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Inspired by the recent developments of constructing novel Dirac liquid boundary states of the 3d
topological insulator [1–3], we propose one possible 2d boundary state of the 3d bosonic symmetry
protected topological state with U(1)e ⋊ ZT

2 × U(1)s symmetry. This boundary theory is described
by a (2+1)d quantum electrodynamics (QED3) with two flavors of Dirac fermions (Nf = 2) coupled
with a noncompact U(1) gauge field: L =

∑
2

j=1
ψ̄jγµ(∂µ − iaµ)ψj − iAs

µψ̄iγµτ
z
ijψj +

i
2π
ǫµνρaµ∂νA

e
ρ,

where aµ is the internal noncompact U(1) gauge field, As
µ and Ae

µ are two external gauge fields
that couple to U(1)s and U(1)e global symmetries respectively. We demonstrate that this theory
has a “self-dual” structure, which is a fermionic analogue of the self-duality of the noncompact CP1

theory with easy plane anisotropy [4–6]. Under the self-duality, the boundary action takes exactly
the same form except for an exchange between As

µ and Ae
µ. The self-duality may still hold after we

break one of the U(1) symmetries (which makes the system a bosonic topological insulator), with
some subtleties that will be discussed.

PACS numbers:

— 1. Introduction

A symmetry protected topological (SPT) state may
have very different boundary states without changing the
bulk state, depending on the boundary Hamiltonian. As
was shown in Ref. 7–11, besides the well-known bound-
ary state, i.e. a single 2d Dirac fermion, the bound-
ary of an interacting 3d topological insulator (TI) could
have a topological order that respects all the symme-
tries of the system but cannot be realized in a 2d sys-
tem. Very recently, the “family” of boundary states of
TI has been even further expanded [1–3]: it was shown
that the boundary of the 3d TI could be a (2+1)d quan-
tum electrodynamics (QED3) with one single flavor of
gauge-charged Dirac fermion, while the flux quantum of
the U(1) gauge field carries charge 1/2 under the external
electromagnetic (EM) field Aµ:

L = ψ̄γµ(∂µ − iaµ)ψ +
1

2

i

2π
ǫµνρaµ∂νAρ. (1)

This Lagrangian without time-reversal symmetry can
also be realized as a pure 2d theory in the half-filled Lan-
dau level [12]. This boundary state Eq. 1 is particularly
interesting because it suggests a duality between interact-
ing 2d single Dirac fermion and the noncompact QED3

with one gauge-charged Dirac fermion, which is further
supported by the proof of S-duality in the 3d bulk [13],
and also the exact duality (or the mirror symmetry) be-
tween certain (2+1)d supersymmetric field theories [14].
This duality is a very elegant analogue of its standard
bosonic version: the duality between the (2 + 1)d XY
model and the bosonic QED3 with one flavor of gauge-
charged complex boson [15, 16]. Although the infrared
fate of Eq. 1 under gauge fluctuation and fermion inter-
action is unclear, it was demonstrated in Ref. 1–3 that
Eq. 1 can be viewed as the parent state of other well-
known boundary states of 3d TI.

In this work we will further extend the idea of Ref. 1–3,
and construct novel boundary states of 3d bosonic SPT
states. We will consider bosons with a U(1)e ⋊ ZT

2 ×
U(1)s symmetry, where U(1)e can be viewed as the U(1)
symmetry of the electromagnetic charge, and U(1)s can
be viewed as the spin symmetry generated by total spin
along z direction. These symmetries can be carried by a
two component complex boson field zα, which transforms
under U(1)e, U(1)s and time-reversal as

U(1)e : zα → eiθzα, U(1)s : zα →
(

e−iτzθ
)

αβ
zβ,

T : zα → (iτy)αβzβ . (2)

Notice that here the fact T 2 = −1 can be changed by a
U(1)s rotation. It has been understood that for a bosonic
TI, the response to an eternal gauge field (either As

µ orAe
µ

that couple to U(1)s and U(1)e global symmetry) con-
tains a θE ·B/(4π2) term with θ = ±2π [17], which cor-
responds to an integer quantum Hall state with σxy = ±1
at the boundary. This is forbidden in a pure 2d bosonic
system without fractionalization [18].
In this work we propose that the boundary of this

bosonic SPT state constructed with zα can be a non-
compact QED3 with two gauge-charged Dirac fermions:

