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Temperature changes on thin film Ge:Mn spin glass dynamics are presented that exhibit temperature
chaos (TC) when the spin glass correlation length ξ(t, T ) grows to its thickness L. For small
L ≈ 15.5 nm, the transition to chaos takes place over a temperature range ∆T sufficiently large to
exhibit both reversible and chaotic behavior. The value of ∆T can be related to the critical exponent
for TC, ζ. Experimentally, ζ is found to be ≈ 1.06, in the range of recent simulations. The presence
of a specific length scale L allows the transition to chaos to be examined over measurable laboratory
temperature changes. The transition is found to be abrupt. Bulk materials, with a distribution of
crystallite sizes, will smear out the transition, resulting in a “very slow crossover”. The abruptness
of the transition, and its nature, are compared with recent theoretical calculations.

PACS numbers: 71.23.Cq, 75.10.Nr, 75.40.Gb, 75.50.Lk

Temperature Chaos (TC) in spin glasses is associ-
ated with the memory effect, and is typical of polymers,
random magnets, interacting nanomagnetic systems and
glasses in general. In this paper, we explore experimen-
tally the length scale dependence of TC, first introduced
by Bray and Moore [1], then examined theoretically by a
number of other authors [2 - 8] and applied to (qualita-
tively) explain experimental results [9 - 14]. It has been
(theoretically) shown that the spin glass ground state was
unstable on length scales larger than L∗ ≈ (J/∆T )1/ζ

where J is a measure of bond energy between spins, ∆T
is the temperature change, and ζ is the critical exponent
for TC [1]. Spin configurations for changes in tempera-
ture ∆T are similar for length scales < L∗, and different
for length scales > L∗. In our experiments, ∆T can be
adjusted so that L∗ can be greater than the spin glass
thin film thickness L, with no TC (equivalently, reversible
behavior) or less than L resulting in TC. This enables us
to estimate ζ ≈ 1.06, which agrees very well with nu-
merical estimations [6 - 8]. We shall also demonstrate
that the onset of TC is abrupt, in contrast to previous
[15] assertions but in accord with recent [8] theoretical
predictions.

TC in spin glasses has been reported for a number of
years. Measurements of rejuvination have exhibited TC
in spin glasses, and more recent experiments have exam-
ined memory effects [10] and interference effects [14] in
bulk spin glass samples, with a distribution of crystallite
sizes. Overall, the picture that has emerged is that of
a gradual phenomenon. The purpose of this paper is to
examine TC in a sample where the length scale is fixed,
namely in a thin film of thickness L. By working with
a sample sufficiently thin, the transition to chaos can be
studied over a temperature range, ∆T , sufficiently large
that the nature of the transition itself can be studied.
In particular, a fixed length scale L enables the study of
the width of the reversible response to ∆T , and the na-
ture of the actual transition to chaos. Experimentally, it
is found that the transition to chaos is abrupt, enabling
evaluation of the temperature width for reversible behav-

ior. This width can be used to evaluate the TC critical
exponent ζ. The value extracted (ζ ≈ 1.06) is in much
closer agreement than previous values.

A previous attempt [15] to estimate ζ arrived at 1/ζ =
2.6±0.5 through a scaling analysis (however, see Ref. [16]
for a dissenting view of their analysis). Their experiments
were conducted on bulk materials, presumably polycry-
talline in nature. The distribution of crystallite sizes,
and hence length scales [17], smoothed out their obser-
vation of the onset of chaos, causing them to assert that
the transition to chaos was a “very slow crossover”. In
contrast, this paper uses a thin film of fixed thickness,
providing a specific length scale for the onset of TC. As
noted above, TC is related to a changing length scale for
temperature changes ∆T . Having only a single character-
istic length (the film thickness) allowed the observation
of an abrupt onset of TC, in contrast to previous work.

It has been shown that aging in spin glasses can
end on laboratory time scales for length scales at the
mesoscale [18]. In thin films of thickness L, a quasi-
equilibrium state can be created at that length scale. One
can then explore dynamical phenomena that are length-
scale dependent, for example the spin glass dynamical
susceptibility [17].

