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We investigate the low temperature magnetic phases in TmB4, a metallic quantum magnet on the
geometrically frustrated Shastry-Sutherland lattice, using co-ordinated experimental and theoretical
studies. Our results provide an explanation for the appearance of the intriguing fractional plateau
in TmB4 and accompanying magnetic hysteresis. Together with observation of the bump in the
half-plateau, our results support the picture that the magnetization plateau structure in TmB4 is
strongly influenced by the zero-field modulated phases. We present a phenomenological model to
explain the appearance of the modulated phases and a microscopic Hamiltonian that captures the
complete magnetic behavior of TmB4.

I. INTRODUCTION

Frustrated quantum magnets have emerged as a very
fertile proving ground for the discovery of new states of
matter. The interplay between competing interactions
which cannot be optimized simultaneously, external mag-
netic fields and (in many instances) enhanced quantum
fluctuations due to low dimensionality result in a rich
variety of ground state phases with unique functionali-
ties that are not found in their non-frustrated counter-
parts. Notable examples include spin liquid phases on
triangular and kagome lattices, spin ice on pyrochlore lat-
tices and the sequence of Hall-like magnetization plateaus
on the two-dimensional (2D) Shastry-Sutherland lattice
(SSL)1,2. Indeed, magnetization plateaus observed in
SrCu2(BO3)2 have attracted great interest due to their
similarity to quantum Hall physics.3–6

More recently, a new family of rare-earth tetraborides,
RB4 (R=Tm, Er, Ho, Dy, Tb) has been identified that
belong to the Shastry-Sutherland family of quantum
magnets. Although they share the same magnetic lat-
tice, the phase diagram of the RB4 magnets show a
distinct behavior from SrCu2(BO3)2. In the insulat-
ing SrCu2(BO3)2, the exchange interaction is of the
Heisenberg-type but the RB4 magnets are metallic and
the interaction between the moments is of the Ruderman-
Kittel-Kasuya-Yosida (RKKY)-type. The RKKY-type
interaction, mediated by the conduction electrons, is
longer range. This results in the RB4 compounds hav-
ing a rich phase diagram with multiple long-range mod-
ulated phases arising from the competing interactions on
a longer length scale.

Among the multiple members of the family, the mag-
netic properties of TmB4 have been investigated most
extensively7–10. TmB4 crystallizes in a tetragonal lattice
with the space group P4/mbm (127). The magnetic mo-
ment carrying rare earth ions are arranged in a SSL con-
figuration with weak (magnetic) coupling between the 2D
layers. At zero magnetic field, two amplitude-modulated

phases have been reported and the Neel state is stable
at low temperatures10. Low temperature field dependent
magnetization data is dominated by a stable plateau at
M/Msat = 1/27,8. Multiple fractional plateaus such as
M/Msat ∼ 1/7, 1/8, 1/9, 1/11 . . . accompanied by hys-
teresis have been reported whose observation has varied
between experimental runs9.

The sequence of field-induced magnetization plateaus
bears striking resemblance to similar behavior in inter-
metallic magnets such as TbNi2Ge2

11, DySbAg2
12,13,

and HoNi2B2C14. The magnetization plateaus in these
metallic quantum magnets result from multiple field-
driven metamagnetic transitions arising from compet-
ing long range interactions between the localized mo-
ments on the rare-earth ions mediated by conduction
electrons. However, they differ in one crucial aspect -
in RB4 magnets – as in other Shastry-Sutherland com-
pounds – the plateau sequences are primarily determined
by the frustrated geometry of the magnetic lattice, rather
than purely by RKKY interactions. This is evident from
the observation of magnetization plateaus in the insulat-
ing SrCu2(BO3)2 where the only interactions between the
localized moments is through superexchange. In case of
the RB4 compounds, both the frustrated geometry and
longer range RKKY interactions play a role in the ap-
pearance of magnetization plateaus.

