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Recent experiments on certain Fe-based superconductors have hinted at a role for paired electrons
in “incipient” bands that are close to, but do not cross the Fermi level. Related theoretical works
disagree on whether or not strong-coupling superconductivity is required to explain such effects,
and whether a critical interaction strength exists. In this work, we consider various versions of
the model problem of pairing of electrons in the presence of an incipient band, within a simple
multiband weak-coupling BCS approximation. We categorize the problem into two cases: case(I)
where superconductivity arises from the “incipient band pairing” alone, and case(II) where it is
induced on an incipient band by pairing due to Fermi-surface based interactions. Negative conclu-
sions regarding the importance of incipient bands have been drawn so far largely based on case(I),
but we show explicitly that models under case(II) are qualitatively different, and can explain the
non-exponential suppression of Tc, as well as robust large gaps on an incipient band. In the latter
situation, large gaps on the incipient band do not require a critical interaction strength. We also
model the interplay between phonon and spin fluctuation driven superconductivity and describe
the bootstrap of electron-phonon superconductivity by spin fluctuations coupling the incipient and
the regular bands. Finally, we discuss the effect of the dimensionality of the incipient band on
our results. We argue that pairing on incipient bands may be significant and important in several
Fe-based materials, including LiFeAs, FeSe intercalates and FeSe monolayers on strontium titanate,
and indeed may contribute to high critical temperatures in some cases.

PACS numbers: 74.20.-z, 74.70.Xa

I. INTRODUCTION

The standard paradigm for s± pairing in Fe-based
superconductors(FeSC)1–5 relies on the existence of a

hole-like Fermi surface (FS) near ~k = 0 and an electron-

like FS near ~k′ = (π, 0) in the 1-Fe Brillouin zone, and
symmetry-related points. Repulsive interband interac-
tions and approximate nesting then lead, within this
simplified picture, to a strong peak in the particle-hole

susceptibility at ~q = ~k − ~k′ = (π, 0), which drives a
spin fluctuation pairing interaction that can condense
pairs only if the superconducting (SC) order parame-
ter changes sign between the two pockets6,7. Beginning
in 2010 with the discovery of superconductivity in the
alkali-intercalated FeSe materials8–10, this paradigm was
challenged by the subsequent remarkable discovery11–13

that all hole bands in these materials, with optimal criti-
cal temperatures greater than 40K, were below the Fermi
level. Several groups pointed out that repulsive inter-
actions at the Fermi level remained among the electron
Fermi surface pockets, and could lead to d-wave pairing
with significant critical temperatures13,14.

Ref. 13 also pointed out that pairing in an s± chan-
nel with sign changing gap was still quite competitive,
despite the fact that the hole band was ∼ 90 meV be-
low the Fermi level, indicating presence of substantial
spectral weight of the spin fluctuations. While this “in-
cipient” s± possibility was considered3–along with the d-
wave state and a more subtle s-wave state that changed
sign between two hybridized electron pockets in the 2-Fe
zone–as a possible candidate for pairing in these materi-
als, it did not receive a great deal of attention. This is

probably because of the general feeling in the community
that incipient bands (we use this term “incipient” here
to mean bands away from the Fermi level, but within a
‘pairing’ cutoff energy) do not play an important role in
superconductivity. As discussed in Ref. 3, in a simple
model of electron pocket - hole pocket s± pairing, if the
hole pocket maximum moves below the Fermi level by
an energy |Eg|, the dimensionless pairing strength ( v)
in this channel is reduced: v → v2 log Λ/|Eg|, where Λ is
the pairing cutoff. This suggests that within weak cou-
pling theories, one gets a strong suppression of Tc as |Eg|
is increased.

The discussion of the role of the incipient band in
pairing in FeSCs was revived by several new experi-
ments. The first was the discovery by angle-resolved
photoemission (ARPES) that the electronic dispersion
in FeSe monolayers on SrTiO3 (STO), with extremely
high critical temperatures of around 70K (ARPES gap
closing)15 was similar to the alkali-intercalated FeSe sys-
tems, namely the central hole pocket was pushed below
the Fermi surface by ∼ 80 meV. The second was the ob-
servation by Miao et al.16 of a superconducting gap on
one of the hole bands of LiFeAs as it fell below the Fermi
level with electron doping by Co. Here it was found that
the gap was suppressed only rather weakly in this pro-
cess, compared to one’s naive expectations according to
weak coupling BCS theory, and survived at least up to
band extremum values of Eg ∼ −8 meV. These authors
suggested that, because the variation of the gap on the
hole band was gradual through the Lifshitz transition,
a standard weak-coupling scenario was unlikely. Finally,
a more recent experiment has reported a Fermi surface
without hole pockets, very similar to the FeSe monolay-
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ers, in the new LiFeOH- intercalated FeSe material.17

There have been some theoretical efforts addressing
these systems and the idea of incipient band pairing. For
example, Innocenti et al.18 considered the effect of a Lif-
shitz transition on the critical temperature within 2-band
BCS models corresponding to the case IB considered be-
low. However, the most systematic work on Fe-based
superconductors thus far is from Bang,19 who explored
the evolution of Tc across a Lifshitz transition in a model
for Ba1−xKx(FeAs)2. He pointed out that Tc may remain
substantial in the presence of an attractive intra-band in-
teraction. Considering only interband interactions, Bang
also concluded that the gap induced in the incipient band
will be significant and should show up as a shadow gap
in the ARPES spectrum. Leong and Phillips20 recently
also considered a model specific to LiFeAs within weak-
coupling Eliashberg theory and argued that Coulomb in-
teractions can stabilize a robust isotropic gap in a “shal-
low” band which barely crosses the FS. Hu et al.21 at-
tempted a more realistic calculation of the effect of an
incipient band in the LiFeAs system, and concluded that
one needs to consider large couplings in order to explain
the experiments, and also a minimum pairing interaction
to induce a gap on the incipient band: which is appar-
ently contrary to the message in Bang’s work. Finally,
Koshelev and Matveev discussed the quasiparticle den-
sity of states on both sides of the Lifshitz transition of a
2-band superconductor22.

In this work, we extend Bang’s idea, within a simple
multiband BCS approximation, to perform a systematic
study of pairing in the incipient band in FeSCs. We clar-
ify that there are two classes of problems that arise: (I)
when pairing is driven by interactions only with the in-
cipient band; and (II) when pairing is induced in the
incipient band due to an already stabilized SC ground
state due to other bands that cross the Fermi level. We
argue that, unlike the result in Hu et al., there is no min-
imum interaction strength except for a special instance
of case(I). We show that the usual expectation of strong
suppression of gaps and Tc apply only to case(I). The
models for case(II) suggest that (a) the problem is well
defined and can be treated in weak coupling; (b) there is
no minimum interaction strength needed to induce SC;
(c) the induced gap on the incipient band is comparable
to and can be larger than other gaps in the system; (d)
spin fluctuations (interband interactions) are crucial to
induce significant pairing in the incipient band; (e) spin
fluctuations can bootstrap an existing phonon based in-
teraction and yield a larger Tc and a sizable SC gap; (f)
the dimensionality of the incipient band can play a role
in determining the magnitude of the effect on SC.

We arrange the article in the following way: In Sec. II
we discuss the formulation of cases(I) and (II) and dis-
cuss the literature in some detail; In Sec. III we discuss
case(I) where standard results are recovered. In Sec. IV,
our main section, we discuss all aspects of case (II) and
compare with the results mentioned above. In Sec. V we
present our ideas in the context of the experimental situ-

ation vis a vis particular FeSC materials, and summarize
in Sec. VI. In the Appendix, we summarize the effect of
three dimensionality of the density of states (DOS) in the
incipient hole band on the results obtained in this work.

II. MODELS FOR SC IN THE INCIPIENT
BAND

The two cases mentioned in the introduction need to
be distinguished, as they give fundamentally different re-
sults. We have sketched the various possibilities in Fig. 1.
Case (I)A, which considers pairing in the incipient band
when the driving pairing interaction (phonon-mediated,
i.e. attractive) involves states in the incipient band it-
self, is the case usually imagined when the irrelevance
of incipient band pairing is claimed. Case(I)B considers
spin fluctuation as the driving pairing interaction that
connects a regular band and an incipient band. This was
discussed in Ref. 3 and numerically explored by Bang19,
with the result that Tc is drastically suppressed as the
incipient band extremum |Eg| is increased, unless an at-
tractive intraband interaction is added. Our study of
case(II) is also comprised of 2 categories, which we use
to explore spin fluctuation driven SC and phonon-driven
SC. In Case(II)A, a (repulsive) spin fluctuation medi-
ated (pairing cutoff Λsf ) SC is stabilized in the already
existing bands, and the same spin fluctuations induce
SC in the incipient band. In Case(II)B, an (attractive)
phonon-mediated (pairing cutoff Λph) interaction results
in SC in the electron pockets and the spin fluctuations
induce SC on the incipient hole band. We assume here
that interband phonon coupling is weak. This will serve
as our paradigm for spin fluctuations bootstrapping the
electron-phonon mediated SC.