The temperature of the spin glass is quenched rapidly
from above the freezing temperature, Tg, to the measure-
ment temperature (also known as quench temperature)
Tq < Tg. If it is cooled in the presence of a magnetic
field H , the magnetization is referred to as the field-
cooled (FC) magnetization, MFC(Tq). If after a wait-
ing time, tw, the magnetic field is cut to zero, there is
an instantaneous drop in the magnetization, with a slow
remnant that eventually decays to zero. The latter is re-
ferred to as the thermo-remanent magnetization (TRM),
MTRM(t, Tq), where the time t begins at the time the
magnetic field H is cut to zero. Its decay is dependent
upon the waiting time, the rate being slower, the longer
tw. This is termed the memory effect, for the spin glass
remembers how long it was kept at H before the H was
cut to zero.
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Concomitantly, if the spin glass temperature quench to
Tq occurs in zero magnetic field, and a field H is applied
after a time tw, there is a sudden increase in magnetic
moment and an additional slow increase in magnetiza-
tion, the two combined being the zero-field-cooled (ZFC)
magnetization, MZFC(t, Tq). The increase of the slow
component is dependent upon the waiting time, the rate
being slower, the longer tw. The combination of the two
magnetizations MTRM(t, Tq) +MZFC(t, Tq) = MFC(Tq).
The dependence of the rate of change of MTRM(t, Tq)

and MZFC(t, Tq) upon tw has been interpreted as arising
from successively increasing energy barrier heights asso-
ciated with the diffusion from the initial state prepared
at t = 0, T = Tq (after the waiting time tw) to spin glass
states with ever decreasing overlap with the initial state.
Ref. [17] has a detail discussion of spin glas dynamics.
The experiments were performed on thin amorphous

Ge:Mn (11 at.% Mn) films of thickness 155 Å [18, 19].
Previous experiments have shown this insulating sys-
tem to exhibit spinglass properties [19, 20], not unlike
EuxSr1−xS [21], an insulating canonical spin glass sys-
tem. Further, the behavior of the field cooled magnetiza-
tion is very similar to that found for the thinnest Cu:Mn
films by G.G. Kenning et al. [22]. All the dynamical
measurements on these films [18] are consistent with the
usual spin glass systems, establishing confidence in the
generality of effects seen in Ge:Mn films.
The enabling concept behind the experiments is the

growth of the spin glass correlation length ξ(t, T ) with
time t after the spin glass has been rapidly quenched
from a temperature above the spin glass transition tem-
perature, Tg to a temperature T < Tg [23, 24]:

ξ(t, T ) = c1a0

(

t

τ0

)(T/Tg)c2

, (1)

where c1 ≃ 0.375 and c2 ≃ 0.125 are fitted numerical co-
efficients, a0 ≃ 5.3 Å is the average interatomic spacing
of the magnetic species, and τ0 is an exchange time of
the order of ~/(kBTg), with Tg the spin glass transition
temperature ≈ 24 K. Experiments [18] showed that after
a time t = tco, defined by the time it takes for the cor-
relation length ξ(t, T ) to grow to the sample thickness L
so that ξ(tco, T ) = L, the spin glass transitioned to a two
dimensional state. Because the lower critical dimension
dℓ ≈ 2.5 [25-27], Tg = 0 and spin glass ordering for length
scales greater than L vanished. However, there remain
spin glass correlations for length scales less than L.
The relationship between ξ(t, T ) and the largest barrier

height ∆max encountered when ξ(t, T ) approaches L is
given by [28],

∆max

kBTg
=

1

c2

[

ln

(

L

a0

)

− ln c1

]

, (2)

where c1 and c2 are the constants in Eq. (1). The im-
portant aspect of Eq. (2) is that ∆max is independent of
the temperature, and only a function of the film thick-
ness L. Further, ∆max is the largest barrier encounterd

for all times t > tco. This means that there is no further
aging of the correlated spin glass state. The occupancy
of all the states between barriers is given by the Boltz-
man distribution. Hence, it is appropriate to regard this
initial state as a quasi-equilbrium state in which TC can
be measured.
The experiments of Ref. [18] showed that the conven-

tional (d = 3) time dependent rise of the zero-field-cooled
magnetization, MZFC(t, T ) crossed over to activated be-
havior at t = tco, with activation energy given by Eq. (2).
There was an end to aging, as ξ(t, T ) could not continue
to grow. It was cutoff at the value ξ(tco, T ) = L. This
means that the spin glass correlated states with magneti-
zation MZFC(t, T ) were in equilibrium among themselves
with an absence of aging, and an activated magnetization
rise to the field-cooled magnetizationMFC(T ). These dy-
namics will be central to our observation of TC.
Having prepared the initial state with a length scale

L, one can now explore experimentally the length scale
dependence of TC. The temperature range for which
L∗ > L, and therefore for reversible dynamics, can be
estimated from Bray and Moore [1]. They showed that
the spin glass ground state was unstable on length scales
larger than L∗ ≈ (J/∆T )1/ζ where J is a measure of
bond energy between spins [1]. Setting J ≈ kBTg, with
a0 the average spacing between magnetic ions, dimen-
sional analysis would suggest,

