψ(p) = 0 (A.3)
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on the mass shell (A.2). Let us then define the projectors

P (±)(p) ≡ 1

2

(

1± γ0
γipi
|~p |

)

, (A.4)

in terms of which the Dirac Lagrangian becomes

L = ψ†
(

(p0 + µF − |~p |)P (−)(p) + (p0 + µF + |~p |)P (+)(p)
)

ψ . (A.5)

Here the first term proportional to P (−) projects out antiparticles (i.e. it keeps the parti-

cles only), while P (+) projects out particles (keeps antiparticles). For the representation of

gamma matrices used in the paper, these projectors become

P (±)(p) =
1

2

(

1 ∓ie−iθ
±ieiθ 1

)

(A.6)

where ~p = pi = |~p |(cos θ, sin θ). (Recall that pi = −pi in our metric signature.)

We expand ψ in terms of its particle, χ, and antiparticle, ξ∗, components:

ψ(x) =

∫

dp0d
2p
( 1√

2

(

ie−iθ

1

)

χ(p) e−ip·x +
1√
2

(−ie−iθ
1

)

ξ∗(p) eip·x
)

, (A.7)

so that

P (−)(p)ψ(p) =
1√
2

(

ie−iθ

1

)

χ(p), P (+)(p)ψ(p) =
1√
2

(−ie−iθ
1

)

ξ∗(p). (A.8)

Notice that ξ is complex-conjugated above, consistent with its interpretation as the antipar-

ticle component of ψ. The Dirac Lagrangian in terms of the particle/antiparticle excitations,

L = χ∗
(

p0 + µF − |~p |
)

χ+ ξ
(

− p0 + µF + |~p |
)

ξ∗. (A.9)

Depending on the sign of µF , the low energy theory near the Fermi surface will keep

one of these two contributions: for µF > 0 the effective theory will contain particles, while

antiparticles are light if µF < 0. On both sides of the mirror duality, we have two types of

fermions Ψ± and ψ±, and the sign of the chemical potentials for each species is determined

by the sign of the charges and any background fields. This means that there will be a Fermi

surface of particles for one type of fermion, and a Fermi surface of antiparticles for the other

type. In particular, for magnetic field B > 0 in theory A, the low-energy description near

the Fermi surface of theory B consists of antiparticles of ψ+ and particles of ψ− and is given

by:

L
(B)
eff = ξ∗+

(

p0 − |p⊥|
)

ξ+ + χ∗
−

(

p0 − |p⊥|
)

χ− + Lgauge , (A.10)
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where we denote the antiparticle component of ψ+ by ξ+ and the particle component of ψ−

by χ−. We have decomposed the momentum as

~p = (kF + p⊥)(cos θ(p), sin θ(p)) , kF = |µF | . (A.11)

Also, Lgauge are the interactions with the emergent gauge field, which will be discussed

shortly.

In order to determine the interaction between the emergent gauge field and the low energy

fermions, let us now calculate the current

J̃µ = ψ̄+γ
µψ+ − ψ̄−γ

µψ− . (A.12)

for the projected composite fermions. For this, it is convenient to redefine the antiparticle

momentum p → −p in (A.7), which simplifies the expression for the fermion in momentum

space,

ψ(p) = u(p)
(

χ(p) + ξ∗(−p)
)

, u(p) ≡ 1√
2

(

ie−iθ(p)

1

)

. (A.13)

This can be seen as a consequence of P (+)(−p) = P (−)(p). We will need the following spinor

identities:

u†(p2)P
(−)(p2)P

(−)(p1)u(p1) =
1

2

(

1 + e−i(θ(p1)−θ(p2))
)

(A.14)

u†(p2)P
(−)(p2)(γ

0ǫij k̂
iγj)P (−)(p1)u(p1) = e−

i

2
(θ(p1)−θ(p2)) sin

(

1

2
θ(p1) +

1

2
θ(p2)− θ(p1 − p2)

)

u†(p2)P
(−)(p2)(γ

0k̂iγi)P (−)(p1)u(p1) = e−
i

2
(θ(p1)−θ(p2)) cos

(

1

2
θ(p1) +

1

2
θ(p2)− θ(p1 − p2)

)

where k = p1 − p2. Noting that

θ(p1 − p2) =
π

2
+
θ(p1) + θ(p2)

2
, (A.15)

these simplify to

u†(p2)P
(−)(p2)P

(−)(p1)u(p1) =
1

2

(

1 + e−i(θ(p1)−θ(p2))
)

u†(p2)P
(−)(p2)(γ

0ǫij k̂
iγj)P (−)(p1)u(p1) = −e− i

2
(θ(p1)−θ(p2)) (A.16)

u†(p2)P
(−)(p2)(γ

0k̂iγi)P (−)(p1)u(p1) = 0 .