L =

2
∑

j=1

ψ̄jγµ(∂µ − iaµ)ψj

− iAs
µψ̄iγµτ

z
ijψj +

i

2π
ǫµνρaµ∂νA

e
ρ, (3)

where ψ̄ = ψ†γ0, and γ0 = σy, γ1 = σx, γ2 = σz . We
will argue later that compared with Eq. 1, this theory
with fermion flavor Nf = 2 has a better chance to have a
stable (2+1)d conformal field theory fixed point (perhaps
with certain short range fermion interaction), if we ignore
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the external gauge fields As
µ and Ae

µ. The coupling to
the external gauge fields imply that the spin symmetry
U(1)s is carried by the fermionic fields ψj , but the charge
symmetry U(1)e is carried by the flux of the noncompact
gauge field aµ, which makes aµ a noncompact gauge field.
We will also show that this theory has a nice self-dual
structure, the dual theory takes exactly the same form
as Eq. 3, except for an exchange between the roles of
Ae

µ and As
µ. This self-duality is reminiscent of the more

familiar self-duality of the noncompact CP1 theory with
easy plane anisotropy [4–6], which involves two gauge
charged complex bosons and one noncompact gauge field.
— 2. Microscopic construction of the noncompact

QED3 with Nf = 2
In this section we will give a microscopic construction

of Eq. 3. The starting point of our construction is sim-
ilar to Ref. 1: a 3d U(1) spin liquid state with decon-
fined compact internal U(1) gauge field aµ and fermionic
spinons fj,α with gauge charge +1 that transforms as

T : fj,α → (iσy)αβf
†
j,β, U(1)s : fi → (exp(iθτz))ij fj ,(4)

under time-reversal and U(1)s global symmetry. j = 1, 2
is a flavor index that the symmetry U(1)s operates on.
fj,α does not carry U(1)e charge. The U(1) gauge sym-
metry and the time-reversal symmetry so-defined com-
mute with each other, thus this spin liquid has U(1)g×Z

T
2

“symmetry”, where U(1)g stands for the U(1) gauge sym-
metry. Now we put f1,α and f2,α both in a TI with topo-
logical number n = 1. Notice that since here fα has
U(1)g × ZT

2 symmetry, at the mean field level the clas-
sification of the spinon TI is Z [19–21], while this classi-
fication can be reduced under interaction [22, 23]. The
boundary of this spin liquid is a QED3 with two Dirac
cones, but up until this point the internal U(1) gauge
field aµ is propagating in the entire 3d bulk.
Our next task is to confine the gauge field in the bulk,

while making the gauge field at the 2d boundary noncom-
pact. Ref. 1 proposed a very nice way of achieving this
goal, which we will adopt here. Because f1,α and f2,α
each forms a n = 1 TI, a 2π−monopole of aµ in the 3d
bulk will acquire total polarization gauge charge +1 [39],
which comes from +1/2 polarization density of f1 and
f2 each. The quantum number of this 2π−monopole is
(q = 1, Qs = 0, 2π), where q and Qs stand for the inter-
nal gauge charge and the U(1)s charge respectively. Now
by binding this monopole with a spinon f , we obtain a
gauge neutral object, and it is a boson which we call b.
Depending on whether we bind the monopole with f1 or
f2, b can carry quantum number (q = 0, Qs = ±1, 2π),
thus b is a doublet boson bα with α = 1, 2. The bosonic
statistics of bα comes from the fermionic statistics of fα
and the mutual statistics between fα and the monopole.
There is another way of looking at the quantum num-

ber of the boson doublet bα. A 2π monopole of aµ could
be viewed as the source of a double-vortex of the su-
perconductor of f , since f will view a single vortex as

π−flux. Of course, we need to consider a superconduc-
tor order parameter that preserves the U(1)s symmetry.
Then the source of a double vortex in this system, will ac-
quire four Majorana fermion zero modes, or equivalently
two complex fermion zero modes f0

1 and f0
2 . Our boson

doublet states b†1|0〉 (or b†2|0〉) corresponds to the states
with filled (or unfilled) f0

