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We investigate the quantum phase transition in an S = 1/2 dimerized Heisenberg antiferromagnet
in three spatial dimensions. By performing large-scale quantum Monte Carlo simulations and de-
tailed finite-size scaling analyses, we obtain high-precision results for the quantum critical properties
at the transition from the magnetically disordered dimer-singlet phase to the antiferromagnetically
ordered Néel phase. This transition breaks O(N) symmetry with N = 3 in D = 3 + 1 dimensions.
This is the upper critical dimension, where multiplicative logarithmic corrections to the leading
mean-field critical properties are expected; we extract these corrections, establishing their precise
forms for both the zero-temperature staggered magnetization, ms, and the Néel temperature, TN .
We present a scaling Ansatz for TN , including logarithmic corrections, which agrees with our data
and indicates exact linearity with ms, implying a complete decoupling of quantum and thermal
fluctuation effects even arbitrarily close to the quantum critical point. We also demonstrate the
predicted N -independent leading and subleading logarithmic corrections in the size-dependence of
the staggered magnetic susceptibility. These logarithmic scaling forms have not previously been
identified or verified by unbiased numerical methods and we discuss their relevance to experimental
studies of dimerized quantum antiferromagnets such as TlCuCl3.

PACS numbers: 75.10.Jm, 75.40.Cx, 75.40.Mg

I. INTRODUCTION

Antiferromagnetic insulators exhibit a multitude of
fundamental phenomena in the neighborhood of the
phase transitions separating their magnetically ordered
ground states from different types of quantum paramag-
netic phase. These quantum phase transitions (QPTs)
occur at temperature T = 0 as a consequence of non-
thermal parameters (examples include magnetic fields,
applied pressure, and dopant concentration) that act to
change the effect of quantum mechanical fluctuations
[1, 2]. At finite temperatures, a further dimension is
opened in the presence of both quantum and classical
(thermal) fluctuations, and the rich physics arising from
their interplay includes all the properties of the quantum
critical (QC) regime [3].

Experimentally, the material in which the most de-
tailed study of intertwined classical and quantum criti-
cal behavior has been performed is TlCuCl3. This com-
pound is composed of antiferromagnetically coupled pairs
of Cu2+ ions (S = 1/2), which tend to form dimer sin-
glets and have antiferromagnetic interdimer couplings in
all three spatial dimensions (d = 3) [4]. At ambient pres-
sure and zero field, TlCuCl3 is a nonmagnetic insulator
with a gap of 0.63 meV to triplet spin excitations. As a
consequence of this small gap, an applied magnetic field
of 5.4 T is sufficient to drive the system to an ordered

∗ zymeng@iphy.ac.cn

antiferromagnetic state, through a QPT in the Bose-
Einstein universality class [5]. A relatively small applied
hydrostatic pressure, pc = 1.07 kbar, is also sufficient to
create an antiferromagnetically ordered state [6], through
a QPT in the three-dimensional (3D) O(3) universality
class due to spontaneous breaking of the SU(2) spin sym-
metry (which is further reduced in TlCuCl3 by a weak
unixial anisotropy, making the universality class 3D XY).

The elementary excitations on the ordered side of the
zero-field quantum critical point (QCP) are gapless spin
waves, the Goldstone modes associated with spontaneous
breaking of spin-rotational symmetry. On the disordered
side, quantum fluctuations, towards spin-singlet forma-
tion on the dimers, suppress the long-range antiferromag-
netic order, restoring the symmetry and ensuring that
all excitations are gapped. This evolution of the excita-
tion spectrum in TlCuCl3 has been measured in Ref. [7].
At finite temperatures on the ordered side, a classical
phase transition occurs at the Néel temperature, TN ,
where the long-ranged magnetic order is “melted” not
by quantum but by thermal fluctuations. At finite tem-
peratures around the QCP, the combination of quantum
and thermal fluctuations creates the QC regime, where
the only characteristic energy scale of the system is the
temperature itself and many universal properties emerge
[3]. The phase diagram of TlCuCl3 under pressure and
the restoration of classical critical scaling around TN were
the subject of a recent investigation [8].

QPTs in dimerized quantum spin models have been
studied numerically by a number of authors, primarily
by quantum Monte Carlo (QMC) simulations. Early in-



2

FIG. 1. (Color online) (a) Dimerized lattice of S = 1/2 spins
in the 3D double cubic geometry. Sites of the red and blue cu-
bic lattices are connected pairwise by dimer bonds; J ′ and J
are antiferromagnetic Heisenberg interactions, respectively on
and between the dimer units, and their ratio, g = J ′/J , con-
trols the QPT from a Néel ordered phase (left) to a quantum
disordered dimer-singlet phase (right), with the QCP occur-
ring at the critical ratio gc. (b) Schematic quantum critical
phase diagram for the Heisenberg model on the double cubic
lattice. On the ordered “renormalized classical” side, g < gc,
the Néel order is progressively weakened by increasing quan-
tum fluctuations as g approaches gc, causing both the order-
ing (Néel) temperature, TN (g), and the order parameter (the
staggered magnetization), ms(g), to go continuously to zero.
On the “quantum disordered” side, intradimer correlations
dominate and the characteristic energy scale, ∆, is the gap to
triplet excitations. Above gc at T > 0 is the universal “quan-
tum critical” (QC) region, whose behavior is governed by the
3 + 1-dimensional O(3) universality class. Around TN (g), one
expects a region of classical critical (CC) behavior where ther-
mal fluctuations are dominant.

vestigations of the bilayer square-lattice antiferromagnet
[9] and other two-dimensional geometries [10, 11] have
been followed more recently by high-precision studies of
a range of critical properties [12–16]. In three dimensions,
the focus of investigations has been on the field-induced
transition [17], on the effects of dimensionality [18, 19],
and on physical observables at the coupling-induced QPT
[20–22].

A minimal model of a dimerized quantum antiferro-
magnet has only two coupling constants, J ′ on and J

between the dimer units, and therefore only one con-
trol parameter, g = J ′/J . The geometry considered in
the present study is the double cubic lattice shown in
Fig. 1(a). In this system at large g, intradimer singlet
correlations dominate the physics and the ground state
is magnetically disordered, while at small g the inter-
dimer correlations establish long-ranged magnetic order.
The order parameter of the Néel phase is the staggered
magnetization, ms(g), and along with the ordering tem-
perature, TN (g), it can be driven continuously to zero by
increasing g, as illustrated in Fig. 1(b). By standard ar-
guments of dimensionality and symmetry, the dynamical
exponent of this system is z = 1 [3, 23] and the QCP
belongs to the D = 3 + 1 O(3) universality class, which
is at the upper critical dimension, Dc = 4, of all O(N)
models [3, 24]. At D = Dc, mean-field critical scaling
behavior alone is not sufficient to capture the physics
of fluctuations around the QCP and multiplicative log-
arithmic corrections to the physical quantities (thermo-
dynamic functions) are expected.

The theoretical importance of multiplicative logarith-
mic corrections to mean-field scaling behavior lies not
only in the statistical physics of condensed matter sys-
tems but also in high-energy physics [24, 25]. The general
problem of a quantum field theory with an N -component
field is encapsulated by an “O(N) φ4 theory,” a La-
grangian containing a dynamic (quadratic gradient) term
and a potential term with quadratic (φ2) and quartic (φ4)
contributions. On changing the sign of the quadratic
term, the system is driven through a QPT separating a
phase with 〈φ〉 = 0 from one with 〈φ〉 6= 0 (a “Mexican
hat” potential). As noted above, the low-energy proper-
ties of the 3D dimerized antiferromagnet of SU(2) quan-
tum spins with Heisenberg interactions correspond to a
field theory with N = 3 and D = 3 + 1 (including the
time dimension); N = 1 and 2 correspond respectively to
Ising and XY spin interactions.

Beyond the upper critical dimension (D > Dc), the
scaling behavior of the O(N) φ4 theory is straightfor-
ward, with the critical exponents being exactly those
given by mean-field theory [25–27], namely α = 0, β =
1/2, γ = 1, δ = 3, and ν = 1/2. As we discuss below,
this may be taken as an expression of the independence of
quantum and thermal fluctuations when the phase space
is sufficiently large. For D < Dc, the situation is complex
and these exponents take anomalous values. However,
exactly at the upper critical dimension, D = Dc = 4, the
leading scaling behavior coincides with that of the mean-
field theory, but modified by multiplicative logarithmic
corrections [24, 28, 29]. While the leading exponents are
N -independent, a measure of N -dependence resides in
the logarithmic corrections and these must be taken into
account to establish the universality class of the transi-
tion [30]. Because the established results for the form
of these corrections are based on perturbative techniques
applied to low-energy theories, it is desirable to verify
them using unbiased numerical methods applied directly
to the lattice Hamiltonians, and this is what we achieve
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here.

Despite the insight into general QPT phenomena ob-
tained from simulations using this type of minimal model
for 3D dimerized systems [10, 17, 19–21], the question of
logarthmic corrections has to date been addressed only
briefly and inconclusively [22, 31]. Experimentally, the
feasibility of observing logarithmic corrections in systems
such as TlCuCl3 remains a challenging open issue [8]. In
this paper we provide a systematic numerical study. We
employ large-scale QMC simulations to investigate the
critical behavior of the order parameter and Néel tem-
perature on the double cubic lattice [Fig. 1(a)] for small
values of |g − gc| unattainable in all previous studies.
State-of-the-art QMC techniques and finite-size-scaling
analysis using very large systems (sizes exceeding 105

spins) allow us to detect and characterize the multiplica-
tive logarithmic corrections in the universal scaling rela-
tions for the QC regime at the upper critical dimension,
here for the D = 3+1 O(3) QCP. In fact our results con-
stitute hitherto unavailable exact numerical verification
of the logarithmic forms predicted both by perturbative
renormalization-group calculations [32–34] based on the
N -component φ4 theory at Dc and by additional con-
siderations exploiting the zeros of the partition function
[25, 28, 29, 35]. To the best of our knowledge, no system-
atic numerical calculations have been performed beyond
N = 1 [28, 36].