We take this opportunity to comment on some other
works addressing incipient band pairing. Miao et al. pre-
sented a curve labelled “BCS weak coupling” which in-
dicates a gap on the incipient band falling rapidly com-
pared with experiment as the band sinks below the Fermi
level, without giving details of the calculation. They im-
ply that this disagreement rules out BCS weak-coupling
type physics. Furthermore, they argue that the large size
of the gap on the incipient band rules out “proximity-
coupled” superconductivity, i.e. the possibility that the
superconductivity caused by pairing of states at the
Fermi level in other bands could induce a large gap in
the incipient band.

We now consider the work by Hu et.al.21, where the
experiment in Ref. 16 motivated them to study a more
realistic 3-orbital model for LiFeAs with a next-nearest
neighbor intersite BCS-like pairing ansatz. These au-
thors claimed that the results of the experiment could
be understood on the basis of requiring a strong pairing
strength coupling the incipient band to the Fermi surface
pocket and having a minimum threshold for the pairing
strength, thereby suggesting that strong coupling physics
is required. We believe that this conclusion is incorrect,
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FIG. 1. (Color online) Case(I)A: The 4 instances of the hole band correspond to (1)regular band (2)shallow band (3)incipient
band (4) vegetable band. This is a representation of a conventional case with phonon driven interactions with cutoff Λph (blue
region). Case (I)B: Representative of the incipient case for spin fluctuation driven (cutoff Λsf-yellow region) SC. Case (II)A:
Representative of the incipient case for the situation where SC is driven by spin fluctuations in the regular (blue) bands. SC in
the incipient band is induced by the same interaction. Case(II)B: Representative of the incipient case for the situation where
SC is driven by phonons in the regular (blue) band. SC is induced in the incipient band through spin fluctuations.

and in fact will show that the strict requirement for a
minimum pairing strength only arises in case(I)A, and
hence is not applicable to FeSCs. We discuss this point
further below.

Another realistic model was studied in Ref. 20 where a
5-band model was considered with spin fluctuation inter-
actions scattering electrons near the Fermi surface, and
Coulomb interactions renormalized to a low-energy cut-
off scattering electrons from a shallow band to one of
the other hole bands. While these authors reported an
enhanced Tc and the largest gap on the shallow pocket,
some caveats remain: (1) For the tiny shallow pocket, one
might expect the Coulomb repulsion to be strong within
the band, yet this was dropped, retaining only a repul-
sive interband Coulomb interaction with the other hole
band; (2), a constant DOS was assumed in the derivation
of the Eliashberg equations used, despite the low energy
scale of the shallow band; (3) strictly speaking, incipient
band pairing was still not considered.

The work by Bang19 correctly captured the idea of
incipient band pairing, and also pointed out that the
induced gaps may be significant in the incipient case.
However, he specialized to parameters appropriate for
Ba1−xKxFe2As2, where Tc had been observed to vary
only weakly through a Lifshitz transition23.

We keep the modelling simple and extend Bang’s idea
systematically to all the cases mentioned above, allowing
us to discuss analytical results in important cases. We
study the gradual evolution of the gaps and Tc for every
case and show that models representing case(II) have the
potential to explain the recent experiments.

We emphasize that to get a simple qualitative pic-
ture we will restrict ourselves to the static approxima-
tion to the pairing interaction. In this way of modelling,
the complicated frequency structure of the interactions
is not considered, but at least the energy range of the
dynamical interactions is reflected in the choice of the
cut-offs for various pairing interactions. For instance, in
the electron-phonon problem, the renormalizations due
to phonons lead to attraction between electrons only if

they exchange energies below Λph (whose scale is set by
the Debye frequency of the lattice). In the static approx-
imation for the attractive part of the pairing interaction,
this energy dependence is mapped to a cut-off on the
fermionic energy states (measured relative to the fermi-
level). A similar mapping is carried out for systems ex-
hibiting strong spin-correlation. Here, however, the pair-
ing channel is strongly influenced by fluctuations in the
spin sector. However, renormalization group studies24,25

have shown that one construct an effective BCS like pair-
ing channel below Λsf whose scale is set by the energies
over which spin-fluctuation exchanges are effective which
is usually a fraction of the Fermi energy. While a general
hierarchy of the cut-offs can be established (Λsf > Λph),
the determination of Tc also requires the knowledge of
the coupling constant determined by microscopic details
of the system. This is modeled by controlling the mag-
nitude of our static interaction.

III. SC IN INCIPIENT BAND - CASE(I)

For completeness, we revisit the conventional case(I)
in some detail and show, within weak coupling, how one
can qualitatively reproduce the previously known results.
Since this part is intended to be a demonstration of prin-
ciple, we strive to keep the presentation of case (I)A (see
Fig. 1) simple. The multiband case (I)B follows from a
treatment similar to that presented in Ref. 19, so we do
not dwell on details.

A. Case (I)A

Within the weak coupling BCS treatment of the prob-
lem, our simple 1-band example (I)A involves solving the
following gap equation at temperature T (with h̄ = kB =
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1 and unit volume):

∆~k = −
∫

d2k

(2π)2
V~k,~k′

∆~k′

2E~k′
tanh

E~k′

2T
, (1)

where E~k =
√
ε2
~k

+ ∆2
~k
. The hole band dispersion is

ε~k = − k2

2m
+ Eg, (2)

where m is the band mass and Eg is the shift of the hole
band. We work with energies relative to the chemical
potential µ and hence set µ = 0. Eg > Λ is the regu-
lar BCS case (instance-1), Λ > Eg > 0 corresponds to
the shallow band case(instance-2), 0 > Eg > −Λ corre-
sponds to the incipient case (instance-3) and −Λ > Eg is
the vegetable case (instance 4) where the band does not
participate in SC. Choosing the (attractive intraband)
pairing interaction V~k,~k′ = Vph < 0 for |ε~k|, |ε~k′ | < Λ,

the order parameter ∆~k becomes a constant ∆. After
we solve these equations, we get Tc as a function of Eg.
As long as Eg > Λ, we remain in the conventional BCS
regime (instance-1 in Fig. 1). Interesting effects arise
when the band becomes shallow (instance-2) and incipi-
ent (instance-3). This marks the first step of departure
from a conventional BCS approach because the band edge
now falls within the pairing energy scale. Already at this
stage we note that all the corrections to the BCS theory
of O(Λ/EF ) become relevant.

Accounting for the cutoff of available hole states at Eg
implies that the gap equation loses particle-hole symme-
try and takes the form

1 = −mVph

2π

[∫ 0

−Λ

dε

2E
tanh

E

2T
+

∫ Eg

0

dε

2E
tanh

E

2T

]
,

for instance 2,

1 = −mVph

2π

[∫ −|Eg|
−Λ

dε

2E
tanh

E

2T

]
for instance 3, (3)

To solve for Tc, we note that E → |ε|. The solution of
Tc with Eg is shown in Fig. 2. One can get analytical
expressions for some interesting regimes:
The shallow band (Eg <∼ Λ) region gives (Tc � Eg)

Tc
T 0
c

=

√
Eg
Λ
, (4)

where T 0
c is the weak coupling critical temperature for

Eg > Λ and is given by T 0
c = 2eγ

π Λe1/vph (γ is the Euler’s
constant) and vph = mVph/2π. We refrain from using the
term ‘density of states’ for m/2π as it is usually reserved
for states at the Fermi level. This has a physical relevance
because close to the Lifshitz transition, the mass can be
treated as constant within the pairing cutoff for a general
dispersion.
Near the Lifshitz transition(Eg ∼ 0) we get

Tc = TLif
c +

Eg
2
, (5)

where

TLif
c = T 0

c e
1
vph (6)

is the critical temperature at the Lifshitz point which is
obtained by setting Eg = 0 in Eq. 3. The behavior of Tc
as a function of Eg can be seen in the top panel of Fig.
2. It is clear that superconductivity in the system is sup-
pressed rapidly as Eg falls below zero, as expected. The
gap on the incipient band is related to Tc by the stan-
dard BCS ratio ∼ 1.76 until almost the incipient point
Eg = 0, before it drops drastically and vanishes at the
critical Ecrit

g .