1 zero mode and unfilled (or
filled) f0

2 zero mode. Because each fermion zero mode
will lead to U(1)s charge ±1/2 depending on whether

it is filled or unfilled, b†1|0〉 and b†2|0〉 will carry U(1)s
charge ±1 respectively. As was pointed out by Ref. 23,
bα is also a Kramers doublet boson with T 2 = −1. The
fact T 2 = −1 for boson bα can be derived by coupling
these two zero modes to a three component vector N :
f0†

τf0 ·N , after integrating out f0
j , the effective action

for N is a (0 + 1)d O(3) nonlinear sigma model with a
Wess-Zumino-Witten term at level-1 [24], whose ground
state is a Kramers doublet with T 2 = −1 because N is
odd under time-reversal [40].
Now let us take another Kramers doublet boson zα in-

troduced in Eq. 2 which carries both global U(1)e and
U(1)s charge , and form a time-reversal singlet bound
state D with bα: D = (z1b2−z2b1). D carries total quan-
tum number (Qe = 1, q = 0, Qs = 0, 2π). After condens-
ing this bound state D in the bulk, T is still preserved,
while the 3d bulk is driven into a gauge confined phase,
because overall speaking D carries a 2π monopole of the
internal gauge field, but it carries zero gauge charge, thus
all the spinons in the bulk are confined. Because the
bound state D carries both the U(1)e charge and the
U(1)g magnetic monopole, its condensate does not break
the U(1)e global symmetry in the bulk, and the bulk
remains fully gapped for all excitations, i.e. there is no
Goldstone mode in the bulk at all [1]. Also, following
the same argument as in Ref. 1, a 2π−flux of aµ at the
boundary will be screened by D in the bulk, which at-
taches the flux with U(1)e charge 1. Thus the gauge
field aµ becomes a noncompact gauge theory at the 2d
boundary, because its flux now carries a conserved U(1)e
charge, which is precisely described by the last term of
Eq. 3.
Based on the argument above, the (2 + 1)d boundary

of the system is described by Eq. 3 because the spinon ψj

carries U(1)s charge, and the gauge flux of aµ carries unit
U(1)e charge. If we break the time-reversal symmetry at
the boundary, ψj will acquire a mass term, which will
generate a Chern-Simons term for both aµ and As

µ at
level +1. Now after integrating out aµ, the external field
Ae

µ will acquire a CS term at level −1. The full response
theory at the boundary reads:

L =
i

4π
Ae ∧ dAe −

i

4π
As ∧ dAs. (5)

This response theory has already been derived in Ref. 17
for the boundary of 3d bosonic SPT states. This re-
sponse theory is consistent with the physics of bosonic
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TI: it is fully gapped and has no fractional excitations
in the bulk, but if time-reversal symmetry is broken at
the boundary, the boundary will be driven to a quan-
tum Hall state with Hall conductivity σxy = ±1. This
also implies that the bulk response theory to Ae

µ and As
µ

will acquire a topological term θE · B/(4π2) term with
θ = ±2π respectively.
— 3. Self-duality of the boundary theory

Now we argue that Eq. 3 has a self-dual structure.
Since in our system ψ1 and ψ2 each has its own U(1)
global symmetry ψj → ψje

iθj , and they come from two
independent n = 1 TIs (let us tentatively ignore the
gauge field aµ they couple together), let us form indepen-
dent superconductor Cooper pair condensate ψt

jσ
yψj ∼

∆j ∼ exp(iφj), where σy = γ0 in Eq. 3. We can de-
stroy the superconductors by proliferating the vortices
of the superconductors. But here we would like to con-
sider the quartic vortex of φ1 and φ2 individually, namely
vortices of φj that ψj would view as a 4π flux. As was
shown in Ref. 1–3, the charge neutral quartic vortex in a
n = 1 TI is a fermion. This can be understood by gaug-
ing the global U(1) symmetry of ψj , and consider the
statistics of the (0, 4π) monopole. The (0, 4π) monopole
is naturally a bound state of (1/2, 2π) and (−1/2, 2π)
dyons, hence it carries angular momentum 1/2, and it is
a Kramers doublet fermion [25]. After the proliferation
of these fermionic vortices, the dual boundary theory in
terms of these fermionic vortices reads [1–3]:

L =
2

∑

j=1

χ̄jγµ(∂µ − 4ia(j)µ )χj + · · · (6)

Here χj is the dual Kramers doublet fermion that trans-

form as T : χj → iσyχj . a
(j)
µ corresponds to the Gold-

stone mode of φj : ∂µφj =
1
2π ǫµνρ∂νa

(j)
ρ .