As will become clear, our numerical results demon-
strate to high precision the validity of the detailed the-
oretical predictions for the expected universality class.
Both size-dependent scaling and the order parameter in
the thermodynamic limit show evident deviations from
pure mean-field behavior, which are accounted for by log-
arithmic corrections whose exponents are in very close
ageement with the predicted values where available. In
the case of the Néel temperature, we are not aware of any
previous scaling predictions including logarithms. Here
we test an Ansatz based on the known scaling behavior
for the relevant energy scales [3, 37] and the logarithmic
corrections in corresponding classical systems [25]. In
addition to probing the asymptotic behavior, our results
also provide direct insight into the range of validity of log-
arithmically modified critical scaling forms as one moves
away from the QCP, which will be essential in evaluating
the experimental relevance of logarithmic corrections.

The paper is organized as follows. In Sec. II we intro-
duce the model and the numerical method, describing the
measurement of physical observables in our QMC sim-
ulations. In Sec. III we begin the presentation of our
numerical results with the precise determination of gc,
the position of the QCP, using finite-size-scaling tech-
niques. Section IV discusses the observation of clear log-
arithmic corrections in the staggered magnetic suscepti-
bility, χ(QAF, L), at the QCP as a function of the sys-
tem size, L. We present our results for the sublattice
magnetization, ms, at T = 0 in Sec. V, discussing in de-
tail its extrapolation to the thermodynamic limit, where
we investigate the presence of logarithmic corrections to

the leading mean-field behavior. In Sec. VI we present a
scaling Ansatz for the Néel temperature, apply finite-size
scaling to extract it as a function of g, and again inves-
tigate corrections to mean-field behavior. We compute
the characteristic velocity c of spin excitations, demon-
strate the precise linearity of TN and ms, and discuss
the physical interpretation of this behavior. We summa-
rize our results in Sec. VII and comment further on their
theoretical and experimental consequences.

II. MODEL AND METHODS

As a representative 3D dimerized lattice with an un-
frustrated geometry, we choose to study the double cu-
bic model shown in Fig. 1(a). This system consists of
two interpenetrating cubic lattices with the same anti-
ferromagnetic interaction strength, J , connected pairwise
by another antiferromagnetic interaction, J ′. The QPT
occurs when the coupling ratio g = J ′/J is increased,
changing the ground state from a Néel-ordered phase of
finite staggered magnetization to a dimer-singlet (“quan-
tum disordered”) phase, as illustrated in Fig. 1(b). An
advantage of this geometry over cases where the dimer-
ization is imposed within a single lattice, such as the
simple cubic lattice [20], is that all symmetries of the cu-
bic lattices are retained, facilitating the consideration of
quantities such as the spin stiffness or the velocity of spin
excitations.

The Hamiltonian is given by

H =
∑

〈i,j〉

Jij ~Si · ~Sj , (1)

where ~Si is an S = 1/2 spin operator residing on a double
cubic lattice of N = 2L3 sites with periodic boundary
conditions. The sum is taken only over nearest-neighbor
sites, where every site has six neighbors on the same cubic
lattice with coupling strength Jij = J and one neighbor
on the opposite cubic lattice with Jij = J ′ [Fig. 1(a)].
We set J = 1 as the unit of energy and use g = J ′/J as
the control parameter.

To study this system, we use the stochastic series
expansion (SSE) QMC technique [15, 38–40] to ob-
tain unbiased results, i.e. numerically exact within well-
characterized statistical errors, for physical quantities in
systems of finite side-length L. Here we present results up
to L = 48 at temperatures T = β−1 with β up to 2L. We
then perform detailed analyses by finite-size scaling [41]
to extract information in the thermodynamic limit both
in the ordered state and at the QCP, as detailed in the
separate sections to follow. Here we define the physical
quantities of interest and discuss some technical aspects
of their calculation within the SSE QMC method.

Because spin-rotation symmetry is not broken in sim-
ulations of finite-size systems, one may measure the
squared order parameter and take its square root as a
post-simulation step. The staggered magnetization is
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given by

ms =

√
1

N
S(QAF), (2)

where

S(q) =
1

N

N∑

i,j

e−iq·(ri−rj)〈~Si · ~Sj〉 (3)

is the magnetic structure factor, with ri denoting the

real-space position of the spin ~Si on lattice site i, and
QAF = (π, π, π, π) is the wave vector of antiferromag-
netic order, with the fourth π denoting the phase factor
between the two cubic lattices. We consider only the z-
component of the magnetization and average it over the
time dimension of the QMC configurations, computing
the expectation value of the squared order parameter in
the form

m2
sz =

1

β

∫ β

0

dτm2
sz(τ), (4)

where

msz(τ) =
1

N

N∑

i=1

e−iQAF·riSzi (τ), (5)

with

Szi (τ) = eτHSzi e
−τH (6)

the time-evolved spin operator at imaginary time τ . In an
SSE simulation, the integral in Eq. (4) is transformed into
a discrete sum with no approximations and the relation
compensating for the rotational averaging of the single
measured component of the order parameter,

ms =
√

3〈m2
sz〉, (7)

is applied post-simulation. The magnetic susceptibility
is defined as

χ(q) =
1

N

∑

ij

∫ β

0

dτ〈Szi (τ)Szj (0)〉e−iq·(ri−rj). (8)

In the SSE approach, the squared order parameter
[Eq. (4)] is readily evaluated at any τ because the QMC
configurations are constructed in the Sz basis [15, 42].
The dynamical spin-spin correlation function contained
in Eq. (8) can also be obtained easily by applying an op-
erator string connecting the Sz states at different imag-
inary times, with the integral computed analytically to
give a direct, formally exact QMC estimator not requir-
ing post-simulation integration [15, 39].

The Binder ratio [43] is the ratio of the fourth moment
of a quantity to the square of its second moment. For
our purposes, the relevant quantity is

R2 =
〈m4

sz〉
〈m2

sz〉2
, (9)

which is dimensionless and satisfies the crucial property
of being size-independent at the QCP in the limit of large
system sizes. The spin stiffness, or helicity modulus, of
the system is defined as

ραs =
1

N

∂2F (φα)

∂2φα

∣∣∣
φα→0

, α = x, y, z, (10)

where F is the free energy and φα is the angle of a twist
imposed between all spins in planes perpendicular to the
α axis. In an SSE simulation, the most efficient way
to extract the spin stiffness is to take the derivative in
Eq. (10) directly in the QMC expression for F (φα) at
φα = 0, giving

ραs =
3〈w2

α〉
4β

, (11)

where

wα =
1

L
(N+

α −N−α ) (12)

is the winding number [42, 44] of the spin in spatial direc-
tion α and N+

α and N−α are the numbers of occurrences
of the operators S+

i S
−
j and S−i S

+
j on bond 〈i, j〉 in the α-

direction within imaginary time [0, β]. As noted above,
ραs is the same in all three directions due to the sym-
metry of the double cubic lattice, and the average may
be taken over all of these. The spin stiffness follows the
scaling law ρs ∝ L2−d−z in d spatial dimensions [15] and,
because the dynamic exponent is z = 1 here, the quantity
ρsL

d−1, or equivalently ρsL
D−2, is also size-independent

at the QCP, up to a logarithmic correction at the upper
critical dimension.

Finally, the spin-wave velocity, c, can be obtained re-
liably by monitoring the fluctuations of the spatial and
temporal winding numbers [16, 22, 45, 46]. For a fixed
system size, L, the inverse temperature β is adjusted to
the value β∗ where the system has equal winding-number
fluctuations in the spatial and temporal directions,

〈w2
α(β∗)〉 = 〈w2

τ (β∗)〉, α = x, y, z. (13)

The temporal winding number is the net magnetization
(number of up minus number of down spins) of the sys-
tem, wτ = Mz =

∑
i S

z
i , which is easily obtained in the

Sz basis [16]. When the condition (13) is met, the spin-
wave velocity is given by the ratio

c =
L

β∗(L)
. (14)

The isotropy of the lattice is an advantage also in this
case. For each value of g, an extrapolation L → ∞ is
performed to obtain c in the thermodynamic limit. For
further details of these procedures, we refer the reader
to the recent extensive tests of this method conducted in
Ref. [16].



5

III. DETERMINATION OF THE QCP

The key to an accurate characterization of logarithmic
corrections is a high-precision determination of the loca-
tion gc of the QCP. For this we employ the Binder ratio,
R2, and the appropriately scaled spin stiffness, ρsL

D−2,
which both have scaling dimension zero and therefore
should approach constant values at gc when L→∞, up
to possible logarithmic corrections. We stress that the
scaling forms for the approach of both quantities to the
critical point are valid for a four-dimensional (4D) the-
ory, with the temperature (imaginary time) providing the
fourth dimension, and are applicable on a “critical con-
tour” where the inverse temperature T−1 = kL is taken
to infinity symmetrically with the spatial dimension of
the system. This form is appropriate for a system with
dynamic exponent z = 1 (in general 1/T ∼ Lz). All val-
ues of k yield the same results in the limit L→∞, and in
principle the contour is optimal when k = 1/c; the spin-
wave velocity, c, is a number of order unity discussed in
detail in Sec. VI, and here we use k = 1.

Away from gc, R2 and ρsL
2 approach different con-

stant values with increasing system size. In the Néel
state, R2 approaches 9/5 due to diminishing fluctuations
in the magnitude of the rotationally-invariant order pa-
rameter, of which we measure only the z-component in
Eq. (9). In the quantum disordered phase, R2 approaches
a higher value dictated by Gaussian fluctuations, which
from the symmetries of the double cubic model is 3. The
spin stiffness falls from non-zero values in the Néel phase
to zero in the disordered phase. When calculated as func-
tions of g, the curves R2(g, L) and ρs(g, L)L2 obtained
for different system sizes should cross at the QCP, up to
corrections that are well understood from the theory of
finite-size scaling. We analyze these corrections to ob-
tain an unbiased value of the critical coupling, gc, in the
thermodynamic limit [15].