FIG. 2. (Color online) (a) Tc and gap as a function of Eg

for case(I)A. All the special lines are explained in the text.
(b) The same for case(I)B, also discussed in Ref. 19. The
normalization is with respect to T 0

c , the critical temperature
when Eg > Λ. The dimensionless interactions were taken to
be vph = −0.5 in (a) and vsf = 0.3 in (b).

Ecrit
g is the final important feature of the incipient so-

lution for a single band where SC disappears before the
lower cutoff −Λ is reached. This is found by setting
T → 0 in Eq. 3 (instance-3). This immediately yields,

Ecrit
g = −Λe

2
vph . (7)

What this also implies is that, for a given Eg < 0, vph
cannot be made arbitrarily small and still obtain Tc > 0,
unlike the conventional BCS paradigm. This is the only
case within weak-coupling where a threshold problem is
encountered for the pairing interaction.
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While for our purposes here it is irrelevant, we mention
for completeness that in a continuum single-band model,
the approach to the Lifshitz transition was studied long
ago by Gor’kov and Melik-Barkhudarov, who pointed out
that since the spacing between pairs in the 1-band case
becomes larger than the Cooper pair radius at some point
approaching the Lifschitz transition in case (I)A, one en-
ters the BCS- Bose-Einstein condensate crossover regime
in the low density limit. If this occurs, Tc should vanish
at the Lifschitz point if the problem is treated properly
because the BCS equations describe the instability to an
incoherent paired bound state26,27.

B. Case (I)B

The multiband scenario case(I)B with interband in-
teraction Vsf (the dimensionless interaction is vsf =√
Nem/(2π)Vsf where Ne is the Fermi level DOS of the

electron band) also exhibits a similar strong suppression
of Tc (see Fig. 2(b) and Ref. 19), but does not have a
threshold. To see this, note that the gap equations for
the two-band problem are

∆h = −VsfLe∆e, ∆e = −VsfLh∆h;

Le = Ne

∫ Λ

−Λ

dε

2Ee
tanh

Ee
2T

,

Lh =
m

2π

∫ Eg

−Λ

dε

2Eh
tanh

Eh
2T

, (8)

and the Tc equation then reads

1 = V 2
sfLeLh. (9)

Here Λ is the cutoff for the interband interaction, whose
possible microscopic definition we discuss in more detail
below. For the deep incipient case, if |Eg| � Tc, only
Le contains lnTc and Lh ∼ ln Λ/|Eg|. This explains
(1) why the effective pairing interaction now varies as
V 2
sf ln Λ/|Eg| as mentioned in the introduction; and (2)

why Tc (although strongly suppressed) exists for arbi-
trarily small Vsf . The evolution of the two gaps with Eg
are also plotted in Fig. 2. Note that the pairing state has
s± structure due to the repulsive interband interaction.
Some of these results appeared earlier in Ref. 28.

IV. SC IN INCIPIENT BAND - CASE(II)

We now switch to the discussion which presents the
main message of this article: contrary to the prevalent
belief16, in the presence of well-stabilized SC, an incipi-
ent band can significantly enhance Tc. In addition, the
induced SC gap on the incipient band can be large. We
illustrate this by considering two cases which are moti-
vated by some FeSC materials and will be discussed in
detail in Sec. V. These two cases differ essentially in the
mechanism driving the SC in the system that exists in the

absence of the incipient band. We start with case(II)A
which is the generic case for FeSCs undergoing a Lifshitz
transition.

A. Case(II)A

Our model here consists of one regular hole band at the
Γ-point with Fermi level DOS Nh1

; one regular electron
band forming two pockets at the M points with Fermi
level DOS Ne; and an incipient hole band (h2) as mod-
elled in Case(I). The interband pairing interaction with
a cutoff of Λ drives SC in these bands. The origin of the
pairing interaction is the assumed presence of strong spin
fluctuations at Q, resulting from particle-hole scattering
between these bands as well as the incipient band. It
is then reasonable to assume that the same interaction
that stabilizes SC in the regular bands couples the incip-
ient band to the rest of the system (namely the electron
pockets). This consideration leads to the same magni-
tude of the interband interaction between the electron
band and the two hole bands (regular and incipient). It
will be useful to maintain generality and distinguish the
two interband interactions Vsf1

and Vsf2
connecting the

electron band to the bands h1 and h2 respectively. Then
the gap equations are:

∆e = −Vsf1
∆h1

Lh1
− Vsf2

∆h2
Lh2

, (10)

∆h1
= −2Vsf1

∆eLe, (11)

∆h2
= −2Vsf2

∆eLe. (12)

where

Lh1
=

∫ Λ

−Λ

dεNh1

tanh
Eh1

2T

2Eh1

,

Le =

∫ Λ

−Λ

dεNe
tanhEe2T

2Ee
,

Lh2
=

∫ Eg

−Λ

dε
m

2π

tanh
Eh2

2T

2Eh2

, (13)

m is the mass of the incipient band. These equations can
be rewritten as:

∆h2

∆h1

=
Vsf2

Vsf1

,

∆h1

∆e
= −2Vsf1

Le,

1 = 2Le
[
V 2
sf1
Lh1 + V 2

sf2
Lh2

]
. (14)

The same relations hold at Tc with Lh1
/Nh1

= Le/Ne =

ln 2eγΛ
πTc

and Lh2 = m
2π

∫ Eg
−Λ

dε
2ε tanh ε

2Tc
. These equations

in (14) carry all the ‘universal’ information central to our
results:

• The first equation suggests that the gap induced
on the incipient band is related to the ratio of the
interband interactions. Recalling that this is the
same interaction that couples h1 and e bands, we
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expect Vsf1
/Vsf2

≈ 1, despite the fact that h2 is in-
cipient. Differences in the orbital character of the
bands can easily tilt this ratio in either direction,
but accounting for this is beyond the scope of this
calculation. Thus we see that the induced gap is
generically comparable to, and can in fact be larger
than, the pre-existing gap. Note also that this last
point implies that, within the model, the hole band
SC gap will be large until it disappears disconti-
nously when Eg passes through −Λ. Of cause a re-
alistic (as compared to BCS) interaction will smear
out this behavior.

• The third equation tells us about the effect of the
incipient band on the preexisting gap. In the ab-
sence of the incipient band (simulated by setting
Vsf2

= 0) we have 1 = 2V 2
sf1
Lh1

Le. Adding the
positive definite Vsf2

term forces the combination
LeLh1

to drop. The second equation then suggests
that both the T = 0 electron and hole gaps are in-
creased due to the presence of the incipient band.

• The same arguments can be used to justify that Tc
is increased in the presence of the incipient band.

• This model does not have an interaction threshold
for pairing. Tc always exists.

• The final piece of information contained in these
equations is that the effect of SC on the incipient
band in this case is essentially the same as the effect
on the regular hole band. The effect of the incipient
band itself on the regular bands depends on the
mass of the incipient band, such that lighter bands
barely effect the gaps and Tc. It is worth noting
that neither Tc nor the gap on the incipient band
itself is likely to exhibit any discontinuous behavior
at the Lifshitz transition.

FIG. 3. (Color online)Case(II)A: 2D electron band with reg-
ular and incipient hole bands. Tc and gaps as function of Eg.
The normalization is with respect to T 0

c , the critical tempera-
ture when Eg < −Λsf . Dimensionless interband interactions
are vsf1=0.2 and vsf2=0.3. Note that ∆h2 is the largest gap
in the system.

These equations can be solved for Tc and for the ∆’s
at T = 0 and the solutions are shown in Fig. 3. As
before, we can obtain analytical results for special cases.
In the shallow band region (0 < Eg <∼ Λ), if in addtion
Eg � Tc,

Tc = T 0
c exp

[
1√

2vsf1

− κ−
√
κ2 +

1

2(v2
sf1

+ v2
sf2

)

]
(15)

where now we have defined T 0
c to be the transition

temperature when Eg < −Λ; it is given by T 0
c =

2eγΛ
π e−1/

√
2vsf1 , with vsf1

= Vsf1

√
Nh1

Ne, vsf2
=

Vsf2

√
mNe/2π and

κ =
ln Λ
|Eg|

4
(

1 + v2
sf1
/v2
sf2

) . (16)

At the Lifshitz transition,

TLif
c = T 0

c exp

 1√
2vsf1

1− 1√
1 + v2

sf2
/(2v2

sf1

 .
(17)

Near Tc � |Eg| <∼ Λ

Tc = T 0
c exp

[
1√

2vsf1

+ κ′ −
√
κ′2 +

1

2v2
sf1

]
, (18)

where

κ′ =
ln Λ
|Eg|

4v2
sf1
/v2
sf2

, (19)

and when the hole band h2 becomes a vegetable (Eg <
−Λ), we recover T 0

c .