The principal features of the ground state magnetic
behavior of TmB4 were explained by a generalization of
the canonical Shastry-Sutherland model. A strong crys-
tal electric field lifts the degeneracy of the local spin
states. Experimental evidence suggests that the lowest
energy state for individual Tm3+ ions is the 2-fold degen-
erate non-Kramers doublet Jzi = ±6 with a large energy
gap (∼ 100K) to the next energy states. Accordingly,
a single-ion anisotropy term of the form −D

∑
i(J

z
i )2

is added to the magnetic Hamiltonian. Phenomenologi-
cally, the magnitude of the single-ion anisotropy is esti-
mated to be D ∼ 10K. Indeed, given the large gap, an ef-
fective low energy model comprised of the lowest doublet
(with large Ising-like exchange anisotropy) is sufficient
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to capture the low temperature magnetic behavior.7,8,15

It was found that the canonical Shastry-Sutherland in-
teractions need to be supplemented by longer range in-
teractions to capture the observed field dependence. In
particular, a fourth-neighbor ferromagnetic interaction
is necessary to stabilize a m/ms = 1/2 plateau and
yield the correct critical fields. Two competing expla-
nations have been proposed for the appearance of the
fractional plateaus. Siemensmeyer et. al. speculated
that the fractional plateaus might be magnetic analogues
of the plateaus observed in fractional quantum Hall ef-
fect, similar to the model proposed for SrCu2(BO3)2

9.
Based on a careful neutron scattering study, Michimura
et. al. proposed a competing explanation in which the
fractional plateaus arise directly as an effect of the modu-
lated phases10. The origin of the modulated phases them-
selves has also remained unexplained.

In this work, we report a coordinated experimental and
theoretical investigation of TmB4 aimed at understand-
ing the fractional plateau behavior and the modulated
phases. Careful magnetization measurements around
the fractional plateau region revealed that the fractional
plateau can appear over a continuous value of magneti-
zation around m/ms ∼ 1/8, unlike the exact fractions
reported previously. We also find that the half-plateau is
not completely ‘flat’ but instead has a jump of roughly
m/ms ≈ 1/80, corresponding to the existence of the sec-
ond modulated phase. Both of these observations sup-
port the model of Michimura et. al. for the origin of the
fractional plateaus. We also argue that this model leads
to a natural explanation of the hysteresis observed at the
fractional plateau. We then develop a phenomenologi-
cal axial next-nearest-neighbor Ising (ANNNI) model to
explain the emergence of the modulated phases at zero
magnetic field. Finally, we propose a set of parameters
for an effective low energy microscopic model that cap-
tures the complete magnetic behavior of TmB4.

II. EXPERIMENTAL DETAILS

Our experiments were performed on TmB4 single crys-
tals synthesized by the solution growth method using
an Al solution. Bulk starting elements with a ratio of
Tm:B:Al = 0.125 : 0.75 : 50 were put into an alu-
mina crucible, which was heated up to 1475◦C and slowly
cooled down to 750◦C in a continuous flow of high-purity
argon atmosphere and then quenched to room tempera-
ture via furnace cooling. The growth was then taken out
from the furnace at room-temperature and re-sealed into
a silica ampule. Single crystals of TmB4 were separated
from the remaining liquid in a centrifuge after heating
the ampule back up to 750◦C.

X-ray diffraction in the Laue geometry was used to
orient the crystals with an error of less than ±5◦. Mag-
netization measurements were performed in a Quantum
Design MPMS XL SQUID magnetometer with the mag-
netic field along c-axis.
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FIG. 1: (color online) Magnetic phase diagram of TmB4 in
the B−T parameter space. For small applied fields, the Néel
state is separated from the high temperature paramagnetic
phase by two intermediate phases with modulated magnetic
order. At low temperatures, the Neél order persists to B ∼ 1.4
T. For higher field strengths,two magnetization plateaus are
stabilized – a fractional plateau at m/ms ∼ 1/8 for 1.4T <
B ≤ 1.8T and a half plateau at m/ms = 1/2 for 1.8T ≤ B ≤
3.5T .