Now we turn back on the original gauge field aµ. In
the superconductor phase, the low energy Lagrangian for
the two superconductors that couple to aµ is:

L =

2
∑

j=1

−t(∂µφj − 2aµ + (−1)j2As
µ)

2 +
i

2π
ǫµνρA

e
µ∂νaρ.(7)

After going through the standard duality formalism, we
obtain the following Lagrangian:

L =
2

∑

j=1

2i

2π
ǫµνρa

(j)
µ ∂ν(aρ + (−1)jAs

µ) +
i

2π
ǫµνρA

e
µ∂νaρ.(8)

Integrating out aµ will generate the following constraint:

2a(1)µ + 2a(2)µ +Ae
µ = 0, (9)

or in other words the photon phase of aµ will “Higgs” and

gap out the mode 2a
(1)
µ +2a

(2)
µ +Ae

µ. This constraint can

be solved by introducing a new gauge field cµ: 4a
(1)
µ =

−cµ + Ae
µ, 4a

(2)
µ = cµ + Ae

µ. Plugging these fields in to
Eq. 6, we obtain the full dual theory of Eq. 3:

L =

2
∑

j=1

χ̄jγµ(∂µ − i(−1)jcµ − iAe
µ)χj

+
i

2π
ǫµνρcµ∂νA

s
ρ. (10)

We can see that χj are two Dirac fermions that each
carries U(1)e charge +1. They correspond to the quartic
vortex of the superconductor of ψj . Physically this is
easy to understand: χj is a quartic vortex of φj , and a
quartic vortex of φj carries gauge flux 2π of aµ, which due
to the last term of Eq. 3 should also carry global U(1)e
charge 1. Notice that here we create quartic vortex of φ1
and φ2 individually, namely a vortex of φ1 alone without
a vortex of φ2 will carry aµ gauge flux 2π.
According to Eq. 10, the flux of cµ carries unit U(1)s

charge. Again this can be physically understood as fol-
lowing: a flux of cµ is the difference between the flux

number of a
(1)
µ and a

(2)
µ , and based on the standard

boson-vortex duality, the flux of cµ also corresponds to
the density difference between ψ1 and ψ2, which is a
quantity that does not carry U(1)e charge, but carries
U(1)s charge. Now after a particle-hole transformation

χ2 → χ†
2, the dual boundary theory Eq. 10 takes exactly

the same form as Eq. 3, with an exchanged role between
Ae

µ and As
µ:

Ldual =

2
∑

j=1

χ̄jγµ(∂µ − icµ)χj

− iAe
µχ̄iγµτ

z
ijχj +

i

2π
ǫµνρcµ∂νA

s
ρ. (11)

Because the dual fermion χj transforms as T : χj →
iσyχj under time-reversal, if we ignore the gauge field cµ
in Eq. 10, the symmetry for χj is U(1)e ⋊ ZT

2 , which is
the symmetry of the ordinary 3d TI [26–28], and as is
well-known, it has an Z2 classification. This implies that
without cµ, there is a mass term that is allowed by all the

symmetries: mχ†
iσ

y⊗τyijψj . However, because χ1 and χ2

carry opposite gauge charge under cµ in Eq. 10, this mass
term is forbidden by the gauge symmetry. Thus this dual
boundary theory Eq. 10 cannot be trivially gapped out
without breaking symmetry or gauge symmetry.
If we explicitly break either the U(1)e or U(1)s sym-

metry, then the 3d bulk can be called a bosonic TI. But
in this case aµ or cµ will become a compact gauge field,
because their fluxes will no longer carry conserved quan-
tities, hence the instanton monopole process is allowed
in the (2 + 1)d space-time. And inspired by Ref. 14, we
conjecture that the duality we propose here may have an
analogue in supersymmetric field theories.
— 4. Relation to other possible boundary states

There are many possible boundary states of this sys-
tem, for example states with different spontaneous sym-
metry breaking. We are most interested in boundary
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states that do not break any symmetry. Ref. 29 gave us
another way of looking at QED3 with Nf = 2: Eq. 3
and Eq. 11 can both be mapped to a O(4) nonlinear
sigma model with a topological Θ−term at Θ = π. Here
we reproduce the discussion in Ref. 29. First we couple
Eq. 3 to a three component dynamical unit vector field
N(x, τ):