B. Case(II)B

The toy model we choose here is the one where we
have a regular electron band crossing the Fermi surface
at the M points with Fermi level DOS Ne. The SC is sta-
bilized here via an attractive electron-phonon mediated
interaction. We then introduce an incipient hole band at
the Γ point (Fig. 1). The pairing interaction between
the electron band and this band can be thought of as
being due to spin fluctuations and/or phonons. For the
moment, we nominally refer to the interactions between
bands as originating from spin fluctuations. The micro-
scopic origin of spin fluctuations in the presence of just
the incipient band is not obvious, but it is important
to note that good Fermi surface nesting or even states
at the Fermi surface are not required for a large static
particle-hole susceptibility as appears in spin fluctuation
pairing29. We investigate the effect of these fluctuations
on SC, coupling the electron and hole band via Vsf .
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We further assume that the cutoff scale for spin fluc-
tuations is larger than that for phonons, i.e. Λsf > Λph.
As discussed earlier, the cutoff in spin fluctuation pair-
ing theory is not rigorously defined given that we have
approximated the dynamical spin fluctuation interaction
by a static interband repulsion, we assume that Λsf is of
order a typical spin fluctuation energy, as determined by
the imaginary part of the dynamical susceptibility. As
an example, Graser et al.30 estimated the spin fluctua-
tion cutoff to be roughly 100 meV using such a procedure.
Following steps similar to those above, we first find the T 0

c

without the incipient band, given by T 0
c =

2eγΛph

π e1/vph ,
where vph = NeVph < 0.

FIG. 4. (Color online) The gap structure on the electron
band. The spin fluctuation interactions with the incipient
hole band (not shown) have larger cutoff Λsf . The attractive
phonon interactions within Λph causes the gap to be larger in
the blue region.

FIG. 5. (Color online) Red solid lines: Tc vs. ln Λsf/Λph for
two different values of vsf , showing that Tc increases as Λph is
increased all the way up to Λph = Λsf . For each vsf , dashed
black lines correspond to Tc for Λph = 0, while solid black
lines correspond to Tc for Λph = Λsf . Here vph = −0.2.

Some care is needed in formulating this problem due to
the presence of different cutoff scales for the pairing inter-

actions. The main point of departure from conventional
BCS modelling is that the gap on the electron pocket is
expected to vary at energy scales of Λph. In the spirit
of the Anderson-Morel model31,32, we account for this
effect by letting the otherwise constant electron gap to
acquire different values ∆eL for |ε| < Λph and ∆eH for
Λph < |ε| < Λsf (L, H stand from low and high energy
respectively, see Fig. 4). Note that allowing ∆ to vary
with energy is outside the BCS approximation and high
energy renormalizations may be relevant for a quantita-
tive estimate, which is outside the scope of this work.

Vph is only felt by the electron band up to Λph. Incor-
porating these into the gap equations, we arrive at the
following:

∆eL = −Vph∆eLLeL − Vsf∆hLh,

∆eH = −Vsf∆hLh,

∆h = −2Vsf (∆eLLeL + ∆eHLeH), (20)

where

LeL = 2

∫ Λph

0

dεNe
tanh EeL

2T

2EeL
,

LeH = 2

∫ Λsf

Λph

dεNe
tanh EeH

2T

2EeH
,

Lh =

∫ Eg

−Λsf

dε
m

2π

tanh Eh
2T

2Eh
. (21)

We may rewrite these equations as:

∆eH = −Vsf∆hLh,

(1 + VphLeL)∆eL = −Vsf∆hLh,

(1 + VphLeL)

(
1

2V 2
sf

− LhLeH

)
= LeLLh. (22)

We immediately see that, quite generally, from the first
equation ∆eH∆h < 0; from the third equation, if Vsf is
introduced perturbatively, then 1+VphLeL > 0 requiring
∆eL∆h < 0. Note that the introduction of Vsf , requires
1 + VphLeL = 0 → 1 + VphLeL > 0. Then, Vph < 0 sug-
gests that Tc and the T = 0 gap must increase. Thus we
see that the introduction of the repulsive spin fluctuation
coupling to the hole band, normally assumed to be a com-
pleting mechanism33, actually aids the electron-phonon
SC in this case. This is the core of the bootstrapping
effect described in the introduction.

In order to understand the effect of relative ratio of
the cutoffs for the two mechanisms, let us focus, for sim-
plicity, on the regular band case where Eg > Λsf . We
define vsf ≡

√
NhNeVsf > 0 and vph ≡ NeVph < 0. The

solution to Tc for any Λsf/Λph is given by
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ln
2eγΛsf
πTc

=
1√
2vsf

[
−(r + l(2− rl)) +

√
(r + l(2− rl))2 + 4(1− l2)(1− rl)

2(1− rl)

]
+

l√
2vsf

, (23)

where l ≡
√

2vsf ln
Λsf
Λph

, r = − vph√
2vsf

. We now show

that this correctly reduces to the well known cases when
Λsf → Λph = Λ and when Λph → 0. It is clear from
Eqs. 20 and 21 that in the limit Λsf → Λph = Λ, so that
LeH → 0, there is no ‘phase space’ for ∆eH . This then
correctly reduces to the usual model with 2-band whose
Tc is given by

ln
2eγΛph
T 2Band
c

=
1√
2vsf

[
−r +

√
r2 + 4

2

]
. (24)

The same is achieved by setting l = 0 in Eq.23. In the
other limit, Λph → 0, we note that LeL → 0 and LeH →
ln 2eγΛ

πTc
(or equivalently l →

√
2vsf ln 2eγΛ

πTc
). This means

that Eq. 23 needs to be solved for ln 2eγΛ
πTc

. In doing so,

using 1 − rl 6= 0 we end up with l = 1 or ln 2eγΛ
πTc

=

1/
√

2vsf . This is the well known Tc for the 2 band toy
s± SC model.

Having convinced ourselves that the model reproduces
the two limits of applicability, we now look at the gen-
eral solution, plotted in Fig. 5. As expected, Tc generally
increases when vsf is increased. There is however a pos-
sibly interesting interplay with the ratio Λsf/Λph: as we
increase Λph, the Tc increases (all the way up to where
the two cutoff’s are comparable). It suggests that the
presence of both mechanisms should help increase Tc.

Returning to the incipient problem, we wish to study
Tc and the gaps on the two bands as a function of Eg.
We perform the usual change with Nh → m/2π and work
in the limit Λsf → Λph. These results are plotted in Fig.
6. We see that not only is the Tc is enhanced due to
the presence of the incipient band as expected from the
above discussion, but the crossover through the Lifshitz
transition is considerably less abrupt than in Cases (I).
We refer to this key result in our discussion of FeSe mono-
layers on STO, see Sec. V.

C. Effect of 3 dimensionality of the incipient band

We have so far only addressed 2D systems where the

conversion of the phase-space ~k integral to energy in-

tegral, near the Lifshitz point, was done via
∫

d2k
(2π)2 =

m
2π

∫
dε for all energies (the constant density of states for

parabolic bands). This property changes in 3D since for
a hole band with dispersion −k2/2m+ Eg,

Nh(ε) = N 3D

h Re

√
2
Eg − ε

Λ
, (25)

where N 3D

h is given by a
√

Λ
2 , where a ≡ (2m)3/2

4π2 . We

give details in this less transparent case in the Appendix.

FIG. 6. (Color online) Case(II)B: 2D electron and hole band.
Tc normalized to T 0

c , the transition temperature when Eg <
−Λsf , and gaps as a function of Eg, normalized to Λsf = Λph.
Dimensionless interactions are vph=-0.3, and vsf=0.3.

Below, we give a qualitative discussion with the focus on
the question whether the previous results for a 2D hole
band are substantially modified.