L∗ = a0

∣

∣

∣

∣

Tg

T − Tq

∣

∣

∣

∣

1/ζ

. (3)

Thus, in the experiments presented in this paper, |∆T =
T − Tq| can be adjusted so that L∗ can be greater or
less than the thin film thickness L. If L∗ > L, then
the spin glass dynamics should be reversible, with no
TC. Conversely, for L∗ < L temperature chaos should
obtain. Notice that there are no adjustable parameters.
The fixed length scale L specifies a specific temperature
difference |T −Tq| according to Eq. (3), the only variable
being a possible multiplicative factor in front of a0.
The experimental procedure is as follows. The temper-

ature is rapidly reduced from well above Tg to a quench
temperature Tq < Tg in the absence of a magnetic field.
A magnetic field is applied when the temperature is sta-
bilized at Tq (usually in a few minutes), and the system is
aged for times longer than tco. During this aging period,
the magnetization rises towards MFC(Tq), but the rise
is so slow that the magnetization after the end of aging
still is well short of MFC(Tq). At this point in time, the
temperature is reduced to T = Tq − ∆T where ∆T is
positive. If ∆T is sufficiently small, so that L∗ > L, the
dynamics of the system should remain reversible in the
sense that they will depend upon the initial preparation
of the system before the change in temperature. Fur-
ther, aging is over. Thus, the dynamics will only exhibit
activated behavior associated with the value of ∆max at
Tq −∆T .
This follows from the relationship between ∆max and

the Hamming distance D(T ) associated with the ultra-



3

metric geometry of the overlap q of the spin glass states
[29 - 31]. The Hamming distance for our situation,
ξ(tco, Tq) = L, is defined for Ising spin glasses by the
relationship,

2D(T ) = q
EA

(T )− qmin, (4)

where q
EA

(T ) is the Edwards Anderson self-overlap [32]
of the spin glass states at temperature T , and qmin is
the minimum overlap of the spin glass states set by the
condition that ξ(tco, Tq) is cutoff at the length scale L.
If the temperature is now lowered from Tq to Tq−∆T ,

qmin does not change, but q
EA

(T ) increases from q
EA

(Tq)
to q

EA
(Tq − ∆T ), thereby increasing the Hamming dis-

tance D(T ) from Eq. (4). The value of ∆ is a mono-
tonic increasing function of the Hamming distance [33],
so that ∆max will increase. Previous measurements [29
- 31] exhibited this behavior, with an extrapolation of
∆max growing to a large value for decreasing tempera-
ture. This behavior has also been observed to be re-
versible, with reversion to the value associated with the
initial state created at Tq when the system is warmed
back to Tq. In TC terms, the system remembers the ini-
tial state when it is cooled by ∆T .
However, if ∆T is sufficiently large, so that L∗ < L,

the system at Tq−∆T is chaotic. It bears no relationship
to the system prepared after aging at Tq. In this case,
the dynamics should start over, and MZFC(t, Tq − ∆T )
should rise towards MFC(Tq −∆T ) as though it was ini-
tially prepared at T = Tq −∆T . Said another way, it is
rejuvinated [10, 34 - 36], and its activated dynamics start
over. From Eq. (2), this means that ∆max will revert to
that value independent of temperature that it had at the
initial quench temperature Tq.
This analysis displays the fundamental difference be-

tween reversible and chaotic behavior in the experimental
results. Repeating, in the former, there should only be
d = 2 activated dynamics, with a temperature dependent
∆max. In the latter, there should initially be dynamics
associated with d = 3, then a crossover to d = 2 dynamics
at times t > tco. In terms of observation in the activated
region of dynamics, ∆max(Tq −∆T ) vs Tq −∆T should
initially rise in the reversible region as ∆T increases, and
then drop back to the value of Eq. (2) for ∆T sufficiently
large that TC has taken place.
The situation for a postive change in temperature is

quite different. When the temperature is raised, T > Tq,
not only is D(T ) reduced, and hence ∆max(T ), but
also the dynamics are faster because the temperature
is higher. The combination of the two effectively re-
initializes the distribution, and hence is indistinguishable
from TC. This re-initialization was exhibited in the ex-
periments of Refrigier et al. [29] and Lederman et al. [30].
As a consequence, the experiments described below are
only performed at T < Tq, with one exception for T
slightly larger than Tq the results of which will be pre-
sented here.
The 155 Å amorphous Ge:Mn thin-film sample was

subjected to the TC protocol. Because of the small ex-
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FIG. 1: The left-axis plots the time dependence of the ZFC
magnetization of the Ge:Mn thin film sample, quenched to
a temperature Tq = 21.5 K, and an in-plane 50 G magnetic
field applied. The right-axis plots the time dependence of
the difference between the FC and the ZFC magnetizations,
displaying explicitly the activated nature of the dynamics [18].