III. EXPERIMENTAL RESULTS

The magnetic phase diagram of TmB4 is well-known
from previous studies.9,10 At small applied fields (B .
1.4T), there is a 3-step thermal transition to a long range
ordered Neél state via two amplitude modulated AFM
phases. Magnetic order sets in at TN1 = 11.8 K while
at TN2 = 9.8 K there is a a transition to the Neél state.
The two different amplitude modulated phases are sep-
arated by a transition at T ∗ = 10.9 K that is visible
in resistivity measurements. We identify the phases as
follows: Above TN1, no long range magnetic order is
present. At lower temperatures, two amplitude mod-
ulated antiferromagnetic (AFM) phases appear. Be-
tween TN1 and T ∗ – Mod. phase I (MP1) in Fig. 1
– the amplitude modulation is indexed by two vectors:
k1 = [1 ± k′ ± k′′,±k′′, 0],k′1 = [1 ± k′ ± 3k′′,±k′′, 0]
(k′ ' 0.13, k′′ ' 0.012).10 This corresponds to modula-
tions of periodicity of roughly 8 unit cells and 80 unit
cells respectively. Between T ∗ and TN2 – Mod. phase II
(MP2) in Fig. 1 – the amplitude modulation can be in-
dexed by a single vector k2 = [1±k′, 0, 0] (k′ ' 0.13), cor-
responding to a modulation of roughly 8 unit cells. The
transitions at TN1 and TN2 are also visible as anomalies
in dM/dT , as reported previously.9 The origin of mod-
ulated phases Mod. phase I and Mod. phase II has re-
mained unexplained until now. As we demonstrate be-
low, these zero field modulated phases are crucial for un-
derstanding the origin of the fractional plateau and the
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FIG. 2: (color online) (a) Magnetization of TmB4 along the
c-axis normalized to the saturation magnetization at T = 2K.
The inset shows a zoom of the bump at the half plateau. (b)
magnetization at the fractional plateau for various stopping
fields (obtained by using the protocol described in the main
text).

accompanying magnetic hysteresis.

When a magnetic field is applied, the fractional plateau
phase and the half plateau are stabilized below ∼ 9K.
Figure 2(a) shows the magnetization at 2K. The frac-
tional plateau appears between 1.4T and 1.8T and the
half-plateau appears between 2T and 3.5T. As reported
previously7,9, a significant hysteresis is present at the
fractional plateau. Upon a closer examination of the
half plateau (inset at top left), we find that the latter is
not completely ‘flat’, but shows a bump at roughly half
its width. We note that this feature is present in pre-
viously published data7–9 but has not been discussed so
far. This feature gives a finite ‘height’ to the half-plateau
of ' 0.013 Msat ' 1/80 Msat.

It has also been reported that the magnitude of the
magnetization at the fractional plateau can vary which
has been interpreted as the presence of multiple distinct
plateaus. To investigate this phenomena, we performed

magnetization measurements according to the following
protocol:

• Cool down to measurement temperature in zero
field from above TN1

• Sweep the magnetic field up to 5T to reach the
saturation phase and sweep down to 0T

• Measure while sweeping the magnetic field up to
a certain stopping field Bstop, and measure while
sweeping down to 0T from Bstop.

Figure 2(b) shows the magnetization at the fractional
plateau for various values of Bstop. The value of the
magnetization at the plateau is always the same during
the upsweep. The value of the magnetization during the
downsweep is always higher than the value during the up-
sweep but strongly depends on Bstop. These results indi-
cate that the value of the magnetization at the fractional
plateau strongly depends on the exact field history before
the measurement. The fractional plateau can appear at
almost any value of magnetization during the sweep, as
opposed to the fractions 1/7, 1/8, 1/9, 1/11 . . . reported
previously, reflecting the absence of any form of quanti-
zation at the fractional plateau. Therefore, our results
support the model proposed by Michimura et. al. for
the origin of the fractional plateau.