The weighting factor Re
√
Eg − ε near the top of the

band in the energy space proves harmful for the Tc in the
one band incipient case(I)A, as can be seen from Fig. 7
(a) where we compare the 2D (red curve) with the 3D
version (green dashed curve). It is clear that Tc in 3D is
suppressed significantly due to the depletion of the DOS
relative to the 2D case within weak coupling as the band
becomes incipient. In fact, there is no SC in the 3D incip-
ient band case for case (I)A. SC is present for a shallow
band for any strength of attractive interaction in the form
of the BCS essential singularity Tc ∼ exp(−1/a

√
EgVph),

but completely suppressed for an incipient band. This re-
sult originates in the 3D analog of the integral of Eq. (3).
The additional square root that removes the singular na-
ture of the integrated kernel as Tc → 0 as compared to the
case in 2D, where the kernel is tanh(ε/2Tc)/ε. Thereby,
the influence of Tc on the value of the integral is reduced
in 3D and no weak coupling solution is possible at or be-
yond the Lifshitz transition. Only if we allow for strong
coupling SC in the sense that Tc is larger than the cutoff
Λ do we find SC for a 3D incipient band.

Thus, the question arises if a similar conclusion holds
in the multi-band scenarios discussed in this work, i.e.
whether or not SC is strongly suppressed by such 3D
effects. Even without an explicit calculation, we see that
the log singularity of the BCS integral is again lifted.
The value of the integral can be large while the influence
of Tc on this value is small. In order to compare 2D
and 3D, we choose a reference point such that the 3D
DOS equals the 2D DOS at Eg = Λ/2. We now calculate
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FIG. 7. (Color online) Comparison of 2D (red) and 3D (green)
scenarios. (a) Case(I)A Tc/T

0
c vs Eg/Λ, where T 0

c is the value
of Tc at Eg = Λ. The dimensionless phonon interaction was
taken as vph = −0.5 for 2D and vph = −0.2

√
2 for 3D, with

DOS ratio m/(2πN3D
h ) = 1. (b) Same, but for Case (II)B,

with vph = −0.3 and vsf = 0.3 for both 2D and 3D. For this
plot, the special case Λph = Λsf = Λ was adopted .

the Tc enhancement of a phonon mediated SC with a 3D
incipient hole band and compare the result with case(II)B
in Fig. 7(b). We observe a rather moderate reduction of
the enhancement in the incipient region with a 3D hole
band (dashed green curve) as compared to the 2D case
(red curve). In the Appendix, we show further results
where we repeat the calculations of the main text with
a 3D hole band. Similar to Fig. 7, we observe that a 3D
hole band can bootstrap SC at the Fermi level almost as
effectively as a 2D band.

V. DISCUSSION

The main result of our analysis is that, for the Fe-
based superconductors, the appearance of superconduc-
tivity on an incipient band is a rather natural conse-
quence of multiband pairing, rather than an indication
of strong coupling physics. Here we discuss how our re-
sults relate to various controversies in the field for partic-
ular materials at the present time, in a rather simplified
way that neglects various complications, such as the ex-
act number of bands, orbital character, etc. In each of
these cases, more detailed theoretical work is needed to

address the issue of the consequences for pairing of in-
cipient bands in the system, since the vast majority of
the detailed calculations have assume pairing only at the
Fermi surface.
LiFeAs. The fascinating experiment which revitalized

this discussion, Miao et al.16, showed the persistence
of large gap on a hole band as it underwent a Lifshitz
transition upon Co doping. The lack of any significant
signature of this Lifshitz transition in either Tc or the
ARPES gap magnitude suggested to the authors of this
work that weak coupling physics, which relies on Fermi
surface interactions, could not be at play. They further-
more argued that induced superconductivity, due to the
interactions between the bands at the Fermi surface and
“proximity coupled” in momentum space to the incipient
band, could not be occurring because the gap observed
there was the largest in the system. Subsequently, Hu et
al.21 considered a multiband situation superficially sim-
ilar to our case (II)B, and found that gaps the size ob-
served in the experiment required strong coupling, i.e.
dimensionless interband interactions of order 1, and in
addition reported that their equations required a critical
interaction strength to generate a finite Tc. They claimed
that their results qualitatively supported the conclusions
of Ref. 16.

FIG. 8. (Color online) Comparison of the incipient hole gap
in case(I) (green) and case(II) (red) taken from Fig. 2 (b) and
3, respectively. Gaps are normalized to their value ∆0 < 0 at
Eg = Λ.

On the other hand, we have demonstrated that effects
of the type observed by Miao et al.16 are rather easy to
generate in a case (II)A situation. This is certainly char-
acteristic of LiFeAs, which has electron and at least one,
possibly two hole pockets at the Fermi level34–36 even
with substantial Co doping. In Fig. 8, we compare the
gap on the incipient band as a function of Eg for cases
(I)B and (II)A. While we have already seen in Fig. 3
that, depending on the ratio of the interactions and the
DOS, the gap on the incipient band can be the largest
in the system, we now clearly see that it is only weakly
suppressed as the band sinks below the Fermi level. We
furthermore disagree with the conclusions of Hu et al.21,
because it appears to be based on an incorrect formu-
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lation of the multiband pairing problem. In Eq. (6) of
their article, they include the interband interaction V2

into the intraband kernel. In doing so, the problem they
solve actually maps to our intra-band pairing scenario
(case(I)A) and hence they see the threshold for the pair-
ing interaction. One can easily check that, as a result
of this, their gap equation does not reduce to the classic
two-band s± superconductivity as discussed, e.g. in Ref.
6 when the intraband interaction V1 = 0, whether or not
one of the bands is incipient.

The rough conclusions that we present here may be of
considerable relevance for theoretical calculations of the
pairing state of LiFeAs. Because it is nonmagnetic, with
no obvious nesting, and because high-quality ARPES
data (including precise measurements of anisotropic gaps
on various Fermi surface sheets) have been available due
to the nonpolar surfaces of this material, LiFeAs has
been perceived as something of a challenge by theo-
rists. Several proposals have been made, both based on
DFT-derived Fermi surfaces37, or on the rather differ-
ent ARPES-determined Fermi surfaces38–41. At issue has
been the size of the gaps on the rather small inner hole
xz/yz Fermi surface pockets reported by ARPES which
are those which undergo Lifshitz transitions upon elec-
tron doping. Empirically, these gaps are the largest in
the system, and this property is retained upon electron
doping, even when the bands responsible fall below the
Fermi level. The calculations in question all considered
pairing only at the Fermi level, and generally agreed on
the gap functions obtained for the electron and outer hole
pockets, but disagreed on the sizes of the gaps on the
inner hole bands. In some cases, good agreement with
the gaps on the smaller hole pockets were found, based
on claims of improved calculational schemes40,41. In the
case of the only fully 3D spin fluctuation pairing calcula-
tion, Ref. 38, the gaps on these small pockets were found
to be too small compared to experiment, and the authors
speculated that this might be due to the neglect of states
away from the Fermi level, including states in incipient
bands. Our calculations here suggest that such effects
could indeed be important, and it may be that for such
systems Eliashberg or other calculational schemes which
account for the dynamics of the pairing interaction are
required.

FeSe monolayers on STO. While the lattice parame-
ters of the FeSe monolayers grown on STO, with Tc’s
of 70K or higher, are a few percent larger than that of
the bulk, it has proven difficult to reproduce the experi-
mental Fermi surface by DFT calculations for a 2D FeSe
layer, accounting only for the strain. Most researchers
believe that the O vacancies in the STO play an im-
portant role by electron-doping the FeSe monolayer and
thereby pushing down the Γ-centered hole band42 . An-
other clue to the physics of these systems, and the influ-
ence of the substrate, was recently provided by ARPES
measurements43, which indicated via the observation of
“replica bands” the presence of a strong electron-phonon
interaction, probably originating from the substrate43. It

has recently been argued that the electron-phonon inter-
action must be quite peaked near momentum transfer
q=0 to explain this observation44, supporting the ba-
sic scenario for high-Tc proposed in the Refs. 43 and
45. Ref. 44 in fact argued that high-Tc in this unusual
system could be obtained from the STO forward scat-
tering phonons alone, but did not offer a microscopic
justification. In fact, the recent observation of high-Tc
superconductivity in FeSe flakes doped by liquid gating
techniques46 suggests that spin fluctuations may be as
relevant as phonons for pairing in these systems.