ponent in Eq. (1) (c2 ≃ 0.125) and the relatively thick
sample (L = 155 Å), the accessible temperature range
over which measurements could be made was rather nar-
row. For temperatures below about 20 K, the growth of
ξ(t, T ) to L is much too slow for laboratory time scales,
and for temperatures above about 22 K, the response
time is too fast for meaningful measurements. As a com-
promise, the quench temperature was set at Tq = 21.5 K.
The sample was cooled from ∼ 55 K to Tq = 21.5 K,

and a 50 G in-plane magnetic field was applied imme-
diately after the temperature stabilized at Tq. Fig. 1
plots conventional ZFC magnetization rise and the cor-
responding TRM decay curves at 21.5 K. From Fig. 1,
the estimated crossover time, tco, is ∼ 6.8 × 104 sec, or
about 19 hours at 21.5 K. So after a wait time of 20
hours, the sample is in the quasi-equilibrium state, with
any chaos induced by the change in magnetic field no
longer relevant.
The temperature was then changed to T = Tq − ∆T ,

and the rise of the magnetizationMZFC(t, T ) recorded for
a range of temperatures from 21.60 to 20.00 K. Examples
from the raw data are exhibited in Figs. 2(a)-(c) for three
different temperature ranges: |T−Tq| ≥ 0.6 K; |T−Tq| ≤
0.6 K, and T > Tq. The difference,MFC(T )−MZFC(t, T ),
is included in Figs. 2(d)-(f), displaying the different ac-
tivation energies for the three temperature regimes. The
behaviors are quite different. For |T − Tq| ≥ 0.6 K, the
slopes are steeper than for |T − Tq| ≤ 0.6 K, indicating
that ∆max is smaller in the former temperature range
than in the latter. Likewise, for T > Tq, the slope is
similarly steeper than for |T − Tq| ≤ 0.6 K.
There is another feature in Fig. 2 that is worth not-

ing. In the chaotic region, the memory of the initial state
(T = Tq) is erased, and rejuvination takes place [10, 34
- 36]. The correlation length ξ(t, T ) grows from nucle-
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FIG. 2: Representative plots of the time dependence of the zero-field magnetization, MZFC(t, T ), (a) - (c), and the differences
MFC(T ) − MZFC(t, T ), (d) - (f), plotted on semi-log scales. The three temperature regimes of interest are contained in
|T − Tq| ≥ 0.6 K (chaotic regime), (a) and (d); |T − Tq| ≤ 0.6 K (reversible regime), (b) and (e); and T > Tq (chaotic regime),
(c) and (f). Note that for the chaotic regimes, (a), (c), (d) and (f), rejuvenation causes an initial decay towards the activated
regime, associated with the growth of ξ(t, T ) towards L, followed by an activated time dependence when ξ(t, T ) has reached L.
For the reversible regime, (b) and (e), the time dependence is activated from t = 0.

ation, resulting in a rapid initial rise in MZFC(t, T ) at
short times before ξ(t, T ) has reached L. At that point
and after, the rise of MZFC(t, T ) follows an activated be-
havior [Fig. 2(d)]. However, in the reversible regime, the
memory of the initial state (T = Tq) remains. There is no
further growth of ξ(t, T ) because it has already reached
L. Hence, at t = 0 in Fig. 2(e), the rise of MZFC(t, T )
begins with activated dynamics. It is striking to compare
the raw data in the two regimes and see the difference
between chaotic and reversible behaviors.

Fig. 3 plots the activation energies, ∆max, extracted
from plots similar to those of Figs. 2(d)-(f), for all the
temperatures T = Tq −∆T probed in these experiments.
Remarkably, ∆max is found to lie at the value extracted
in Fig. 1 at the quench temperature Tq = 21.5 K for
both |T − Tq| > 0.6 K, and T > Tq. That is, as noted
above, ∆max reverts back to its quasi-equilibrium value
for the range of temperatures consistent with available
laboratory time scales, 20.00 ≤ T ≤ 20.88 K, indicating
that rejuvination has take place upon these temperature
changes. Under these conditions, ∆max(T ) is set by the
sample thickness according to Eq. (2), and must equal
∆max(Tq).