IV. MODULATED STRUCTURES AND
PLATEAU HYSTERESIS

We now describe how this model can lead to a natural
explanation of the hysteresis at the fractional plateau.
Figure 3(a) shows a schematic of the magnetic structure
in the modulated phase MP2 as determined by neutron
scattering10. It consists of 4 unit cells of AFM order
followed by 4 additional unit cells of AFM order, but
with sublattice magnetization reversed. Michimura et.
al.10 have suggested how this structure can naturally lead
to a fractional plateau. In a magnetic field, the spins
at the nodes of the amplitude modulated structure are
free to align with the field, leading to a paramagnetic
contribution. At low temperatures, these “free” spins
will freeze into an amplitude modulated structure such
as Fig. 3(b), leading to a magnetic plateau with fractional
magnetization M/Msat ≈ 1/8, as the periodicity of the
modulated structure is 8 unit cells.

The modulated structure shown in Fig. 3(a) is likely
only one of several possibilities. This is because the the
modulation vector in MP2 is incommensurate. While
this incommensurability does not cause problems in the
phase MP2 as it has partially paramagnetic components,
the low temperature plateau phases will prefer to “lock
on” to a commensurate magnetic structure. As such,
any nearby wave vector will do. This can lead to an
explanation of the hysteresis of the fractional plateaus
in TmB4 as follows. During the up-sweep, the fractional
plateau regime is reached at the lower critical field Hc1(≈
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FIG. 3: (color online) Modulated spin configurations for
stripes parallel to the y−-axis: (a) zero field amplitude modu-
lated intermediate phase as determined by neutron scattering
(b) possible commensurate magnetic plateau derived from (a)
in magnetic field at low temperature (c) possible plateau at
1/2 saturation magnetization. The unit cells are denoted by
thin black boundaries while the modulation period is marked
by double lines. The diagonal bonds are denoted by dashed
red lines; the axial bonds are not shown in the interest of
clarity. The size of the arrows represent the z-component of
the local moment.

1.4 T) at which point a commensurate wave vector k1com
is chosen. This wave vector will likely be slightly larger
than the incommensurate wave vector. If we posit that a
change between commensurate wave vectors is akin to a
first order transition, the system will stay in this plateau
until it transitions to the half plateau at higher fields. On
the way down, the fractional plateau regime is reached
at the upper critical field Hc2(≈ 1.8 T) and we can safely
assume that a higher magnetization will be favored here
as Hc1 < Hc2. Thus by choosing a commensurate wave
vector slightly larger than the incommensurate one we
end up with a fractional magnetic plateau state above
the one on the way up, completing our description of
magnetic hysteresis in TmB4.

Next, we consider the effect of the other modulated
phase MP1 with an additional modulation of roughly 80
unit cells along the b-axis. This additional modulation
is expected to influence the low temperature phase at
higher fields, i.e. in the 1/2 plateau regime. Thus, we can
expect that the 1/2 plateau may have a commensurate
version of the above structure, with an extra line of polar-
ized spins every 80 unit cells along the b axis. This may
account for an experimentally observed “bump” in the
1/2 plateau whose magnitude is roughly 1/80 M/Msat.

To summarize, on the way up, modulation begins in
the 1/8 plateau, with a structure similar to the interme-
diate temperature phase but with domain-wall-like lines
polarized. At the upper regions of the 1/2 plateau, this
amplitude modulation acquires an additional modulation
of period 80 along the b axis. Polarization of spins along
the domain-wall-like lines leads to a “bump” in the 1/2
plateau. On the way down, the additional period 80
modulation disappears at the half-plateau. However, a
larger wave vector is selected at the fractional plateau re-

gion, leading to hysteresis at the fractional plateau. We
have demonstrated that the fractional plateau behavior
in TmB4 can be understood directly from the existence
of the modulated phases.