Considering only the bands at the Fermi surface, the
high-Tc in this system and the form of the order param-
eter are puzzling. We do not expect electron-phonon in-
teractions in the FeSe to be strong enough to explain a
Tc of 70K or above47, such that a simple s-wave from at-
tractive interactions alone seems unlikely, even if boosted
by STO phonons. The forward scattering nature of the
essential phonon processes then means that phonons can-
not contribute to the interband interaction. On the other
hand, the spin fluctuation interaction by itself should
lead naively to nodeless d-wave (since χ(q, ω) will be
peaked at the wave vector connecting the electron pock-
ets), as in the arguments given for alkali-intercalates13,14.
There are some indications that the system does not have
a sign-changing order parameter, however. For exam-
ple, STM measurements by Fan et al.48 show a full gap
which is suppressed only by magnetic impurities, simi-
lar to a “plain” s-wave superconductor. Note that these
arguments, if correct, would also rule out states of the
“bonding-antibonding s-wave” type3, which we do not
discuss here.

The arguments in this paper favor the “dark horse”
candidate for pairing, the incipient s± state, with a large
gap magnitude on both the electron pockets at the Fermi
surface band and the incipient hole band well below it.
The spin fluctuations have been shown capable of sub-
stantially enhancing a weak phonon Tc. In order to ac-
count for the experimental situation we slightly modify
the model case(II)B. It was shown that the hole band
is pushed below the bottom of the electron band43, but
the presence of the replica band suggests that even the
hole band is in the range of the phonon cutoff. Thus,
we consider a shallow electron band (band minimum Eeg)
together with an incipient hole band, but otherwise sim-
ilar, situation as in case(II)B. We include phonon cou-
pling in the part of the incipient hole band within the
phonon cutoff. The model is shown in the inset of Fig. 9.
To illustrate the possibility of incipient spin fluctuation
bootstrap more concretely, we plot in Fig. 9 the possible
Tc enhancements over a phonon bare critical temperature
T phc that one would obtain in a näıve calculation, i.e. the
Tc in the absence of interband spin fluctuations and dis-
regarding all band edge effects (Eeg = −Λph). The cutoff
in spin fluctuation pairing theory is ill-defined, but may
be roughly identified with the energy scale of the spin
fluctuation Eliashberg function in Ref. 49 for bulk FeSe.
This Eliashberg function has appreciable weight for en-
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ergies as high as 800meV and a peak at 600meV. We
account for this with a rough estimate represented by
the gray shaded area in Fig. 9 that highlights the range
of Eg/Λsf for Eg = 80meV and Λsf = 400 to 1000meV.

For the choice of parameters used in the figure, T phc is
9K, and that the gray region suggests that enhancements
of order 6-12 with respect to T phc are possible. Note how-
ever, that this range is quite sensitive to the choices of
interactions and the ratio of the cutoffs, which are poorly
known, so the reader should not take the numbers par-
ticularly seriously. Our message is simply that a weak
bare phonon interaction can be used to create a large Tc,
even with a spin fluctuation interaction which may be
weakened by the incipient band.

Of course the s± state found here naively has the same
difficulty with the results of Ref. 48. However, since im-
purities scatter elastically, one expects substantial sup-
pression of pairbreaking effects due to the gap sign change
in incipient band pair systems. This question is currently
under active investigation.

FIG. 9. (Color online) Tc as a function of the band edge Eg

of the incipient hole band for several band extrema for the
electron band Ee. Big red dots highlight the curve Tc(Eg)
where Ee = −Λph and big blue dots Ee = 0 where the electron
band reaches the Fermi level. The experimental situation of
a shallow band (-Λph < Ee < 0) is in between these curves.
The shaded gray region is a range of Eg/Λsf for Eg = 80meV
and the SF cutoff ( Λsf = 400 to 1000 meV) that is a rough
estimate based on calculations for bulk FeSe49. We use vph =
−0.2, vsf = 0.25, Λsf = 600 meV and Λph = 100 meV. For
these parameters T ph

c = 9K.

FeSe intercalates. Here we intentionally lump to-
gether, without particularly good justification, a) alkali-
doped FeSe intercalates like KFe2Se2, b) ammoniated
FeSe intercalated like Li0.56(NH2)0.53(NH3)1.19Fe2Se2

50;
and c) recently discovered lithium iron selenide hydrox-
ides Li1−xFex(OH)Fe1−ySe. a) and c) have been shown
to have Fermi surfaces without Γ-centered hole pockets,
similar to the FeSe/STO monolayers51. There are no
ARPES Fermi surface measurements of the materials in
category b) to our knowledge, due to sample volatility,

but it seems reasonable to assume since FeSe interlayer
distances are comparable, and Tc’s similar (of order 40K
for a),b) and c)), that they may be in this class.

Since Tc is not as high as in the FeSe/STO monolay-
ers, it is tempting to speculate that these systems must
all belong to class (I) B. That is, in these systems we have
no evidence (to our knowledge) that the electron-phonon
interaction plays any exceptional role; we assume, there-
fore, that it may be neglected, leaving a strongly sup-
pressed incipient s± superconducting channel to compete
with what should be a much more robust d-wave interac-
tion present in all systems52. Ultimately all case (I)B sys-
tems should be d-wave as well. In some systems, evidence
against d-wave has been presented already, however. For
example, in KFe2Se2, ARPES measurements failed to
find any anisotropy of the gap on the tiny Z-centered
hole Fermi surface pockets in that system53. But if we ac-
count for these states, the appropriate model is then not
(I)B but (II)A, with a 3D incipient band, which we have
shown leads to a substantially enhanced Tc and large gap
on the incipient band. Thus from our perspective, these
systems could still be d-wave or incipient s±, depending
on details.

In this work, we have used very simple models to inves-
tigate the fundamental nature of SC in connection with
an incipient band. We believe these models account for
most qualitative effects in the systems discussed above.
Improvement to these models can be made by includ-
ing dynamical effects in the interaction, and by includ-
ing the intraband Coulomb interaction. We note that
the renormalized Coulomb pseudopotential may be effec-
tively reduced by an incipient band and thus give rise to
a bootstrap mechanism even if T phc in the absence of the
incipient band were zero. Finally, we have checked that
one can arrive at similar conclusions to those contained
in this work in an Eliashberg approach where the bands
are parabolic and the interaction is constant up to the
Matsubara summation cutoff, similar to the BCS ”box”
interaction54.

Note finally that we have assumed in the numerical
evaluations of the theory above that spin fluctuations
with the incipient band can be significant, and in partic-
ular for case (II)A that they can be of the same order as
the Fermi surface spin fluctuation interband interaction.
While this appears to us to be quite reasonable, given
that magnetic interactions are defined over large energy
scales of order Λsf � Eg, these assumptions should be
justified by concrete calculations, which are currently in
progress.

VI. CONCLUSION

We have investigated pairing on bands away from the
Fermi surface within a weak-coupling multiband BCS ap-
proximation. This is possible because the pairing inter-
action has a finite spread around the Fermi surface. Tak-
ing advantage of this spread we identify 4 instances for a
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hole band: (1) Regular hole band: when the extremum
of the band is far from the cutoffs; (2) Shallow band:
when the extremum of a band is above the Fermi level
but within the cutoff; (3) Incipient band: when the ex-
tremum of a band is below the Fermi-surface but still
within the cutoff; and (4) Vegetable band: does not take
part in pairing. This article focusses on the shallow and
incipient band pairing. We have further identified two
cases of pairing which have qualitatively different results
in the shallow and incipient regions: Case(I) where pair-
ing is driven by interactions with the incipient band and
case(II) where pairing is induced on the incipient band.
We have argued that most work in the literature has only
addressed case(I) and prematurely concluded that weak-
coupling theories cannot be applied to certain family of
FeSCs where evidence for robust pairing was found in
the incipient bands. We argue in our work that case(II)
has all the experimentally observed features within weak-
coupling.