The resulting expressions for J̃µ in terms of low energy excitations are

J̃0(k) = −
∫

p1,p2

δ(3)(k + p2 − p1)
1

2

(

1 + e−i(θ(p1)−θ(p2))
) (

χ∗
−(p2)χ−(p1) + ξ∗+(−p1)ξ+(−p2)

)

,

J̃T (k) = i

∫

p1,p2

δ(3)(k + p2 − p1) e
− i

2
(θ(p1)−θ(p2))

(

χ∗
−(p2)χ−(p1) + ξ∗+(−p1)ξ+(−p2)

)

,

J̃L(k) = 0, (A.17)
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where
∫

p
≡
∫

d3p/(2π)3. Recall the decomposition into longitudinal and transverse compo-

nents given in (3.22).

Given these results for the current, it is straightforward to add the interactions with the

emergent gauge field. The resulting Lagrangian for the light fermions in theory B is

S
(B)
fermion =

∫

p

{

χ∗
−(p)(p0 − |p⊥|)χ−(p) + ξ∗+(−p)(p0 − |p⊥|)ξ+(−p)

}

+

∫

p1,p2

{

1

2

(

1 + e−i(θ(p1)−θ(p2))
)

a0(p2 − p1) + ie−
i

2
(θ(p1)−θ(p2))aT (p2 − p1)

}

×

×
(

χ∗
−(p2)χ−(p1) + ξ∗+(−p1)ξ+(−p2)

)

. (A.18)

Note that these low energy excitations carry the same charge under the emergent gauge field

aµ.

A.2 One loop renormalization of the gauge field propagator

We will now review the one loop quantum corrections to the gauge field propagator, origi-

nating from Fermi surface loops. See e.g., Ref. [79] for more details.

For simplicity we fix to Landau gauge ∂µaµ = 0, but the analysis for more general ξ

gauges is very similar. We also work in Euclidean signature.

In the presence of a Fermi surface, which breaks Lorentz invariance, the general form of

the inverse gauge field propagator including quantum corrections is

D−1(k)µν = (k2 +Πmag(k))Omag
µν (k) + (k2 +Πel(k))Oel

µν(k) , (A.19)

where O project to the magnetic and electric components of the gauge field,

Omag
µν (k) = δµν − uµuν −

~kµ~kν

|~k|2

Oel
µν(k) = uµuν +

~kµ~kν

|~k|2
− kµkν

k2
. (A.20)

Here, uµ = (1, 0, 0), ~kµ = kµ−(u·k)uµ, and k2 = k20+
~k2. Πmag, el are the quantum corrections

from the finite density fermions.

At one loop,

Πmag(k) =M2
D

k20

|~k|2





√

1 +
|~k|2
k20

− 1



 , Πel(k) =M2
D −Πmag(k) . (A.21)

The projected gauge fields are denoted by amag
µ = Omag

µν aν and similarly for the electric

component. Note that Omag
µν only has spatial components.
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For completeness, let us also analyze the one loop action for ai, together with the Coulomb

induced term, in Minkowski signature (+−−). Focusing on the magnetic component, which

is the one that survives in the low energy theory, we write its action as

S =

∫

d3k amag
i (k)Kij(k)a

mag
i (−k) , (A.22)

where the kernel Kij combines the tree level, one loop and Coulomb pieces:

Kij(k) =
1

2g2
(k20 − |~k|2 −Πmag(k))δij −

e2

8π
|~k| ǫilk̂lǫjnk̂n , (A.23)

and in this signature,

Πmag(k) =M2
D

k20

|~k|2

(

1−
√

1− k20

|~k|2

)

. (A.24)

The on-shell condition is satisfied by two dispersion relations,

k20 = |~k|2 +Πmag(k) (A.25)

which is the longitudinal part and is hence orthogonal to amag
i , and

k20 = |~k|2 +Πmag(k) +
e2g2

4π
|~k| (A.26)

whose eigenvector is proportional to the transverse component of the field. This is the

dispersion relation used for aT in the main text.

A.3 Renormalization group scaling

In this section we discuss the scaling of the fermion-boson system for a theory with general

spatial dimension d and boson dynamical exponent z:

S =

∫

dq0d
d−1q a(q)

(

M̃2
D

|q0|
|~q | + |~q |z

)

a(−q) +
∫

dp0dp⊥d
d−1n̂ ψ†(p)(ip0 − p⊥)ψ(p)

+

∫

dp0dp
′
0dp⊥dp

′
⊥ d

d−1(n̂+ n̂′)dd−1(n̂− n̂′) g̃ a(p− p′)ψ†(p)ψ(p′) . (A.27)

The form of the boson kinetic term is motivated by the term that appears in the main text.

First, the d-dimensional fermionic momenta are divided into a direction perpendicular to

the Fermi surface, and d− 1 angles n̂:

~p = n̂(kF + p⊥) . (A.28)
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The fermion scaling is then

[p0] = [p⊥] = 1 , [ψ(p)] = −3

2
, (A.29)

independent of d.