V. ANNNI MODEL FOR TmB4

In order to understand the modulated structures in
TmB4, we develop a phenomenological ANNNI model.
The ANNNI model has previously been well-studied and
is considered a prototype for systems with modulated
phases16. By applying a sublattice rotation within the
ab planes, the AFM state can be turned into a uniform
ferromagnet (FM), and interactions between moments on
different sublattices will switch sign (i.e. FM to AFM and
AFM to FM). Thus, we can effectively describe TmB4 as
an Ising ferromagnet (a uniform external field becomes a
staggered field in this description). To explain the origin
of modulated AFM ordering, let us consider the effect of
next-nearest-neighbor interactions along the a-direction.
Such a system can be described by the Hamiltonian

H =
∑
α

∑
〈ij〉α

J1,αJzi Jzj +
∑
〈〈ij〉〉β

J2,βJzi Jzj , (1)

with α ∈ {a, b, c} and β ∈ {a}. Here, the diagonal bonds
of the SSL have been incorporated into J1,a and J1,b, as
have other bonds not explicitly stated—we are only in-
terested in the minimal model for generating modulated
structures. 〈ij〉α and 〈〈ij〉〉α describe nearest and next-
nearest neighbor pairs along the α-axis. As mentioned
previously, we take the J1,α to be FM, and therefore
H reduces to the well-known axial next nearest neigh-
bor Ising (ANNNI) model in the case where all J1,α are
equal. Even in the case where they are different, we can
still expect essentially the same behavior as the phases
of the ANNNI model are driven by competition between
J1,β and J2,β .

By constructing a mean field theory of H based on the
response to a fictitious magnetic field, it can be shown
that the optimal spin structure will maximize the Fourier
transform of the spin interactions.17,18 In the present case
this leads to

J (kx) = −J1,a cos(kx)− J2,a cos(2kx), (2)

where we ignore the trivial ky and kz dependence which
is optimized by FM order along the y- and z-axes. To
find the optimal kx value we take the derivative,

J ′(kx) = J1,a sin(kx) + 2J2,a sin(2kx), (3)

and find solutions of J ′(Q) = 0. Aside from the trivial
solutions of Q = 0 and Q = π we also find cos(Q) =
−J1,a/4J2,a. Now we evaluate the second derivative,

J ′′(kx) = J1,a cos(kx) + 4J2,a cos(2kx), (4)

at these points to find J ′′(0) = J1,a + 4J2,a which is a
maxima for J1,a + 4J2,a < 0 or −J1,a > 4J2,a whereas
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FIG. 4: (color online) Phase diagram of the ANNNI model,
taken from Zhang and Charbonneau16. The parameter κ ≡
J2,a/|J1,a|.

J ′′(π) = −J1,a + 4J2,a which is a minima for FM J1,a
and AFM J2,a and finally J ′′(Q) = −4J2,a sin2(Q) which
is negative definite for AFM J2,a and hence a maxima
whenever |J1,a| < |4J2,a| as required for cos(Q) and
sin(Q) to be well defined.

Putting the above together, we can see that for FM
J1,a and AFM J2,a we have Q = 0 for |J1,a| > |4J2,a|
while for |J1,a| < |4J2,a| we have a modulated structure
as indexed by cos(Q) = −J1,a/4J2,a. Using the roughly
8 unit cell modulated structure found by Michimura et
al. for the zero-field modulated phase in TmB4

10 we find
J2,a/|J1,a| ≈ 0.27, where we use Q−1 = 8/π as our unit
of distance is half that of a full unit cell.

Next we compare directly to results for the ANNNI
model, which have been recently computed using high
performance simulations16. In the finite temperature
phase diagram, the modulated phases only survive at in-
termediate temperatures. Fitting the width of the inter-
mediate modulated phase in the ANNNI model to the
width of the intermediate phase observed in TmB4, we
arrive at the ratio J2,a/|J1,a| ≈ 0.35, comparable to our
result from mean field theory.

VI. NEW TmB4 PARAMETERS

The dominant features of the field dependence of mag-
netization in TmB4 has previously been explained in
terms of a generalized Shastry-Sutherland model19. Most
importantly, it was shown that longer range interactions
are necessary for the presence of an extended 1/2 plateau
and the absence of a 1/3 plateau that is ubiquitous in the
Shastry-Sutherland model in the Ising limit.20–22 How-
ever, the parameters introduced by Reference19 do not
lend themselves to a description of the modulated phases
MP1 and MP2, nor do they seem to include the fractional
plateau at m/ms ∼ 1/8. Huang et al.23 have considered
the parameter set {J1,J2,J3,J4} = {1, 1, 0.15,−0.15}