Our case by case results are the following: Case(I) -
We have considered simple models for phonon-driven and
spin fluctuation driven SC and confirmed the previously
known results that pairing in the incipient scenario is
strongly suppressed. A minimum attractive strength for
the SC instability is only needed in case(I)A. Case(II) -
We consider phonon-driven and spin fluctuation driven
SC (from regular bands) and show that the strength of
induced pairing in the shallow and incipient bands can be
large, and comparable to the pre-existing bands. The Tc

is enhanced quite generally in the presence of an incipi-
ent band connected to the Fermi surface by finite-q spin
fluctuation scattering. In this context, we discussed the
bootstrapping effect of spin fluctuations on the electron-
phonon SC. All these effects in case (II) are more pro-
nounced in 2D, but not qualitatively so. We have shown
that the dimensionality of the incipient band only plays
a significant role for the case(I)A model. We have pre-
sented a simple model to study the effect of different cut-
offs for the phonon-driven and spin fluctuation driven SC
and indicated that the phonon mechanisms aids the spin
fluctuation mechanism. Finally, we discussed the results
in the concrete context of LiFeAs, FeSe intercalates and
FeSe monolayers on STO, which have been reported to
have similar Fermi surface missing Γ-centered hole pock-
ets, and concluded that induced superconductivity in in-
cipient bands may play a role in all these systems, for
somewhat different reasons.
Acknowledgements: We thank A. Bianconi, R. Fernan-

des, D. Huang, S. Johnston, A. Koshelev, and Y. Wang
for useful discussions. We thank A. Chubukov for empha-
sizing the distinction between formation of bound state
pair and phase coherence of pairs in the single band
model. SM acknowledges the Dirac Post-Doctoral Fel-
lowship at the National High Magnetic Field Laboratory,
which is supported by the National Science Foundation
via Cooperative agreement No. DMR-1157490, the State
of Florida, and the U.S. Department of Energy. XC,
AL and PJH were supported in part by DOE DE-FG02-
05ER46236.

1 H. Hosono and K. Kuroki, Physica C: Superconductivity
and its Applications 514, 399 (2015), arXiv:1504.04919.

2 A. Chubukov and P. J. Hirschfeld, Physics Today 68, 46
(2015).

3 P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Re-
ports on Progress in Physics 74, 124508 (2011).

4 A. Chubukov, Annual Review of Condensed Matter
Physics 3, 57 (2012).

5 H.-H. Wen and S. Li, Annual Review of Condensed Matter
Physics 2, 121 (2011).

6 I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du,
Physical Review Letters 101, 057003 (2008).

7 K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kon-
tani, and H. Aoki, Physical Review Letters 101, 087004
(2008).

8 J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He,
and X. Chen, Physical Review B 82, 180520 (2010).

9 M. Sadovskii, E. Kuchinskii, and I. Nekrasov, Journal of
Magnetism and Magnetic Materials 324, 3481 (2012).

10 R. Yu, Q. Si, P. Goswami, and E. Abrahams, Journal of
Physics: Conference Series 449, 012025 (2013).

11 T. Qian, X.-P. Wang, W.-C. Jin, P. Zhang, P. Richard,
G. Xu, X. Dai, Z. Fang, J.-G. Guo, X.-L. Chen, and
H. Ding, Physical Review Letters 106, 187001 (2011).

12 Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He,
H. C. Xu, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang,

X. H. Chen, J. P. Hu, M. Matsunami, S. Kimura, and
D. L. Feng, Nature Materials 10, 273 (2011).

13 F. Wang, F. Yang, M. Gao, Z.-Y. Lu, T. Xiang, and D.-H.
Lee, EPL (Europhysics Letters) 93, 57003 (2011).

14 T. A. Maier, S. Graser, P. J. Hirschfeld, and D. J.
Scalapino, Physical Review B 83, 100515 (2011).

15 S. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou,
Y.-B. Ou, Q.-Y. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu,
C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen,
Z. Xu, X. Chen, X. Ma, Q. Xue, and X. J. Zhou, Nature
Materials 12, 605 (2013).

16 H. Miao, T. Qian, X. Shi, P. Richard, T. K. Kim,
M. Hoesch, L. Y. Xing, X.-C. Wang, C.-Q. Jin, J.-P. Hu,
and H. Ding, Nature Communications 6, 6056 (2015).

17 X. H. Niu, R. Peng, H. C. Xu, Y. J. Yan, J. Jiang, D. F.
Xu, T. L. Yu, Q. Song, Z. C. Huang, Y. X. Wang, B. P.
Xie, X. F. Lu, N. Z. Wang, X. H. Chen, Z. Sun, and D. L.
Feng, , 5 (2015), arXiv:1506.02825.

18 D. Innocenti, A. Valletta, and A. Bianconi, Journal of
Superconductivity and Novel Magnetism 24, 1137 (2011).

19 Y. Bang, New Journal of Physics 16, 023029 (2014).
20 Z. Leong and P. Phillips, , 5 (2015), arXiv:1506.04762.
21 L.-H. Hu, W.-Q. Chen, and F.-C. Zhang, Physical Review

B 91, 161108 (2015).
22 A. E. Koshelev and K. A. Matveev, Physical Review B 90,

140505 (2014).

http://dx.doi.org/10.1016/j.physc.2015.02.020
http://dx.doi.org/10.1016/j.physc.2015.02.020
http://arxiv.org/abs/1504.04919
http://dx.doi.org/10.1063/PT.3.2818
http://dx.doi.org/10.1063/PT.3.2818
http://dx.doi.org/10.1088/0034-4885/74/12/124508
http://dx.doi.org/10.1088/0034-4885/74/12/124508
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125055
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125055
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140518
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140518
http://dx.doi.org/10.1103/PhysRevLett.101.057003
http://dx.doi.org/10.1103/PhysRevLett.101.087004
http://dx.doi.org/10.1103/PhysRevLett.101.087004
http://dx.doi.org/ 10.1103/PhysRevB.82.180520
http://dx.doi.org/10.1016/j.jmmm.2012.02.071
http://dx.doi.org/10.1016/j.jmmm.2012.02.071
http://dx.doi.org/ 10.1088/1742-6596/449/1/012025
http://dx.doi.org/ 10.1088/1742-6596/449/1/012025
http://dx.doi.org/ 10.1103/PhysRevLett.106.187001
http://dx.doi.org/ 10.1038/nmat2981
http://dx.doi.org/10.1209/0295-5075/93/57003
http://dx.doi.org/10.1103/PhysRevB.83.100515
http://dx.doi.org/10.1038/nmat3648
http://dx.doi.org/10.1038/nmat3648
http://dx.doi.org/ 10.1038/ncomms7056
http://arxiv.org/abs/1506.02825
http://arxiv.org/abs/1506.02825
http://dx.doi.org/10.1007/s10948-010-1096-y
http://dx.doi.org/10.1007/s10948-010-1096-y
http://dx.doi.org/10.1088/1367-2630/16/2/023029
http://arxiv.org/abs/1506.04762
http://arxiv.org/abs/1506.04762
http://dx.doi.org/10.1103/PhysRevB.91.161108
http://dx.doi.org/10.1103/PhysRevB.91.161108
http://dx.doi.org/10.1103/PhysRevB.90.140505
http://dx.doi.org/10.1103/PhysRevB.90.140505


13

23 N. Xu, P. Richard, X. Shi, A. van Roekeghem, T. Qian,
E. Razzoli, E. Rienks, G.-F. Chen, E. Ieki, K. Nakayama,
T. Sato, T. Takahashi, M. Shi, and H. Ding, Physical
Review B 88, 220508 (2013).

24 A. Chubukov, Physica C: Superconductivity 469, 640
(2009).

25 S. Maiti and A. V. Chubukov, Physical Review B 82,
214515 (2010).

26 L. Gorkov and T. Melik-Barkhudarov, ZhETF 40, 1452
(1961).

27 D. van der Marel, J. L. M. van Mechelen, and I. I. Mazin,
Physical Review B 84, 205111 (2011).

28 R. M. Fernandes and J. Schmalian, Physical Review B 82,
014521 (2010).

29 K. Suzuki, H. Usui, S. Iimura, Y. Sato, S. Matsuishi,
H. Hosono, and K. Kuroki, Physical Review Letters 113,
027002 (2014).

30 S. Graser, T. A. Maier, P. J. Hirschfeld, and D. J.
Scalapino, New Journal of Physics 11, 025016 (2009),
arXiv:0812.0343.

31 P. W. Anderson and P. Morel, Physical Review Letters 5,
136 (1960).

32 P. W. Anderson and P. Morel, Physical Review 123, 1911
(1961).

33 R. A. Jishi and D. Scalapino, Physical Review B 88, 184505
(2013).

34 S. V. Borisenko, V. B. Zabolotnyy, A. A. Kordyuk, D. V.
Evtushinsky, T. K. Kim, I. V. Morozov, R. Follath, and
B. Büchner, Symmetry 4, 251 (2012).

35 K. Umezawa, Y. Li, H. Miao, K. Nakayama, Z.-H. Liu,
P. Richard, T. Sato, J. B. He, D.-M. Wang, G. F. Chen,
H. Ding, T. Takahashi, and S.-C. Wang, Physical Review
Letters 108, 037002 (2012).