L =
2

∑

j=1

ψ̄jγµ(∂µ − iaµ)ψj +mψ̄τψ ·N , (12)

introducing this slow moving vector N is equivalent to
turning on certain four fermion interaction for ψj , and
N could be introduced through Hubbard-Stratonovich
transformation.
Now following the standard 1/m expansion of Ref. 24,

we obtain the following action after integrating out the
fermion ψj :

Leff =
1

g
(∂µN)2 + iπHopf[N ] + iaµJ

T
µ +

1

e2
f2
µν , (13)

where 1/g ∼ m. JT
0 = 1

4π ǫabcN
a∂xN

b∂yN
c is the

Skyrmion density of N , thus JT
µ is the Skyrmion cur-

rent. The second term of Eq. 13 is the Hopf term of N
which comes from the fact that π3[S

2] = Z.
Now if we introduce the CP1 field zα = (z1, z2)

t =
(n1 + in2, n3 + in4)

t, the Hopf term becomes precisely
the Θ−term for the O(4) vector n with Θ = π:

iπHopf[N ] =
iπ

2π2
ǫabcdn

a∂xn
b∂yn

c∂τn
d. (14)

Here Θ = π is protected by time-reversal symmetry. This
is because N is odd under time-reversal, and hence zα
is a Kramers doublet boson. Simple algebra shows that
Eq. 14 changes sign under time-reversal. In the CP1 for-
malism, the Skyrmion current JT

µ = 1
2π ǫµνρ∂ναρ, where

αµ is the gauge field that the CP1 field zα couples to. Due
to the coupling aµJ

T
µ = i

2π ǫµνρaµ∂ναµ, after integrating
out aµ, αµ is Higgsed and gapped, and zα becomes a
complex boson that does not couple to any gauge field,
and its transformation zα → eiθzα becomes the phys-
ical U(1)e symmetry, due to the mutual Chern-Simons
coupling between aµ and αµ. Thus zα now carries both
the U(1)e and U(1)s quantum numbers, and if we start
with the dual theory Eq. 11, the same O(4) NLSM with
Θ−term in Eq. 14 can be derived.
The phase diagram of the O(4) NLSM with a Θ−term

was discussed in Ref. 30, and it was proposed that in
the large g (small m) disordered phase, Θ = π is the
quantum critical point (quantum phase transition) be-
tween stable fixed points Θ = 0 and Θ = 2π, which is
consistent with the conjecture made in Ref. 29 that the
quantum disordered phase of the O(4) NLSM with Θ = π
could be a gapless paramagnet (a 2+1d CFT). Recently
this conjecture was confirmed numerically in Ref. 31, 32,

and the sign-problem-free simulation in both Ref. 31, 32
strongly suggest that the quantum disordered phase of
the O(4) NLSM with Θ = π is indeed a strongly coupled
CFT, sandwiched between two fully gapped quantum dis-
ordered phases controlled by fixed points Θ = 0 and 2π
(Fig.4 in Ref. 32, and discussion therein).

The 1/m expansion above is certainly valid for large
m (small g), which corresponds to the ordered phase of
the O(4) CP1 field n and three component vector N .
The usual expectation of QED3 with Nf = 2 is that it
leads to spontaneous chiral symmetry breaking at low
energy [33–36], which precisely corresponds to the order
of vector N . However, if a proper four fermion interac-
tion term is turned on in Eq. 3 and Eq. 11 that prevents
the chiral symmetry breaking, it may remain a CFT that
corresponds to the disordered phase of O(4) NLSM with
Θ = π.

Other possible boundary states can be constructed
through the O(4) NLSM with Θ = π, as was discussed
in Ref. 17, 37. For example, let us break the U(1)s sym-
metry, and keep the following time-reversal symmetry
T : zα → (τx)αβzβ = (τy exp(−iτzπ/2))αβ zβ, then one
can see that this O(4) NLSM model with Θ = π pre-
cisely correspond to the boundary of the bosonic TI with
U(1)e ⋊ ZT

2 symmetry. And following the discussion in
Ref. 17, this Θ−term can drive the boundary into the
so called eCmC Z2 topological order, namely its e and
m anyons with mutual semion statistics both carry half
U(1)e charge.
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