Figure 2(a) shows R2 as a function of g in the neigh-
borhood of the critical coupling ratio for various system
sizes. We have performed simulations for all even-length
sizes L = 6, 8, 10, . . . , 40, but here we present only the
L = 30, 32, . . . , 40 data for clarity. Analogous curves for
the scaled spin stiffness, ρsL

2, are shown in Fig. 2(b),
again only for system sizes L = 30, 32, . . . , 40. In
both cases, the system sizes are sufficiently large that
the crossing points exhibit only a very weak dependence
on L on the scale used in the figure, and both sets of data
may be used independently to show that the QCP is lo-
cated at gc ' 4.837(1). A detailed analysis is required
to obtain the most precise results attainable, free of any
finite-size effects, and we first discuss the general scaling
behavior of gc before presenting our numerical results.

A. Scaling Forms for Critical-Point Estimators

To describe the evolution of the crossing points with
L, we perform a systematic extrapolation of the finite-
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FIG. 2. (Color online) (a) Binder ratio, R2, and (b) scaled
spin stiffness, ρsL

2, as functions of the coupling ratio g for
system sizes L = 30, 32, . . ., 40. Crossings of the curves for
pairs of system sizes L and L + 2 define finite-size estimates
gRc (L) and gρc (L) of the critical point, which are are fitted
to the form of Eq. (16) in panel (c). Enforcing a common
value of gc in both fits gives the L → ∞ critical point as
gc = 4.83704(6) and the irrelevant exponent as ω = −0.31(5)
for R2 and ω = 0.82(5) for ρsL

2.

size data to the thermodynamic limit by extracting the
crossing points between data sets for all pairs of system
sizes, L and L + 2, based on polynomial interpolations.
Figure 2(c) shows the crossing points gRc (L) and gρc (L)
obtained in this manner.

For any quantity probing a singularity in the thermo-
dynamic limit, one may define a size-dependent critical
point g′c(L). In general, this quantity is expected to shift
by an amount proportional to L−1/ν with respect to the
true infinite-size critical point, gc(∞) (hereafter denoted
for simplicity by gc), i.e. for large L,

gc(L) = gc + aL−1/ν , (15)

where ν is the standard correlation-length exponent.
However, with a definition based on crossing points of a
dimensionless quantity computed for two different sizes,
the leading corrections cancel and the convergence is
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faster,

gc(L) = gc + aL−(1/ν+ω), (16)

where ω > 0 is the dominant irrelevant exponent. In
practice, with data fits to a rather limited range of avail-
able system sizes, the corrections to Eq. (15) contained in
Eq. (16) will have exponents and prefactors that deviate
from their asymptotic values due to the neglected correc-
tions of higher order in 1/L and therefore these should
be considered as “effective” quantities.

The above forms are applicable in the absence of loga-
rithmic corrections, but such corrections are the primary
focus of our study and are expected at D = Dc. Kenna
has derived the modified form of Eq. (15) for classical
systems with logarithmic corrections [25, 47],

gc(L) = gc + aL−1/ν lnλ̂ L, (17)

where the exponent of the logarithm for the 4D O(3)

universality class is λ̂ = −1/22. For the crossing points,
Eq. (16) is modified to

gc(L) = gc + aL−(1/ν+ω) lnĉ L, (18)

as shown in Appendix A, where ĉ = λ̂ if the subleading
term L−ω has no multiplicative logarithmic correction,
but is altered by an unknown amount if it does. Un-
der the circumstances, with a number of unknowns and
with simulation data only for a restricted range of system
sizes, we fit our data using not Eq. (18) but instead the
purely algebraic form of Eq. (16) with ν = 1/2 and ω,
the effective value of the subleading exponent over the
fitting range, treated as a different fitting parameter for
the separate quantities R2 and ρsL

2.

B. Numerical Determination of gc

We take both pairs of fitting parameters a and ω in
Eq. (16) to be independently free for the two datasets
gRc (L) and gρc (L), but impose the constraint that the
curves have the same gc. As shown in Figs. 2(a) and
2(b), we obtain good fits to both functions, meaning with
a reduced χ2 (per degree of freedom, hereafter denoted
χ2
r) close to 1, to the data for all system sizes (L ≥ 6).

These allow us to conclude that gc = 4.83704(6), where
the numbers in parenthesis denote the expected errors
(one standard deviation) in the preceding digit, i.e. the
relative error on gc is approximately one part in 105. If
we allow independent parameters gRc and gρc in the fits to
the two data sets, both estimates of the critical point are
statistically consistent with this gc, albeit with somewhat
larger error bars.

We note here that the values we find for the subleading
exponent, ω = −0.31(5) for the R2 data and ω = 0.82(5)
for the ρsL

2 data, lie far from a common asymptotic
value. Thus indeed ω should be considered as an effective
exponent accounting for crossover effects in system size,

neglected higher-order irrelevant fields, and the expected
weak logarithmic corrections. However, the good match
obtained between the two extrapolated gc-estimators, es-
pecially when approaching the infinite-size value from dif-
ferent directions, would not be expected in the presence
of any corrections not taken sufficiently into account by
the fitting functions. Thus we believe the error bar on
gc quoted above to be completely representative of all
statistical and systematic uncertainties, in the sense that
any remaining systematic errors due to the fitting form
should be smaller than the statistical errors. The tests we
perform on the critical scaling behavior around the QCP
in the subsequent sections also support this statement.

IV. SIZE-DEPENDENT LOGARITHMIC
CORRECTIONS AT THE QCP

The critical O(N) φ4 theory, by which is meant the
theory at the upper critical dimension and at the criti-
cal point, obeys many fundamental and universal prop-
erties, some of which depend on N while others are
N -independent. In Ref. [35] it was shown that the ze-
ros of the partition function (Lee-Yang zeros) [48], and
hence the thermodynamic functions, obey a finite-size
scaling theory, which was derived by renormalization-
group methods. These perturbative arguments demon-
strate that there are multiplicative logarithmic correc-
tions in the system-size dependence of derivable thermo-
dynamic functions, which are closely linked to those of
the Lee-Yang zeros and, furthermore, are independent of
N for odd N . This leads to the key practical observa-
tion that size-dependent logarithmic corrections in phys-
ical observables such as the magnetic susceptibility and
the specific heat at the critical point follow a universal,
N -independent form when N = 3. Here we provide a
non-perturbative calculation of the magnetic susceptibil-
ity, χ(QAF, L) [Eq. (8)], for systems of finite L at the
QCP, gc, of the (3 + 1)-dimensional O(3) transition to
test the predicted logarithmic corrections.

The universal form of the magnetic susceptibility at
the critical point in a finite-size system is given by [35]

χ(QAF, L) = aL2[lnL]1/2
[
1 + b

ln(lnL)

lnL

]
, (19)

with non-universal but L-independent parameters a and
b. We used this expression with a fixed value g = 4.837,
which is within the standard deviation of the gc value
found in Sec. III, to investigate the logarithmic cor-
rections to the L-dependence of χ(QAF, L). We cal-
culate the susceptibility at the ordering wave vector,
QAF = (π, π, π, π), for systems of all even sizes from
L = 6 to 40. As in Sec. III, the scaling predictions un-
der test are valid for a 4D theory and again we use the
critical contour T−1 = kL with k = 1.

Figure 3(a) shows our results for the critical mag-
netic susceptibility normalized by L2. In the absence
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FIG. 3. (Color online) (a) QMC data for χ(QAF, L)/L2 ob-
tained at g = 4.837 for all even system sizes from L = 6 to 40.
Solid lines are fits to a(lnL)1/2 (green) and to Eq. (19) (blue).
We apply the square-root fit only for system sizes L ≥ 30 and
the optimal value of the fitting parameter is a = 0.274. The
two-parameter fit is made to the data for all system sizes
L ≥ 14 and yields optimal parameters a = 0.522, b = −1.317.
(b) Reduced χ2 values obtained by fitting χ(QAF, L)/L2, for
14 ≤ L ≤ 40, to the form (19), but with the exponent 1/2
replaced by a parameter η̂. The optimal χ2

r value is obtained
at η̂ ' 0.5, consistent with the prediction of Ref. [35].

of logarithmic corrections, χ(QAF, L)/L2 would be con-
stant and the curve would be a flat line. Instead we
observe that a reasonable account of the data for our
larger system sizes (L ≥ 30) requires a fit of the form
χ(QAF, L)/L2 = a(lnL)1/2, as anticipated in Ref. [35].
However, for a more quantitative fit over the full size
range available, we find [Fig. 3(a)] that it is necessary to
include the predicted subleading logarithmic correction
in Eq. (19).

To examine the sensitivity of these results to the ex-
ponent 1/2 of the multiplicative logarithm in Eq. (19),
we replace this predicted exponent by a variable η̂. We
determine this exponent by calculating the goodness of
fit χ2

r as a function of η̂. As Fig. 3(b) makes clear, the
best fits are indeed obtained close to η̂ = 0.5, in complete
consistency with Eq. (19).
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FIG. 4. (Color online) Staggered magnetization, defined for

each system size as ms(L) = [3〈m2
2z(L)〉]1/2, shown as a func-

tion of 1/L2 for a range of coupling ratios g near gc. Poly-
nomial fits of cubic order were used to extrapolate ms(L) to
the thermodynamic limit; the temperature in all cases was
T = 1/L. Error bars on all points are smaller than the sym-
bol sizes.