36 S. Chi, S. Johnston, G. Levy, S. Grothe, R. Szedlak,
B. Ludbrook, R. Liang, P. Dosanjh, S. A. Burke, A. Dama-
scelli, D. A. Bonn, W. N. Hardy, and Y. Pennec, Physical
Review B 89, 104522 (2014).

37 C. Platt, R. Thomale, and W. Hanke, Physical Review B
84, 235121 (2011).

38 Y. Wang, A. Kreisel, V. B. Zabolotnyy, S. V. Borisenko,
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Appendix A: 3D incipient hole band

In this Appendix, we derive the effect on Tc and the
gaps on the various bands if the DOS is not constant as
in 2D but shows the well known square root behaviour of
a 3D electron gas. We give details for the single incipient
band solution because the results can be used later in
the multi band models. The equation that determines Tc
reads in this case

1

v3D

= −
∫ Eg

−Λ

dεRe

√
Eg − ε
|Eg|

1

2ε
tanh(

ε

2Tc
) , (A1)

where v3D = −
√
|Eg|a|Vph| and a = (2m)

3
4 /(2π2). Thus,

we are lacking a natural reference since any density of
states variation is usually disregarded in conventional
methods of SC, with the notable exception of the den-
sity functional theory of superconductors. In the present
situation for the single incipient band we arbitrarily mea-
sure our Tc in units of the value at Eg = Λ. The coupling

at our reference Eg = Λ is then simply v0
3D = −a|Vph|

√
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FIG. 10. (color online) Tc/T
0
c for a 3D hole band for r ≡

Λ
2T0
c

= 71, (red) 2.5 (green) and 0.55 (blue). The weak

coupling ratio r = Λ
2T0
c

is indicated for each data set in

the legend. The parameters for r = 71, 2.5 and 0.55 are
vph = −0.2

√
2,−0.5

√
2 and −2.0

√
2, respectively, and the 2D

vs 3D DOS ratio is chosen such that m/(2πN3D
h ) = 1. We

show Eq. (A6) as a dashed line for r = 71 and r = 3.5 in
dashed orange and dashed green, respectively.

In the weak coupling limit we can split the integral
around a cutoff Eg > C � Tc . Then, Eq. (A1) reads

− 1

v3D

=

∫ C

0

dε
1

2ε
(

√
1− ε

Eg
+

√
1 +

ε

Eg
)tanh(

ε

2Tc
)+

+

∫ Eg

C

dε

√
1− ε

Eg

2ε
+

∫ Λ

C

dε

√
1 + ε

Eg

2ε
. (A3)

If, in addition, Eg � C � Tc, we obtain in the first term
an integrand proportional to tanh(ε/2Tc)/ε and, thus,
the original BCS problem except for some high energy
renormalization prefactor P

lnP =

∫ Eg

C

dε

√
1− ε

Eg

2ε
+

∫ Λ

C

dε

√
1 + ε

Eg

2ε
− ln

Λ

C
,

(A4)
and we arrive at the solution

T 3D

c (Eg � Tc) = P
2eγ

π
Λe

1
v3D . (A5)

Because of the fact that Eg � C, we see that the lower
limit of the integral in P of Eq. (A4) will roughly cancel
the ln(Λ/C) and, thus, P is independent on C. Further-
more, we observe in Fig. 10 that for the weak coupling
limit, P (Eg) is constant and we may approximately write

T 3D

c (Eg � Tc) ≈ T 0
c e

1
v3D
− 1

v0
3D . (A6)

This analysis is always valid if Tc is small enough. We
conclude for Eg � Tc that superconductivity in a 3D free
electron band is induced by an arbitrary small attractive
interaction via the BCS essential singularity in the weak
coupling limit. Due to the dependence on the DOS, the
effective coupling changes with Eg as ∼

√
Eg.

2. Lifshitz transition

In the following, we show that even for Eg = 0 already,
we can find parameters, such that Tc vanishes and, thus,
the simple BCS picture is substantially modified. Putting
Eg = 0, we find

√
Λ

v0
3D

= −
∫ Λ

0

dε
tanh( ε

2Tc
)

2
√
ε

(A7)

Even for Tc → 0, the resulting equation is integrable
while the 2D analog diverges. Moreover, in the limit
Tc → 0, the above equation requires v0

3D = 1 to be sat-
isfied. If the coupling gets smaller, no choice of Tc can
make the integral large enough to match v0

3D and only the
trivial solution Tc = 0 is possible. Note that the integral
in Eq. (A7) can be scaled with the result

−
√

Λ

v0
3D

=

√
Tc
2

∫ Λ
2Tc

0

dξ
tanh(ξ)√

ξ
. (A8)

Proceeding by partial integration and assuming the weak
coupling limit, we find

−
√

Λ

v0
3D

=
√

Λ−
√
Tcφ , (A9)

where

φ =
√

2

∫ ∞
0

dξ
√
ξsech2(ξ) = 1.072 . (A10)

We solve Eq. (A9) with the result

Tc(Eg = 0) =
Λ

φ2

(
1 + v0

3D

−1)2
. (A11)

Eq. (A9) requires −v0
3D > 1 to have a real solution for

Tc and points out that for sufficiently low couplings, SC
is completely suppressed already when the band touches
the Fermi level.

3. Incipient band

If −Eg � Tc, on the other hand, the integral
in Eq. (A1) is only weakly dependent on Tc since
tanh( ε

2Tc
) ≈ 1 and, as in 2D, we arrive at the conclu-

sion that superconductivity is completely suppressed. To
determine Ec3D

g , where Tc(Eg) vanishes, we solve the in-
tegral for tanh(ε/2Tc) = 1∫ Λ

|Eg|
dε

√
ε− |Eg|

2ε
=
√

Λ
(√

1− |Eg|
Λ

−
√
|Eg|
Λ

ArcCos[

√
|Eg|
Λ

]
)

(A12)
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and expand for small Eg/Λ that we combine with
Eq. (A1) with the result

Ec3D

g = 2Λ[−1−(v0
3D)−1+

π2

4
− π√

2

√
−1− (v0

3D)−1 +
π2

8
] .

(A13)
Note that this equation determines the critical Eg only
if Tc is not already zero at Eg = 0. The reason is that
Eq. (A12) assumes that Eq. (A1) can be satisfied for any
choice of Tc which, as noted earlier, is not the case in a
weakly coupled system. From Eq. (A11) for Tc(0) we ex-
pect that setting v0

3D = 1 in the above Eq. (A13) we are at
the transition and in fact Ec3D

g (v0
3D = −1) = 0. Thus, the

formula Eq. (A13) only applies for v3D < −1. The limit

for v0
3D → −∞ of Eg/Λ is (−4+π2−π

√
π2 − 8)/2 ≈ 0.79.

For the numerical investigation over the entire range of
Eg, as mentioned above we arbitrarily fix our reference
T 0
c to the value for Eg = Λ and evaluate the integral

numerically. The resulting Tc/T
0
c is shown in Fig. 10.

4. Effect of a 3D incipient hole band in the cases
(I)B, (II)A and (II)B

While we have seen that an incipient 3D band requires
strong coupling to be SC at the Lifshitz transition, the
conclusion that such a 3D band does not take part in
multiband SC cannot be drawn at this stage. As we have
already discussed in the main text, in order to understand
why this is the case, consider the general difference be-
tween the integral of Eq. (A1) and the 2D case of Eq. (3).
The additional square root lifts the BCS singularity in the
integral Eq. (10). What determines the enhancement of
Tc, however, is the integral in Eq. (A12). If the incipient
hole band has a 3D dispersion, we need to replace Lh
of Eq. (22) and Lh2

of Eq. (10) with (N 3D

h 2π/m)L3D
0 or

(N 3D

h 2π/m)L3D
0 respectively. We repeat the calculations

for the cases (I)B, (II)A and (II)B for a 3D incipient hole
band and present the result in the Fig. 11.
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FIG. 11. (color online) Comparison of 3D with 2D results for the cases (I)B, (II)A and (II)B in panel (a), (b) and (c), respectively.
We specify the DOS ratio so that m/(2πN3D

h ) = 1. (a) The coupling parameters are vsf = −0.3 for (a), vsf1 = vsf2 = 0.3 for
(b) and vph = −vsf = −0.3 for (c). The plots (a), (b) and (c) have to be compared to the Figs. 2 (b),3 and 6, respectively.
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