for TmB4. Using Glauber dynamics to generate mag-
netization curves at different field sweep rates, Huang
et al. were able to generate fractional magnetization
plateaus near 1/8 of saturation. Similar hysteretic be-
havior was also seen by Suzukiet al.19 for the parame-
ter set {J1,J2,J3,J4} = {1, 1, 0.15,−0.15}. However,
for the parameter set employed by Huang et al., the ex-
act ground state magnetization sequence includes a small
but finite width 1/3 plateau24. In addition, the work of
Huang et al.23 fails to capture the fact that the frac-
tional plateau can appear at any value of magnetization.
As such, to develop an accurate microscopic description
of the magnetic behavior of TmB4, it is essential to find
a consistent set of parameters that lead to an effective
ANNNI model. Such a model would exhibit modulated
phases at intermediate temperatures, and can also give
rise to a fractional plateau at low temperatures under an
external field.

The basic requirement for an effective ANNNI model is
an AFM next nearest neighbor interaction (J2,a above).
In the works of References15,19,23,25 this term is called
J4, and the parameters for TmB4 have J4 < 0 i.e. FM.
Thus, we see the need to find a new set of parameters if
we are to explain the modulated phases of TmB4.

Let us make a list of desirable qualities for any set of
parameters describing the interactions between the lo-
cal moments in TmB4. We will list these in order of
importance, and try to keep in mind that the presence
of itinerant electrons in TmB4 that mediate the interac-
tions through RKKY-like mechanism may lead to behav-
ior that cannot be explained purely by consideration of
local moments alone (for example, the interactions may
change as a function of temperature or magnetic field).

1. Zero field ground state is the Ising AFM phase with
ordering wave vector Q = (π, π, 0).

2. Width of 1/2 plateau is roughly half of the satura-
tion field.

3. No 1/3 or any other plateau except 1/8 and 1/2
plateaus.

4. Effective ANNNI model to explain modulated
phase at intermediate temperature as well as mod-
ulation in 1/8 and 1/2 plateaus.

5. 1/2 plateau should consist of stripes, as any di-
agonal or checkerboard arrangement can be ex-
cluded according to the neutron scattering analysis
of Siemensmeyer et al.9.

6. 1/8 plateaus seem to be metastable, and may be
due to longer range interactions than can be rea-
sonably considered. Hence, we can always argue
they will emerge for any parameter set once longer
range interactions are also taken into account.

We first tried to achieve the top four qualities by fine-
tuning the model used by References15,19,23,25. In par-
ticular, in order to derive an effective ANNNI model,
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FIG. 5: (color online) Schematic of the interactions between
localized moments in TmB4. Magnetic Tm3+ ions are repre-
sented by black circles.There are two nearest neighbor inter-
actions with identical bond lengths: K1 (solid red lines) and

K
′
1 (dashed red lines). Also shown are K2 (dotted blue lines)

and K3 (long dashed green lines), K4 (solid purple line) and

K
′
4 (dashed purple line). Not all K2, K3, K4, K

′
4 interactions

are shown for clarity.

we will have to search for a solution with J4 > 0, in
contrast to these works. It is a straightforward calcula-
tion to determine the ground state energy in the Ising
limit for the various zero-field and plateau structures de-
scribed in [15, 19, 23, 25]. These include the Neel state
and several 1/3 and 1/2 plateau states. For each of these
configurations, we can calculate the energy exactly (for
instance, the energy of the Neel state is proportional to
−4J1 + J2 + 2J3 + 4J4). We then search through the
parameter space of {J} for solutions that satisfy the
requirements listed above (we also enforce a constraint
that J1 has the maximum magnitude and is antiferro-
magnetic).

Using the brute force search method described above,
we compare the ground state energies of the various
known plateaus to find a suitable parameter set that sat-
isfies the first four requirements of the above list. We
find that {J1,J2,J3,J4} = {1,−0.48,−0.93, 0.46} works
well. However, this has a 1/2 plateau with diagonally ar-
ranged stripes, which seems to be precluded by the work
of Siemensmeyer et al.9 (point 5 above).