From the fact that our exact numerical data confirm
not only the leading but also the subleading corrections
to scaling, we conclude that obvious logarithmic cor-
rections can be observed in the size-dependence of the
thermodynamic functions at the QCP. This result also
demonstrates that our determination of gc is sufficiently
precise to study logarithmic corrections without signifi-
cant distortions arising from uncertainties in its value.

V. SUBLATTICE MAGNETIZATION

Physical condensed-matter systems at continuous
QPTs are generally in the thermodynamic limit, and
size-scaling measurements of the type easily performed in
QMC simulations (Sec. IV) are not a realistic experimen-
tal option. However, as discussed in Sec. I, multiplica-
tive logarithmic corrections are expected in a range of
physical quantities close to the QCP. The primary phys-
ical observables in the quantum antiferromagnet are the
zero-temperature staggered magnetization, ms(gc − g),
and the Néel temperature, TN (gc − g). Calculating
these quantities in the thermodynamic limit is signifi-
cantly more challenging than studies of size-dependence,
as careful extrapolations of finite-size data are required.
Here and in Sec. VI we describe and then implement ap-
propriate measures for extrapolating to infinite system
size and, for ms, to zero temperature, thereby revealing
the logarithmic corrections to both ms and TN .

We compute the staggered magnetization according to
Eq. (7) for coupling ratios as close to gc ' 4.837 as
g = 4.834. For a given value of g, we calculate the
squared quantity 〈m2

sz(g, L)〉 over a range of system sizes.
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As shown in Fig. 4, the staggered magnetization clearly
decreases with increasing L and converges towards a fixed
limit, suggesting a controlled extrapolation even very
close to the QCP. Definitive extrapolation to the ther-
modynamic limit in this regime is a complex issue, and
a discussion of several technical points is in order before
analyzing our results.

A. Extrapolation scheme

First, most of the simulations in this section are per-
formed at a temperature T = 1/L, such that the ex-
trapolation L → ∞ includes both system size and tem-
perature. Because the system is ordered for sufficiently
low T and the order parameter converges quickly to a
non-zero value below the ordering temperature, one may
use the form T = aL−b with arbitrary prefactor a > 0
and exponent b > 0 to study the T → 0 magnetiza-
tion as a function of L. These conditions for obtaining
a (T → 0, L→∞) extrapolation of the order parameter
for g < gc contrast with the need to follow the contour
T = aL−1 (a = 1/k; b = 1 when z = 1) in Secs. III
and IV for studies of the QCP. Although large values
of a and b should improve the convergence, in practice
one must consider the balance between computation time
and convergence rate, and the choice a = 1, b = 1 works
well in most cases. However, for coupling ratios very
close to the QCP, the temperature may be a significant
fraction of TN and thus ms(g, L) could be far from its
zero-temperature value. We have therefore performed
additional simulations at T = 1/(2L) to verify that the
extrapolation does remain well controlled and fully rep-
resentative of the thermodynamic limit in temperature
as well as in system size.

Second, in contrast to Sec. III, where we used the non-
trivial power-law scaling forms (16) known to be appro-
priate for extrapolating the location of a critical point,
the ground-state order parameter inside the Néel phase
can be extrapolated by using simple polynomial fits. To
obtain ms, one may extrapolate the squared quantity
and then take its root afterwards or take the square root
for each system size before extrapolating (the procedure
followed in Fig. 4); the corresponding polynomials are

m2
sz(g, L) = a(g) + b(g)L−2 + c(g)L−3 + . . . , (20)√

m2
sz(g, L) = a′(g) + b′(g)L−2 + c′(g)L−3 + . . .(21)

Here the leading L-dependence in the extrapolation of
a non-vanishing order parameter, at fixed g inside the
ordered phase, is known [49] to be L2−d−z due to the
dimension-dependent power-law decay of the transverse
correlation function. Here d+ z = d+ 1 = D = Dc = 4,
and the resulting leading 1/L2 dependence is shown
clearly in Fig. 4. Because these procedures use a poly-
nomial of finite order to approximate physical behavior
containing, in principle, an infinite number of corrections,
the extrapolated value ofms obtained with the forms (20)

and (21) will not be exactly the same, but for reliable fits
they should agree within statistical errors.

We stress that no logarithmic corrections are expected
in this case, meaning that on grounds of principle they
should not be present in the asymptotic large-L correc-
tions to a non-zero-valued order parameter. This non-
critical behavior contrasts with the case of the shift in
the critical point discussed in Sec. III, where logarithmic
corrections should in principle be present, although we
concluded that their effects are not detectable in prac-
tice.

Finally, however, non-trivial corrections may still be
expected in the L dependence of 〈m2

sz(g, L)〉 for g close
to the QCP, where the order parameter is small, in the
form of crossover behavior from near-critical at small sys-
tem sizes to asymptotic ordered-state scaling at large L.
Quite generally, no analytic functional forms are available
for describing such crossovers, and great care is required
to ensure that the asymptotic region, where Eqs. (20)
and (21) are valid, has been reached. As g → gc, succes-
sively larger systems are required for this, and here we
find that reliable extrapolations are no longer possible
beyond g = 4.834 because of the limits on system size
set by the available computer resources.

In fits to the forms (20) and (21), it is necessary to
select the order P of the polynomial and the range of
system sizes to include. The size of the error bars on the
QMC data points has a significant influence here, because
deviations from the leading L−2 correction are easier to
detect with smaller error bars. We have performed a
systematic study using fits of orders P = 3 to 6, including
different system-size ranges. We characterize the quality
of the fits using the standard reduced χ2 measure, and
for a “good” fit we require that the optimal value must
fall within three standard deviations of its mean, i.e. we
demand that

χ2
r − 1 =

χ2

nL − np
− 1 ≤ 3

√
2

nL − np
, (22)

where nL is the number of data points (system sizes) and
np = P + 1 is the number of fitting parameters. For a
given P and largest system size L, we use all available
system sizes down to a smallest size Lmin for which the
above condition is still satisfied. We then study the be-
havior as a function of L for different P , and compare
the values of ms obtained from extrapolations based on
Eqs. (20) and (21). To estimate the error bars on the ex-
trapolated ms(g), we performed additional polynomial
fits with Gaussian noise (whose standard deviation is
equal to the corresponding QMC error bars) added to
the finite-size data. The standard deviation of the distri-
bution of extrapolated ms(g) values defines the statistical
error.

Figure 5 shows results for several values of g approach-
ing the QCP, with cases where the fits are relatively
straightforward (further from gc) shown in panels (a) and
(b) and more challenging cases (closer to gc) shown in
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FIG. 5. (Color online) Extrapolated values of the sublattice
magnetization as a function of the largest system size included
in the fit, for values g near the QCP (gc ' 4.837). Panels
(a) and (b) include values of g for which the extrapolations
are stable for relatively small L; panels (c) and (d) show g
values very close to gc, where the extrapolations require large
sizes to stabilize. Results for different orders P of the fitting
polynomial are compared. The smallest system size included
was determined using the χ2

r criterion of Eq. (22). Panels
(a,c) and (b,d) show respectively the results of extrapolations

of 〈m2
sz(g, L)〉 and 〈m2

sz(g, L)〉1/2, with the square root taken
after the extrapolation in the former case.

panels (c) and (d). The upper panel in each group corre-
sponds to the square root being taken after the extrapola-
tion [Eq. (20)], while the lower corresponds to fitting the
square root for each system size [Eq. (21)]. In panels (a)
and (b), the extrapolated values are observed to be very
stable with respect to the range of system sizes and the
order of the polynomial, whereas panels (c) and (d) man-
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|g − gc|/gc
10−2

10−1

m
s

fitted with Eq. (24)
square-root fit

0.0 0.5
0.0
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FIG. 6. (Color online) Extrapolated staggered magnetization,
ms at T = 0, as a function of the distance from the QCP,
using the value gc = 4.83704 determined in Sec. III. Error
bars on the calculated data points are similar to or smaller
than the symbol size. The closest point to gc is g = 4.834.
Lines show both the best fit by a pure square-root function
[Eq. (23), green] and including the logarithmic correction fac-
tor predicted in Ref. [35] [Eq. (24), blue]. The fitting pa-
rameters of the logarithmic correction curve are a = 0.266(2)
and b = 4.8(3). The yellow shading represents the approxi-
mate extent of the QC regime and is determined by including
all data points described adequately (within a deviation of
approximately 4%, see text) by the functional form of the
logarithmic correction curve. The inset shows ms(g) and the
QC regime on linear axes.

ifest some of the crossover behavior expected close to gc,
showing considerable variation as the maximum system
size is increased. There are also significant differences
between the two fitting procedures, until the largest sys-
tem sizes where the extrapolations stabilize; we take the
fact that the two types of fits give consistent results for
these largest systems at all values of g as an indication
that the extrapolations are reliable. We have not been
able to achieve good convergence based on system sizes
up to L = 48 for g values closer to gc than those shown in
Figs. 5(c) and (d). In these most challenging cases, our
results show that it is better to use the fitting form of
Eq. (21), extrapolating the square root of the staggered
magnetization for each system. Regarding the quality of
the fits obtained by varying the polynomial order, P , in
Fig. 5, we find that extra terms in the fit scarcely justify
the additional degrees of freedom lost in the determina-
tion of χ2

r. All of the results presented below were ob-

tained by extrapolating
√
m2
s with polynomials of order

P = 4.