In the reversible range, |T−Tq| < 0.6 K, Fig. 3 exhibits
a ∆max that rises sharply with decreasing temperature.
This is consistent with previous experiments [29 - 31].

However, the rise is cut off sharply as one enters the TC
range for |T −Tq|. The abruptness of the transition from
reversible to chaotic regimes is reminiscent of the nature
of the TC state as described in Ref. [8], but opposite
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FIG. 3: Plot of ∆max/(kBTg) versus T extracted from data
represented by the differenceMFC(T )−MZFC(t, T ), as plotted
in Figs. 2(d)-(f).
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FIG. 4: Plot of ∆max/(kBTg) as a function of waiting times
before the temperature is changed from Tq = 21.5 K to T =
21.0 K.

to previous conjectures [15]. Chaos is the result of rare
but large excursions, and not describable from an equi-
librium approach. Hence, the transition to temperature
chaos is not smooth but abrupt as |T − Tq| increases, as
demonstrated rather clearly in Fig. 3.

In order to convince readers that the activation fit to
the long time difference of MFC(T )−MZFC(t, T ) in Fig. 2
is reasonable, and that our interpretation is correct, we
have plotted on the Fig. 4 the value of ∆max/(kBTg) for
a series of waiting times tq at Tq, from 10 to 40 hours,
before we lowered the temperature from Tq = 21.5 K
to T = Tq − ∆T = 21.0 K. For shorter waiting times,
such that tq < tco at Tq (equivalently, ξ(t, Tq) < L),
ξ(t, Tq − ∆T ) grows to L as the time progresses. The
values of ∆max/(kBTg) observed at long times were the
same as though the system had been quenched initially
to Tq −∆T = 21.0 K, namely independent of the quench
temperature according to Eq. (2). However, when the
waiting time tq > tco at Tq, the spin glass correlation
length had reached L, the growth was over, and the sub-
sequent reduction of temperature by ∆T = 0.5 K resulted
in the enhanced value for ∆max/(kBTg) of ∼ 38.7, in ac-
cord with the argument following Eq. (4).

The temperature range for which L∗ > L, and there-
fore for reversible dynamics, can be estimated from
Eq. (3). A value for the critical exponent, ζ = 1, was
found by Kondor and Végso [5] for dimensions d ≥ 8.
More recently, Sasaki et al. [6], Katzgraber and Krza-
kala [7] and Fernandez et al. [8] have found in d = 3
that ζ = 1.04, and 1.07(5), respectively, close to the
d ≥ 8 “mean field” value of unity reported by Kondor
and Végso [5]. Taking ζ = 1.06, the mid-point of the
estimates [6 - 8], setting L∗ = L, and using the parame-
ters appropriate to the Ge:Mn sample, one can evaluate
the reversible range for |T − Tq| from Eq. (3). We find
|T − Tq|theo = 0.67 K. This value is of the order of that

estimated from Fig. 3, |T − Tq|expt ≈ 0.6 K.
That these estimates agree is a consequence of ζ ≈

1.06. Previous estimates [15] arrived at 1/ζ = 2.6 ± 0.5
through a scaling analysis (however, see [16] for a dis-
senting view). Such a value would destroy the agreement
between theory and experiment for our results. We be-
lieve, therefore, that our experiments have established
the value for ζ in the range of theoretical estimates for
temperature chaos in spin glasses.
In summary, Figs. 2 and 3 are direct observations of

temperature chaos in Ge:Mn spin glass. The thin film
thickness sets a length scale (L) in relation to the chaos
length L∗. When the temperature change is small, so
that L∗ > L, the system shows reversible behavior.
When, however, the temperature change is sufficiently
large, so that L∗ ≈ L, an abrupt transition to chaotic
behavior is exhibited, and maintained for L∗ < L for
larger temperature changes. These properties are exhib-
ited for the first time explicitly in Figs. 2 and 3. The
abruptness of the transition to chaotic behavior, as op-
posed to a smooth equilibrium transition, is in agreement
with the recent work of Fernandez et al. [8].
Further, following the expression presented by Bray

and Moore [1], and using the theoretical estimate for
ζ = 1.06 from [7] and [8], we estimate |T − Tq| ≈ 0.67 K
for the crossover from reversible to chaotic behavior, very
close to our experimental value of |T−Tq| ∼ 0.6 K, as de-
duced from Figure 3. The agreement between theory and
experiment establishes the value of ζ ≈ 1.06, as opposed
to a previous [15] estimate of 1/ζ ≈ 2.6± 0.5.
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