To stabilize a striped 1/2 plateau with a purely hor-
izontal and/or vertical stripe pattern, we need to take
into account additional interactions. A natural exten-
sion is to consider all possible interactions between the
magnetic Tm3+ ions in TmB4 up to an interionic cut-
off distance equivalent to the J4 interaction mentioned
above. To do so, we approximate the lattice as an ideal
square snub tiling, which is very nearly the case as exper-
imentally determined by x-ray structural determination.
In Fig. 5 we show a schematic of the interactions, not-
ing that J1 and J2 as used above form equivalent bond
lengths. Thus, in our new parameterization, we refer to
them as K1 and K′

1. The next nearest interaction is K2

which corresponds to J3 above, while J4 remains as K4.
Finally, an additional K′

4 is possible. Note that for equiv-
alent length bonds, we have used the same subindex, but
add a prime to distinguish bonds that may have differ-
ent character due to the crystal symmetry involved (for
example, K1 bonds proceed between one octahedral and
one dimer Boron, while K′

1 bonds proceed through two
dimer Borons26).

Within this extended parameter space,
our brute force search finds a possi-
ble solution for {K1,K

′

1,K2,K3,K4,K
′

4} =
{1,−0.48, 0.44, 0.12,−0.12,−0.32}. It is interesting
to note that in all sets of parameters which lead to an
effective ANNNI model, we find K′

1 (or J2 in the model
of References15,19,23,25) to be FM. Note that an ANNNI

model is only possible when K4 > K
′

4. For comparison,
the various parameter sets proposed for TmB4 are listed
in Table I.

Recent transport measurements in our group have
shown that the c-axis resistivity in TmB4 is comparable
to the in-plane resistivity.27 This is consistent with pre-
vious measurements on Fermi surface in other members
of the RB4 family. In other words, while the magnetic
lattice is layered, the electronic transport does not ex-
hibit such strong anisotropy. This will result in magnetic
coupling between the layers mediated by the conduction
electrons. However, such inter-planar RKKY interaction
will be much weaker than the dominant intra-planar ex-
change interactions between the Tm3+ ions. We plan
to investigate the effects of itinerant-electron mediated
inter-layer magnetic coupling in the future.

VII. SUMMARY

We have conducted a co-ordinated experimental and
theoretical investigation of the magnetic properties of the
geometrically frustrated quantum magnet, TmB4, focus-
ing on the unusual fractional magnetization plateau and
the accompanying magnetic hysteresis. Our key experi-
mental result is the absence of exact quantization at the
fractional plateau. The precise value of the magnetiza-
tion at the fractional plateau and the magnitude of hys-
teresis depend strongly on the field-history. We also ob-
serve a bump in the half-plateau that we attribute to
the presence of the second modulated phases. Both of
these results support the model by Michimura et. al.
for the origin of the fractional plateau. We then argue
that this model leads to a natural explanation of the hys-
teresis at the fractional plateau. On the theoretical front,
we have developed an effective ANNNI model to describe
the modulated zero-field AFM phase observed in neutron
scattering experiments10. We show that the occurrence
of the fractional plateau, its variable magnetization and
the hysteresis all follow naturally from the (incommen-
surate) modulated phase which is explained adequately
by an effective ANNNI model. Along with a microscopic
mechanism for the magnetic hysteresis, our results pro-
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TABLE I: Comparison of critical couplings from various calculations.

K1 K
′
1 K2 K3 K4 K

′
4

(J1) (J2) (J3) (J4)

Suzuki et al.19 1 1 0.1182 0 -0.251 0

Huang et al.23 1 1 0.15 0 -0.15 0

Present work (diagonal stripes) 1 -0.48 -0.93 0 0.46 0

Present work (vertical stripes) 1 -0.48 0.44 0.12 -0.12 -0.32

vide specific predictions for the local spin configuration
of the fractional plateau. We hope this will encourage fu-
ture neutron scattering studies of the fractional plateau.
Finally we derive a microscopic Hamiltonian for TmB4

that captures all the observed magnetic behavior, includ-
ing the magnetization plateaus and hysteresis.
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