B. Thermodynamic Limit

With all of the above considerations, we are able to
obtain reliable and high-precision extrapolations of the
staggered magnetization in the thermodynamic limit for



10

values of g as close to the QCP as |g − gc| ' 0.003. In
Fig. 6 we show all of our data for ms(|g − gc|) on log-
arithmic axes. If these data satisfied mean-field scaling
alone, with no discernible logarithmic corrections, one
would expect a curve of the form

ms(g) = a|g − gc|1/2, (23)

but this (green line in Fig. 6) is manifestly unable to de-
scribe the data. For the zero-temperature order param-
eter, perturbative renormalization-group considerations
applied to the O(N) φ4 field theory at the upper critical
dimension predict the form

ms(g) = a|g − gc|β | ln(|g − gc|/b)|β̂ , (24)

where β = 1/2 is the mean-field exponent and the expo-
nent of the multiplicative logarithmic correction is given

by β̂ = 3/(N + 8) [35]. A fit to this form, using β̂ = 3/11
for N = 3 (blue curve in Fig. 6), yields excellent agree-
ment with the data all the way to our smallest values of
|g− gc|; the fitting parameters are a = 0.266± 0.002 and
b = 4.8 ± 0.3. We note that the fit is very insensitive to
the precise value of b, and for further analysis we fix this
to b = gc.

To test the predicted exponent β̂ = 3/11 in Eq. (24),
we treat it as a free parameter and fit our data using
different numbers of g values, including all points closest
to gc and studying the behavior as points further away

from gc are added one by one. Figure 7 shows χ2
r and β̂

as functions of the number of data points fitted. With
the exception of cases including the two points furthest
away from gc, all the fits appear reasonable, with χ2

r < 2.
However, by the properties of the χ2 distribution, a fit
should be considered statistically acceptable only if a cri-
terion analogous to Eq. (22) is satisfied, i.e. the largest
number of data points for which χ2

r−1 remains less than
three times its standard deviation (3σ) marks the bound-
ary between good and poor fits. At this point we obtain

β̂ = 0.268 ± 0.008, which lies well within one standard
deviation of the predicted value 3/11 ≈ 0.2727. If more
points are excluded, the fitted exponent evolves slowly
[Fig. 7(b)] while remaining statistically well compatible
with the predicted value. Because the fitting error in-
creases, less weight should be placed on results including
less data, and taking an error-weighted average over all
the points below the cut-off line, Ng = 23, in Fig. 7 yields

β̂ = 0.279±0.011. We take this as complete confirmation
of the predicted value.

As important as finding clear logarithmic corrections
to scaling is that we have demonstrated their presence
over a significant region around the QCP; indeed, most
of the points we have computed are well described by
Eq. (24). Including the multiplicative logarithmic correc-
tion converts an inadequate description of the data into
an excellent one (Fig. 6) as far inside the Néel phase as
|g−gc|/gc ≈ 0.2, where the order parameter is already at
60% of its maximum possible value (ms = 1/2, at which
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FIG. 7. (Color online) Statistical analysis of the exponent
of the logarithmic correction in Eq. (24). (a) Reduced χ2

value of the fit, normalized to the standard deviation, and
(b) optimal value of the exponent shown as functions of the
number of data points (g-values) used, beginning from the
point closest to gc in Fig. 6. The vertical dashed line indicates
the number of points, Ng = 23, for which a 3σ criterion for
χ2
r [cf. Eq. (22)] is satisfied, as indicated by the horizontal line

in panel (a). In panel (b), the error bars were computed by
repeating the fits multiple times with Gaussian noise added to
the ms data points. The horizontal line marks the predicted
value β̂ = 3/11.

point no quantum fluctuation effects remain). This im-
provement is clearer still in the inset of Fig. 6, which
shows the results on linear axes. Under the assumption
that data points at large |g− gc| no longer fall on the fit-
ted curve because they lie outside the region controlled
by the QCP, we can determine the size of the critical
region based on a threshold maximum deviation of the
data from the curve. Although the choice of threshold
value is somewhat arbitrary, the |g − gc|/gc ≤ 0.2 region
indicated by the yellow shading in Fig. 4 reflects a thresh-
old of approximately 4%, which lies well above achievable
experimental uncertainties. We comment in Sec. VII on
the utility of our results for the case of TlCuCl3.
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VI. NÉEL TEMPERATURE

We turn next to the scaling form of the Néel temper-
ature, TN (g), near the QCP. Unlike the T = 0 order pa-
rameter, as far as we are aware there is no prediction from
perturbative field-theoretical calculations including loga-
rithmic corrections for the scaling form of finite-T critical
points at the upper critical dimension. Close to a QCP,
the general power-law form without logarithmic correc-
tions is discussed in Ref. [3], but one may also expect a
multiplicative logarithmic term as in the other quanti-
ties we have discussed. We first derive the exponent of
the logarithm for the O(3) transition in 3+1 dimensions,
based on the known scaling properties of related quan-
tities. We then present our QMC calculations of TN for
the Heisenberg model on the double cubic lattice and test
our prediction.

A. Scaling hypothesis

In a path-integral construction in imaginary time, the
size of the system in the time dimension is proportional
to the inverse temperature, β = 1/T . This can be con-
sidered as a length, Lτ , on a parallel with the spatial
lengths, L, of a d + 1-dimensional system. If the spa-
tial lengths are taken to infinity in all directions, what
remains is a single finite length, Lτ , for the effective sys-
tem, and finite-size scaling in this length corresponds to
finite-T scaling in the original quantum system [23].

Without logarithmic corrections, by analogy with the
finite-L shift of the critical point discussed in Sec. III A,
the same type of shift as in Eq. (15) can be expected
because z = 1. Thus

gc(T )− gc(0) ∼ L−1/ντ , (25)

as a consequence of the finite temporal size, and the scal-
ing behavior is TN ∼ (gc − g)ν , as discussed in detail in
Ref. [3]. In the case of spatial finite-size scaling, with all
lengths finite, the shifted critical point (sometimes called
the pseudo-critical point) is not a singular point, but the
singularity develops as L→∞. By contrast, in the finite-
T case in d = 3 spatial dimensions, the shifted point is a
true (classical) phase transition, although from a scaling
perspective this difference is not relevant.

In order to discuss logarithmic corrections, it is useful
to first express TN using a macroscopic, zero-temperature
energy scale of the system that vanishes as g → gc [3].
For the spin system considered here, the only such energy
scale is the spin stiffness, ρs. According to Ref. [37], the
scaling form of this quantity in the ordered phase when
z = 1 is

ρs ∼ (gc − g)ν(d−1). (26)

Consistency with the result TN ∼ (gc − g)ν then gives
the scaling of the critical temperature for d = 3,

T 2
N ∼ ρs, (27)

where the mismatch in units is compensated by a power
of the non-singular spin-wave velocity [3] (Sec. VIC),
which can be neglected here. Our basic hypothesis is
that this proportionality, which is the singular part of
a relationship based on matching scaling dimensions, ap-
plies in all respects at the upper spatial critical dimension
(d = 3 for z = 1), such that logarithmic corrections to TN
arise solely due to the logarithmic corrections intrinsic to
ρs.

Fisher et al. [37] have shown that the critical spin stiff-
ness can be expressed as ρs ∼ ξ2f , where ξ is the corre-
lation length and f is the free-energy density. The loga-
rithmic corrections to both ξ and f , presented by Kenna
in Ref. [25], are

ξ ∼ |g − gc|−ν lnν̂(|g − gc|), (28)

with ν̂ = 5/22 for the relevant universality class, and

f ∼ |g − gc|4ν lnα̂(|g − gc|), (29)

with α̂ = 1/11. The logarithmic correction to ρs is there-
fore given by

ρs ∼ |g − gc|2ν̂ ln2ν̂+α̂(|g − gc|), (30)

and by combining these results with Eq. (27) we obtain

TN ∼ |g − gc|ν lnτ̂ (|g − gc|), (31)

where τ̂ = ν̂ + α̂/2. From the values of ν̂ and α̂ given
above [25], we obtain the prediction τ̂ = 3/11, which
is remarkable in that the exponent in the logarithmic
correction to TN should be the same as the one in the
sublattice magnetization, τ̂ = β̂ (24).

Because the zero-temperature order parameter is a
consequence purely of quantum fluctuations, whereas the
classical ordering temperature is a consequence primar-
ily of thermal fluctuations, there is a priori no reason
to expect that the two should have the same form. Ex-
act numerical calculations are therefore uniquely posi-
tioned to provide qualitatively new information in this
case. We note that this equality applies to the phase
transitions of O(N) models for all values of N ; because
ν̂ = (N +2)/[2(N +8)] and α̂ = (4−N)/(N +8) [25], we

obtain τ̂ = 3/(N + 8), the same value as the exponent β̂
in Eq. (24). Thus we predict that, in the neighborhood
of gc, TN (g) will be proportional to ms(g, T = 0), with
no multiplicative logarithmic factors, for all values of N ;
this result was reported for the N = 3 case in a previous
QMC study [20], which we now extend sufficiently close
to the QCP to observe the cancellation of logarithmic
terms.

B. QMC calculations

Calculating TN (g) within our QMC simulations is sim-
ilar to obtaining gc in Sec. III, but with some impor-
tant differences of detail. The calculations of Sec. III
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were performed for a genuinely 4D system, with the
imaginary-time axis treated on the same footing as the
spatial dimensions. At finite temperatures, this symme-
try is broken and the system is 3D with a separate tem-
perature variable, which determines the finite thickness
of the time dimension even when L → ∞. Both the
Binder ratio [Eq. (9)] and the spin stiffness [Eq. (11)] are
size-independent quantities at the thermal phase transi-
tion and hence remain valuable indicators, although the
appropriately scaled spin stiffness for the 3D transition
is now ρsL (instead of ρsL

2, used for analyzing the 4D
T = 0 transition in Sec. III) [20].