Next, from the cubic interaction we recognize that the bosonic momenta relevant for

quantum effects are differences of fermionic momenta, ~q = ~p − ~p ′. More explicitly,

~q = n̂q⊥ + ~q‖ , q⊥ = p⊥ − p′⊥ , (A.30)

and

~q‖ = kF (n̂− n̂′) . (A.31)

Also, q0 = p0 − p′0. These conditions fix

[q0] = [q⊥] = 1 (A.32)

for the boson, and we still need to decide how to scale q‖, namely the difference between

fermionic angles.

The scaling of n̂ − n̂′ happens due to a dynamical reason: the boson scatters fermions

predominantly in tangential directions to the Fermi surface. At a given energy, this defines

the size of the patch around each fermion that will be more strongly coupled due to boson

exchange. This tangential scaling is obtained from the boson propagator, neglecting the q⊥
dependence (which can be checked self-consistently). Doing so, we obtain

[q‖] =
1

z
, [a(q)] = −d+ 3z − 2

2z
. (A.33)

Finally, plugging these scaling dimensions into the cubic interaction gives

[g̃] =
z − d

2z
. (A.34)

In particular, for the values of the model in the main text, d = 2, z = 2, we find a classically

marginal interaction.

This scaling is related to, but not the same as, the patch scaling used in other works

such as [63–66]. In particular, the spherical RG for the fermionic sector guarantees the

marginality of the BCS interaction in every dimension.

A.4 One loop corrections to scalars

Let us evaluate the one loop corrections to theory B scalars. We focus on the hypermultiplet

scalars u±, lifting the Coulomb branch scalars by explicit soft SUSY breaking masses.
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The scalars u± interact with the emergent gauge field, Coulomb branch scalars, with

themselves and with the gauginos and hypermultiplet fermions. In the absence of finite den-

sity, the perturbative corrections cancel exactly. Therefore, in order to understand quantum

corrections due to finite density, it is sufficient to compute the one loop diagrams from the

cubic vertices of the schematic form uλ̄ψ.

These one loop effects are a bit atypical, in that one fermion line (from the gaugino) is

relativistic, while the other (from ψ±) is at finite density. Let us then discuss a model of the

form

L = |∂u|2 − ψ̄( 6∂ − γ0µF )ψ − λ̄ 6∂λ− gu†λ̄ψ − guψ̄λ . (A.35)

We work in the euclidean formalism, where the chemical potential appears as an imaginary

background A0. We first compute the one loop corrections in this model, and then specialize

the result to theory B.

At one loop, the scalar kinetic term changes to p2 +Π(p), where

Π(p) = g2
∫

d3q

(2π)3
Gλ(q)Gψ(p+ q) = g2

∫

d3q

(2π)3
i

6q
i

6q+ 6p− iγ0µF
. (A.36)

In order to find the RG evolution of the mass, it is sufficient to set the external momenta

p = 0 and work with a lower cutoff ω ∼ p. The UV cutoff is denoted by Λ. Then we need

to calculate

Π = −2g2
∫ Λ

ω

dq0
2π

d2q

(2π)2
q0(q0 − iµF ) + q2

[(q0 − iµF )2 + q2](q20 + q2)
, (A.37)

where the factor of 2 comes from the two components of the fermions, and here q ≡ |~q |.
Performing the q0 integral by residues gives, after a few simplifications,

Π = −g2P
∫ Λ

ω

qdq

2π

(

1

2q − µF
+

Θ(q + µF )

2q + µF
− Θ(µF − q)

2q − µF

)

, (A.38)

and P denotes the principal value. This shows that as the IR scale ω crosses µF , new

contributions are generated due to the finite density.

Let us consider first µF > 0. We have

Π = −g2
{

P

∫ Λ

ω

qdq

2π

(

1

2q − µF
+

1

2q + µF

)

−Θ(µF − ω)P

∫ µF

ω

qdq

2π

1

2q − µF

}

. (A.39)

Using

P

∫ Λ

ω

qdq

2q − µF
=

1

2
(Λ− ω) +

µF
2

log
2Λ− µ

µ− 2ω
(A.40)

and focusing on low frequencies ω ≪ µF , we obtain

Π(ω → 0) ≈ − g2

2π

(

Λ− µF
2

+
µF
4

log
2Λ− µF
2Λ + µF

)

+O(ω) . (A.41)
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The term linear in the cutoff Λ ≫ µF is the well-known (Coleman-Weinberg type) negative

contribution to the scalar mass. This piece is cancelled by supersymmetry, i.e., by the con-

tribution from the bosonic fields. On the other hand, at finite density we find an additional

contribution proportional to µF , with a sign that is opposite from the cutoff piece. There-

fore, quantum corrections from finite density tend to stabilize the scalars. The logarithmic

contribution vanishes in the limit Λ → ∞. Following similar steps, the result for µF < 0

also shows an additional contribution proportional to |µF | that tends to increase the scalar

mass.

In the model for theory B, the scalars u± interact with Fermi surfaces of particles and

antiparticles. Adding both effects, we finally obtain

Πu ≈
g2

2π
|µF | (A.42)

showing that in the low energy theory, the hypermultiplet scalars are stabilized at a very

high scale and may be safely integrated out.
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