For each value of the coupling ratio g within the Néel
phase (g < gc), we compute R2 and ρsL for a range
of system sizes and perform finite-size-scaling extrapo-
lations to deduce the Néel temperature, TN (g), in the
thermodynamic limit. Similar to Sec. III, we first ob-
tain the crossings of the R2(T ) and ρsL(T ) data for dif-
ferent system sizes using polynomial fits, as shown in
Figs. 8(a) and 8(b) for g = 4.71. The crossing points of
both quantities for each successive pair of system sizes,
TN (g, L) and TN (g, L + 2), are used to extrapolate to-
wards the value TN (g, L → ∞) from above and below,
using power-law forms analogous to Eq. (16). We note
that, as in the analysis leading to gc (Sec. III B), the
data points obtained for R2(L, T ) and ρsL(L, T ) using
systems of all sizes (L ≥ 10) fall within a 3σ criterion
analogous to Eq. (22) for this type of fit. The extrapola-
tion of TN (g, L→∞) ≡ TN (g) = 0.5363(13) for g = 4.71
is shown in Fig. 8(c).

We comment here that our determination of TN (g) for
g close to gc is rather less precise than our determination
of ms(g). The fundamental difference in character of
the two quantities, and hence of their calculation, causes
the estimators for TN (g) [the approximate crossings in
Figs. 8(a) and 8(b)] to have larger error bars and finite-
size effects. Further, the error bars of the crossing points
grow rapidly as g → gc, while the decrease in TN leads to
longer simulation times (because the space-time volume
is proportional to L3/T ). After detailed error control,
the closest reliable data point to the QCP is g = 4.831,
for which |g−gc| is twice as large as for the closest ms(g)
point (Sec. V). We have nevertheless obtained 19 reli-
able data points, within the QC regime determined from
ms(g) (Fig. 6) and down to unprecedentedly low temper-
atures, which are fully sufficient to test for evidence of
logarithmic corrections to TN (g).

The Néel temperature has units of energy and clearly
depends on the overall energy scale of the system. Ideally,
it should be normalized by an intrinsic energy scale of the
system to give a dimensionless quantity. In Ref. [20] it
was shown that TN (|g − gc|) normalized to the micro-
scopic energy scale Js, given by the sum of all couplings
of a spin to its neighbors, yields a remarkably system-
independent result for Heisenberg antiferromagnets with
three different dimerization patterns; for the double cu-
bic lattice, Js = J(6 + g). Other authors [21, 22] have
suggested that the appropriate normalization is given by
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FIG. 8. (Color online) Procedures used to extract the Néel
temperature, TN (g), illustrated for the case g = 4.71. (a)
Binder ratio R2 as a function of T for system sizes L = 10,
12, . . . , 30. (b) Scaled spin stiffness ρsL as a function of T for
the same values of L. Error bars are smaller than the symbol
sizes. Crossings of these lines are extracted using polynomial
fits and the results are used to obtain finite-size estimates for
quantities TRN (L) and T ρN (L). (c) Fits to data for systems of
all sizes (L ≥ 6) of the two size-dependent crossing estimators

using functions of the form TN (L) = TN (∞) + a/L1/ν+ω.
Enforcing the same constant TN (∞) ≡ TN for the R2 and ρsL
crossings gives TN = 0.5363(13) with irrelevant exponents
ω ≈ 0.8(2) for R2 and 1.1(3) for ρsL (1/ν ≈ 1.42 for the
relevant 3D universality class).

a macroscopic quantity, the spatially averaged spin-wave
velocity,

√
cxcycz (which, it should be noted, does not

have units of energy and requires an unknown dimension-
ful constant). We begin by taking the former approach
and return below to address the latter.

The relationship between TN/Js and |g − gc| is pre-
sented in Fig. 9. Once again we show a mean-field scal-
ing line for comparison and once again it cannot provide
an adequate fit, suggesting that logarithmic corrections
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FIG. 9. (Color online) Normalized Néel temperature, TN/Js,
as a function of the distance from criticality, |g − gc|. The
closest point to gc ≈ 4.837 is g = 4.831. Lines show both the
best fit by a pure square-root function (green) and using a log-
arithmic correction factor with exponent τ̂ = 3/11 [Eq. (31),
blue]. The yellow shading represents the QC regime and is
determined from Fig. 5. The inset shows TN (g) on linear axes.

are indeed present. However, a fit to our predicted form,
given by Eq. (31) with τ̂ = 3/11, describes the data very
well, even at the limits of the region classified as QC
based on the ms(gc − g) fit in Fig. 5.

For a fully quantitative test of the exponent we predict
for the multiplicative logarithmic term in Eq. (31), we
substitute a free exponent τ̂ for the fixed value 3/11 and
optimize it using fits with different windows of g-values.
This analysis is precisely analogous to that performed for
ms in Fig. 7. The behavior of χ2

r and of the optimized ex-
ponent, with error bars again estimated using the method
of numerical Gaussian noise propagation, is presented in
Fig. 10. By taking the inverse-variance-weighted aver-
age over all results for which χ2

r is acceptable, we obtain
τ̂ = 0.275(2), in excellent agreement with the prediction
τ̂ = 3/11 ' 0.2727. We conclude that the multiplicative
logarithmic correction to TN (g) is, to within our error
bars and in agreement with a straightforward scaling ar-
gument based on the spin stiffness (Sec. VIA), identical
to the ms(g) correction in Eq. (24).

C. Spin-wave velocity

The spin-wave velocity, c, is uniform in the primary
axial directions on the double cubic lattice. As discussed
in Sec. II, it can be calculated most straightforwardly and
most accurately in the SSE framework from the spatial
and temporal winding-number fluctuations in Eq. (13)
to define the space-time-isotropic criterion of Eq. (14),
which contains the velocity [16, 22, 45, 46]. This tech-
nique remains well-defined throughout the critical regime
and is expected not to be affected by logarithmic cor-
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FIG. 10. (Color online) Statistical analysis of the exponent
of the logarithmic correction in Eq. (31), performed by re-
placing the predicted value 3/11 with a fitting parameter τ̂ .
(a) Reduced χ2 value of the fit, normalized to the standard
deviation, and (b) optimal value of the exponent, both shown
as functions of the number of data points (g-values) used,
beginning from the point closest to gc in Fig. 9. The ver-
tical dashed line indicates the number of points, Ng = 16,
included in the fit below which χ2

r satisfies a 3σ criterion anal-
ogous to Eq. (22), as indicated by the horizontal line in panel
(a). In panel (b), the error bars were computed by repeating
the fits multiple times with Gaussian noise added to the TN
data points. The horizontal line marks the predicted value
τ̂ = 3/11.

rections; it was shown in Ref. [16], which we follow for
technical details, that the winding-number approach pro-
duces the correct result for c in the Heisenberg chain, a
system known to have strong logarithmic corrections to
scaling.

In Fig. 11(a) we show the results for c(g, L) of cal-
culations on finite systems of even sizes up to L = 26,
which we extrapolate to the thermodynamic limit using
the relation

c(g, L) = c(g) + a(g)/L2 + b(g)/L3. (32)

This form is found empirically [16] to provide a very good
reproduction of the data and numerical errors due to
finite-size effects in the critical regime are clearly small.
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FIG. 11. (Color online) Calculation of the spin-wave velocity.
(a) Velocities c(L) obtained for systems of sizes from L = 6
to 26 at different values of the coupling g and extrapolated
using Eq. (32). (b) Extrapolated velocities c(g) as a function
of the microscopic energy scale 6 + g. Error bars are mostly
hidden inside the symbols. The solid line is a linear fit and
the inset magnifies the region close to gc.

Figure 11(b) shows the results for the extrapolated spin-
wave velocities c(g) of the infinite system, by comparing
the macroscopic scale c3/2 with the microscopic quan-
tity 6 + g discussed above. The almost perfect linearity
demonstrates that the two effective energy scales are very
closely related, which can be expected from the fact that
the velocity of a spin excitation depends directly on the
net interaction of a single spin, and both are perfectly
valid choices for the normalization of TN . A graph com-
pletely analogous to Fig. 9, showing a logarithmic cor-
rection with the same exponent τ̂ = 3/11, is obtained if
c3/2 is used to normalize TN (g).

D. Relation between TN and ms

In experiment it is often difficult to relate an external
control parameter to the microscopic coupling constants
of a model Hamiltonian. In a quantum antiferromag-
net, some aspects of this problem can be circumvented
by studying the relationship between TN and ms(T = 0)

directly, without reference to the control parameter, g.
A universal relationship between these macroscopic and
measurable quantites would be of considerable experi-
mental utility in characterizing the nature of critical phe-
nomena without recourse to detailed microscopic knowl-
edge of the system parameters (such as the pressure de-
pendence of the exchange couplings in TlCuCl3). Al-
though an experimental test [8] of the linear relationship
between TN and ms [20] indicated satisfactory agreement
close to the QCP, the issue of how best to normalize TN
was not addressed. We use our systematic data spanning
the entire QC regime to test the limits of linear propor-
tionality and discuss the normalization of TN .

In Ref. [20], where a universal linear relation was found
in three different models, the authors articulate a mean-
field argument based on semiclassical considerations for
a direct proportionality of TN to the effective spin order
gauged by ms at T = 0. In Ref. [21], these arguments
were elucidated in a field-theory context, where it was
stated that logarithmic corrections should be negligible
for linear proportionality to emerge. In fact these argu-
ments can be reduced to the statement that it should be
possible to treat quantum and thermal fluctuations in-
dependently, with no mutual interference of their effects
[20]. If one considers that mean-field exponents are valid
in high-dimensional systems (D > Dc) because ther-
mal fluctuations become independent of quantum fluc-
tuations when the phase space is sufficiently large, then
it appears that weak logarithmic corrections could enter
the relationship of TN to ms at D = Dc. This possibility,
also motivated by the (then) unknown form of the log-
arithmic corrections to TN , was investigated directly by
QMC simulations for the cubic lattice [22], but the results
were not conclusive (claims concerning the observation of
logarithmic corrections are not justified by the available
data range). Here we have presented scaling arguments
(Sec. VIA) and numerical data (Sec. VIB) demonstrat-
ing that the logarithmic corrections to ms and TN have
precisely the same form, setting their linear relationship
in this class of system on a far firmer foundation.

Our data from Secs. V and VI can be used to probe
the TN (ms) relation in detail and confirm that linearity
extends much closer to the QCP than previous studies
could show. Because our results are for a single type of
dimerized model, we are not able to address the question
of a universal prefactor [20]. However, we are able to
make a definite statement regarding logarithmic correc-
tions in the relationship between TN and ms. Figure 12
shows our data, taken from Figs. 6 and 9, in the form
TN (ms), with the implicit control parameter g effectively
eliminated. In panel (a), TN is simply normalized by the
energy scale, the interdimer coupling J = 1; in panel (b),
we have normalized TN by the composite scale Js = 6+g
(where g can be considered a function of ms), as in Fig. 9;
in panel (c), we have normalized TN using the correctly
scaled spin-wave velocity, c3/2. The shaded regions again
signify our definition of the critical region, based on the
strict critical scaling of ms(g) in Fig. 5.
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FIG. 12. (Color online) Relationship between TN and ms,
using different normalizations of TN ; in (a) by the intra-cube
coupling J = 1, in (b) by the sum of couplings Js = 6+g, and

in (c) by the spin-wave velocity in the form
√

12/5c3/2. The
lines are linear (proportionality) fits to the small-ms points
and the yellow shaded areas denote the QC regime determined
from ms(g) in Fig. 5.

As shown in Ref. [20], we find in Fig. 12(b) that the
linearity of ms and TN/Js extends well beyond the QC
regime; although our data were not selected to focus on
this region, we do find complete agreement with previ-
ous calculations where the data overlap. Here we demon-
strate that the essentially perfect linearity also extends
much closer to ms = 0 = TN (g → gc), and in particular
that it remains valid throughout a regime with explicit
logarithmic corrections in the individual quantities. Al-
though we cannot show that the linear relationship ex-
tends all the way to the QCP, our data certainly suggest
that this is the case, i.e. that it can also be considered
a universal property of the QC regime. To the extent
that linearity of ms and TN is a consequence of the de-
coupling of thermal and quantum fluctuations, this inde-
pendence appears to extend from strongly ordered sys-
tems, where no logarithmic corrections are expected, to
the most strongly fluctuating QC systems. The linear re-
lationship we have demonstrated verifies in full our scal-

ing prediction that the logarithmic corrections to TN (g)

have the same exponent, τ̂ = β̂ = 3/11, as ms(g). We
also note that the normalization of TN has no effect (be-
yond the prefactor) on the linear relationship in the QC
regime, but that deviations from linearity clearly differ
at higher ms.

We close by considering in more detail the case where
TN is normalized by c3/2 [Fig. 12(c)], with a view to
making quantitative comparisons with field-theory pre-
dictions [21]. The explicit relationship is

TN = γc3/2
√

12

5
ms, (33)

where γ = 〈φ〉/ms is the dimensionful prefactor relating
the expectation value of the un-normalized field φ in the
action to the order parameter ms of the lattice model.
In the dimensionless units of our work (J = 1, h̄ = 1,
. . . ), we obtain γ = 0.6998± 0.0016, thereby providing a
bridge between the quantum field theory and the micro-
scopic lattice Hamiltonian. We suggest that this calcu-
lation should be repeated for other dimerized geometries
to test the universality of γ. It is worth repeating in
this context the advantages of the double cubic lattice in
making the spin-wave velocity equal in all three primary
axial directions. The winding-number method used to
extract c in Sec. VI C can be generalized to anisotropic
systems [51], but incurs the significant complication of
altering the aspect ratio of the spatial lattice. Different
techniques for computing the velocities, such as those
based on the hydrodynamic relationship among c, the
spin stiffness, and the magnetic susceptibility [16], may
then be more convenient in practice.

E. Width of the Classical Critical Region

A key question raised by the experiments on TlCuCl3
[8] concerns the width of the region close to TN where
classical critical scaling applies. It was found that this
width, W ' 0.2TN , is essentially constant when normal-
ized by TN . We employ scaling arguments to show that
the normalized width, W̃ = W/TN , should indeed be a
constant with only a weak logarithmic correction in 3+1
dimensions.

For fixed temperature T , we consider the correlation
length, defined in terms of the approach of the spin-spin
correlation function to its asymptotic long-range value,
m2
s, when approaching the critical coupling ratio g(T )

from the ordered side. This quantity has an initial diver-
gence governed by the 4D QCP,

ξ(T ) = ξ4(T ) ∼ [gc(T = 0)− g(T )]−ν4 , (34)

with mean-field exponent ν4 = 1/2, because the temporal
thickness Lτ far exceeds ξ and the system cannot sense
its finite temporal extent, behaving as at T = 0. At the
point where ξ reaches Lτ , the behavior crosses over to a
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3D scaling form,

ξ(T ) = ξ3(T ) ∼ [gc(T )− g(T )]−ν3 , (35)

where ν3 ≈ 0.70 is the 3D O(3) exponent. Without
logarithmic corrections, the temporal length is simply
Lτ ∝ 1/T (more precisely, Lτ = L/c), but at the up-
per critical dimension this relationship is modified by a
logarithmic factor,

Lτ ∼ | ln(T )|q̂/T, (36)

which is obtained by generalizing the classical result of
Kenna [25]. For the 4D O(3) universality class, q̂ = 1/4
[25, 47], and the correlation length itself also has a loga-
rithmic correction,

ξ4 ∼ (gc − g)−ν4 | ln(gc − g)|ν̂ , (37)

with ν̂ = 5/22. The quantum-classical crossover taking
place when ξ ≈ Lτ therefore corresponds to

| ln(T )|q̂/T ∼ [gc − g)]−ν4 | ln(gc − g)|ν̂ , (38)

which, by converting to a temperature-dependence and
keeping only the leading logarithm, yields the crossover
temperature

T ∗(g) ∼ (gc − g)1/2| ln(gc − g)|q̂−ν̂ . (39)

Using our result for TN (g) [Eq. (31)], the width of the
classical critical region on the ordered side of the transi-
tion is therefore

W̃ (g) =
TN (g)− T ∗(g)

TN (g)
∼ 1−a| ln(gc− g)|(q̂−ν̂)/τ̂ , (40)

with a constant a, whose calculation requires further con-
siderations, and a small exponent

q̂ − ν̂
τ̂

=
1/4− 5/22

3/11
= 1/12, (41)

on the logarithm. This very weak dependence explains
the near-constant behavior found for TlCuCl3 [8]. On
general grounds we expect the width of the classical crit-
ical regime on the other side of the transition to scale in
the same way.

VII. SUMMARY

We have provided a direct and non-perturbative verifi-
cation of the existence and nature of multiplicative loga-
rithmic corrections to scaling at the quantum phase tran-
sition for three-dimensional dimerized quantum Heisen-
berg antiferromagnets. These systems correspond to the
φ4 field theory of an O(3) quantum field in 3 + 1 dimen-
sions, which is the upper critical dimension (Dc = 4) for
all models with O(N) universality. With the exception
of the Ising model (N = 1) [50], no such demonstration

exists to date, despite a significant body of analytical
and numerical work on quantum criticality in dimerized
quantum antiferromagnets.

Our results are obtained from large-scale quantum
Monte Carlo calculations based on state-of-the-art simu-
lation techniques and detailed finite-size-scaling analysis.
These enabled us to extract the precise logarithmic cor-
rections to the leading critical properties at the quantum
phase transition from a non-magnetic state of dominant
dimer correlations to a Néel-ordered antiferromagnetic
state. Specifically, we have obtained the multiplicative
logarithmic corrections to the mean-field behavior of the
order parameter, the zero-temperature staggered mag-
netization (ms), on the control parameter, the coupling
ratio g. We have verified that these are governed by an

exponent β̂ = 3/11, a value we specify with numerical
(statistical) precision under 3%, matching precisely the
prediction of perturbative renormalization-group calcu-
lations [24, 25].

No prediction was previously available for the analo-
gous logarithmic correction to the Néel temperature, TN .
We have implemented a scaling Ansatz exploiting the
known logarithmic corrections of other physical quanti-
ties to obtain its form. Our prediction is that TN has
exactly the same exponent in its logarithmic correction,
τ̂ = 3/11, as the order parameter, and our numerical
results for TN (g) are in excellent agreement. We have
thereby established an exact linearity between TN and
ms throughout the quantum critical regime. We have
also demonstrated a different kind of logarithmic correc-
tion, in the size-dependence of the staggered magnetic
susceptibility at the four-dimensional quantum critical
point, where we verify the predicted N -independent scal-
ing form [35].

The numerical task of finding logarithmic corrections is
not a straightforward one. We have established that the
appropriate scaling regime is |g − gc|/gc <∼ 0.2. Within
this region, obtaining reliable evidence for logarithmic
corrections is critically dependent on having many high-
precision data points at very small values of |g − gc|,
which mandates accurate calculations at large system
sizes. After establishing the location of the critical point
to approximately one part in 105, gc = 4.83704(6), we
were able to obtain highly accurate extrapolations of the
physical observables for coupling ratios as close to gc as
4.834, i.e. with |g− gc|/gc ' 0.0006. This required work-
ing with linear system sizes as large as L = 48, mean-
ing a system containing N = 2L3 = 221184 interacting
spins, and at temperatures as low as T = 1/(2L) = 1/96.
From this perspective, it becomes obvious why previ-
ous studies [20, 22, 31], with only a handful of data
points in the quantum critical regime (none closer than
|g − gc|/gc = 0.02) were not able to find any meaningful
evidence for logarithmic corrections.

Our results are directly relevant to the pressure-
induced quantum phase transition in TlCuCl3 [6–8]. De-
tailed experiments on this material by elastic and inelas-
tic neutron scattering have measured the staggered mag-
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netization, the Néel temperature, the gap of the quan-
tum disordered phase, and the magnetic excitation spec-
trum on both sides of the transition. On the assump-
tion that the leading dependence of the control param-
eter (the ratio of antiferromagnetic superexchange pa-
rameters) is linear in the applied pressure, both ms and
TN show good mean-field exponents and a close linear
relation over much of the accessible pressure range [8].
On the grounds that the available data follow mean-field
scaling around the quantum critical point, it cannot be
argued that they provide any evidence for logarithmic
corrections, although the size of the experimental errors
and the shortage of data very close to the QCP certainly
mean they cannot be excluded.

It has been argued very recently [53], based on a field-
theoretic treatment, that the apparent suppression of ms

and TN visible in the experimental data for TlCuCl3
rather far from the QCP (at pressures 2-4 times the criti-
cal pressure) arises due to logarithmic scaling of the cou-
pling constant. In Ref. [8] it was assumed that these
effects are in fact a consequence of departures from the
quantum critical scaling regime, evident also in the vio-
lation of linearity between ms and TN beyond the point
where the order parameter is 60% of the classical mo-
ment. Although a direct comparison with our results is
not possible without a microscopic treatment of the re-
lationship between the applied pressure and the control
parameter, a similar downturn is visible, and better de-
scribed by including the multiplicative logarithmic cor-
rections, beyond |g − gc|/gc ≈ 0.05 in our Figs. 4 and 9.
It is also tempting to relate the TN (ms) curve of TlCuCl3
[8] to our Fig. 12(b), where the extended linear regime is
followed by an upturn deep inside the Néel phase, which
was interpreted [20] as the breakdown of the quantum-
thermal decoupling (see below) due to a large density
of thermally excited magnons when TN is high. Finally,
we have also provided a theoretical explanation for the
shape of the classical critical scaling “fan” around TN (p)
observed in TlCuCl3 [8], by showing that its width scales
linearily with TN , modified by a logarithmic correction
with a very small exponent of 1/12, which would vary ex-
tremely weakly over the experimental pressure window.

Although many dimerized S = 1/2 systems with an-
tiferromagnetic interactions are known, and many field-
induced quantum phase transitions have been studied,
few have yet been found to be close to quantum critical
points at zero field under pressure. Our results shed light
on the experimental challenges inherent in finding loga-
rithmic corrections, but also provide evidence that their
detection is actually possible. While important theoreti-
cal questions remain to be addressed in lower dimensions,
logarithmic corrections are of little relevance away from
Dc. Another challenge for both experiment and numeri-
cal simulation would be to investigate the exponents and
corrections for different N , meaning for systems of Ising
and XY spins. A related experimental possibility would
be to realize the N = 2 situation in a gas of ultra-cold
bosons on an optical lattice. The unfrustrated dimer-

ized antiferromagnet is a bipartite lattice and thus can
be treated exactly as a system of hard-core dimer bosons,
with the dimerized phase corresponding to the Mott in-
sulator and the antiferromagnet to the superfluid (a state
of long-range inter-site coherence); the symmetry broken
is U(1), which is equivalent to XY. Although these ex-
periments have not yet been realized in sufficiently large
three-dimensional gases of cold bosons, the very fine pa-
rameter control possible in cold-atom systems offers an-
other candidate route for the experimental observation
of logarithmic corrections to scaling.

One of the points made in Ref. [8] was that, although
quantum critical phenomena are universal, obeying scal-
ing forms determined only by macroscopic properties of
the system such as the dimensionality and the symmetry
of the order parameter, their experimental observation
depends crucially on non-universal prefactors. For quan-
tum critical excitations, this is the ratio of the width of
an excitation to its energy, and is a quantity determined
entirely by microscopic details. For both static and dy-
namic properties, the key figure of merit is the width of
the quantum critical regime, and for this we have ob-
tained a quantitative result not previously available by
any other technique, |g−gc|/gc <∼ 0.2. In as much as one
may generalize from the dimensionality and geometry of
the double cubic lattice, this 20% criterion dictates the
necessary proximity to the quantum critical point for the
observation of strict quantum critical scaling, including
logarithmic corrections.

Our demonstration of linearity between ms and TN
in the (3 + 1)D Heisenberg antiferromagnet lies beyond
any results previously predicted by analytical methods.
What we have demonstrated explicitly for several quan-
tities is the presence of expected logarithmic corrections,
but their cancellation between ms and TN was not antic-
ipated. However, in parallel to our scaling argument for
the logarithmic corrections to TN , Scammell and Sushkov
have recently arrived at the same conclusion from a dif-
ferent starting point [53]. A key outstanding question is
whether the linearity of TN (ms) is in fact a more funda-
mental property of the system than arguments made at
the semiclassical and mean-field levels suggest. Qualita-
tively, the origin of linearity is thought [20] to lie in the
effective decoupling of the classical and quantum fluctu-
ations, which is applicable for all coupling ratios both
outside and inside the QC regime. Its observation here
implies the enduring independence of quantum and ther-
mal fluctuations at the O(N) transition with D = Dc

for any N . Efforts to study the relationship between
the T = 0 order parameter and the critical temperature
in systems with different universality classes would shed
light on this matter.
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Appendix: Crossing-point scaling in the presence of
logarithmic corrections

According to the general hypothesis of finite-size scal-
ing (FSS), verified by renomalization-group techniques
(for a review see Ref. [52]), the dependence on system
size of a physical quantity in the neighborhood of a crit-
ical point can be described by the function

Q(t, L) = Lκ/ν [f(ξ/L) +O(L−ω, ξ−ω)], (A.1)

where t is the distance to the critical point, i.e. t =
|T −Tc| for a classical or t = |g−gc| for a quantum phase
transition. κ is the critical exponent for the quantity in
question in the thermodynamic limit, Q(t) ∼ |t|−κ, and
the subleading exponent ω originates from an irrelevant
scaling field. In a fully rigorous treatment, L in f(ξ/L)
should be replaced by ξL(0), which is the finite-size cor-
relation length at the critical point (t = 0) and thus the
relevant length scale for FSS. In the absence of logarith-
mic corrections, ξL(0) ∼ L.

The leading term in Eq. (A.1) is the asymptotic FSS
and the second term expresses the correction to scaling.
For the Binder ratio, Q(g, L) = R2(g, L), which is a di-
mensionless “invariant,” the asymptotic scaling has ex-
ponent κ = 0. Correction terms remain present, and at
the crossing point t∗ for two system sizes L1 and L2 one
has

R2(t∗, L1) = R2(t∗, L2). (A.2)

Without logarithmic corrections,

f(ξ/L) = h(tL1/ν) (A.3)

and hence

R2(t, L) = a+ btL1/ν + cL−ω + . . . (A.4)

The crossing point, t∗, can be determined for (L1, L2) as

t∗ ∼ 1− s−ω
s1/ν − 1

L
−ω−1/ν
1 , (A.5)

where s = L2/L1, and is either constant (L2 = aL1 with
a > 0) or approaches unity (L2 = L1 + 2) as the system
size goes to infinity.

If the logarithmic correction to the correlation length
is taken into consideration,

ξ ∼ t−ν | ln t|ν̂ (A.6)

and, according to Refs. [25, 47],

ξL(0) ∼ L lnq̂ L (A.7)

is now the relevant FSS length scale. On substituting
Eq. (A.7) into both the asymptotic FSS term f(ξ/L) and
the subleading term L−ω, Eq. (A.5) becomes

t∗ lnν̂/ν t∗ ∼ 1− s′−ω
s′1/ν − 1

ξ
−ω−1/ν
L1

(0) (A.8)

where

s′ =
ξL2(0)

ξL1
(0)

=
L2 lnq̂(L2)

L1 lnq̂(L1)
, (A.9)

which also approaches a constant as L1, L2 →∞.

There is no straigtforward inversion of Eq. (A.8) to
obtain an exact expression for t∗. However, for the lead-
ing logarithmic correction it is sufficient to substitute
Eq. (A.5) into the logarithmic part of (A.8), which yields

ln t∗ ∼ c+ ln

(
1− s−ω
s1/ν − 1

)
− (ω + 1/ν) lnL, (A.10)

a quantity approximately proportional to lnL when L is
large (consider s = (L+ 2)/L = 1 + 2/L). The leading
scaling behavior, obtained on replacing ln t∗ in Eq. (A.8)
by lnL, is

t∗ ∼ 1− s′−ω
s′1/ν − 1

L−ω−1/ν ln−q̂ω−q̂/ν L lnν̂/ν L

∼ 1− s′−ω
s′1/ν − 1

L−ω−1/ν lnĉ L, (A.11)

where the exponent ĉ is given by

ĉ =
ν̂ − q̂
ν
− q̂ω. (A.12)

Replacing t by g − gc and taking the large-L limit such
that s′ → 1, Eq. (A.11) yields

gc(L) = gc + aL−(1/ν+ω) lnĉ L, (A.13)

which is Eq. (18) in Sec. III A. However, if there is no
logarithmic correction to the subleading term L−ω, the
second term in Eq. (A.12) is absent, and

ĉ = λ̂ =
ν̂ − q̂
ν

. (A.14)
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[6] Ch. Rüegg, A. Furrer, D. Sheptyakov, Th. Strässle, K.
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Nucl. Phys. B 295, 211 (1988).

[28] R. Kenna and C. B. Lang, Nucl. Phys. B 393, 461 (1993).
[29] R. Kenna and C. B. Lang, Nucl. Phys. B 411, 340 (1994).
[30] H.-K. Janssen and O. Stenull, Phys. Rev. E 69, 016125

(2004).
[31] M. Tsukamoto, C. Batista, and N. Kawakami, J. Mag.

Mag. Mater. 310, 1360 (2007).
[32] F. Wegner, Phys. Rev. B 5, 4529 (1972); ibid 6, 1891

(1972).
[33] F. J. Wegner and E. K. Riedel, Phys. Rev. B 7, 248

(1973).
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