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We construct a family of many-body wave functions to study the many-body localization phase
transition. The wave functions have a Rokhsar-Kivelson form, in which the weight for the config-
urations are chosen from the Gibbs weights of a classical spin glass model, known as the Random
Energy Model, multiplied by a random sign structure to represent a highly excited state. These
wave functions show a phase transition into an MBL phase. In addition, we see three regimes of
entanglement scaling with subsystem size: scaling with entanglement corresponding to an infinite
temperature thermal phase, constant scaling, and a sub-extensive scaling between these limits. Near
the phase transition point, the fluctuations of the Rényi entropies are non-Gaussian. We find that
Rényi entropies with different Rényi index transition into the MBL phase at different points and
have different scaling behavior, suggesting a multifractal behavior.

I. INTRODUCTION

For an isolated quantum many-body system totally de-
coupled from the environment, the system can act as its
own heat bath. One way to distinguish systems which
reach the thermalized state from those which don’t is by
studying the entanglement entropy of a subsystem. If a
subsystem is in thermal equilibrium, the entanglement
and thermal entropies must be the same and thus must
satisfy a volume law, i.e. , the entropy should scale like
Nd
A in d dimensions. This is different from the typical

scaling behavior of the entanglement entropy of ground
states, which under some constraints, satisfy an area law
scaling.1–3

Evidence has recently accumulated for a certain class
of interacting systems with quenched disorder which fail
to thermalize. These systems go under the name many-
body localization4–6 (MBL) and are the interacting ana-
logue of Anderson insulators.7 This failure to thermal-
ize has been attributed to an extensive number of lo-
cally conserved charges.8–12 For a review of MBL phases,
see the recent review of Ref. 13. In an Anderson in-
sulator, all single-particle eigenstates are exponentially
localized in real space, quantum diffusion is impossible
at zero temperature and the system is an insulator on
macroscopic scales.7 In such a state thermalization is not
possible (without an external heat bath). It has been sug-
gested that many-body localization results from a similar
localization of states in Hilbert space.14,15

The phenomenon of MBL is principally (and theoret-
ically) observed in states deep in the excited state spec-
trum of a macroscopic system, and hence have an ex-
tensive excitation energy which, following standard (but
somewhat inexact) terminology, we will call ‘finite energy
density’ states. As a function of some tuning parameter
(typically disorder), there can be a phase transition from
an ergodic (thermalized) phase to an MBL phase. In
contrast to its non-interacting counterpart (the Ander-
son insulator), an MBL phase transition can occur at
finite temperature.4 We should note that phonons may

interfere with the observation of an MBL phase in solids,
but MBL may be physically realized in optical lattice
systems, see e.g. Ref. 16.

In this paper we consider the problem of the MBL
phase transition by constructing an ensemble of simple
‘model’ many-body wave functions with a simple struc-
ture parameterized by a ‘disorder’ strength, and study
the phase transition as a function of this parameter. We
will show that, in spite of their simple structure, these
model wave function can represent both thermal states
and MBL states. The wave functions that we consider
have a structure similar to the Rokhsar-Kivelson (RK)
states17 and their generalizations.18,19 More specifically,
we consider states that are linear superpositions of quan-
tum states labeled by the classical configurations of a
system of N Ising spins, and have the form

|ΨREM 〉 =
∑
{C}

W [C]|C〉, (1.1)

Here the quantum mechanical amplitude W [C] for a con-
figuration C of the Ising spins is given by the Gibbs weight
of a classical spin glass model known as the Random En-
ergy Model, i.e.

W [C] ∝ e−βE[C] (1.2)

where the ‘energy’ E[C] assigned to the configuration C is
taken to be a random number drawn from a Gaussian dis-
tribution. By construction, the amplitudes of these states
W [C] are positive real numbers. The associated classical
spin glass model in infinite space dimension (since each
spin is coupled to all the other N − 1 spins) is known
to have a classical thermodynamic phase transition to a
spin glass state.20 The parameter β, which in the classical
spin glass model is the inverse temperature, but in this
work will be used as a parameter of the wave function.
Notice that we have not defined a quantum Hamiltonian
for which the wave function of Eq.(1.1) is an eigenstate
and, hence, we have not actually defined an energy for
the quantum system. Thus, the ‘energy’ of the Random



2

Energy Model should not be confused with the energy of
the quantum state.

The quantum state |ΨREM 〉 has the manifestly posi-
tive weights shown in Eq.(1.2). Such a state can be a
natural candidate for a ground state of a Hamiltonian
but not for a typical excited state whose amplitudes are
generally non-positive. To mimic a ‘typical’ state deep
in the spectrum of a quantum system, we generalize this
construction so that, for a given configuration C, the am-
plitudes for these new states are just a random sign mul-
tiplied by the amplitude W (C) discussed above (a similar
approach has been used in Ref.21 and Ref.22.) We will
denote the new wave functions by |ΨREM+sign[β]〉. Here
we will also consider the wave function without random
signs denoted by |ΨREM [β]〉 and compare the physical
properties of both types of wave functions.

An advantageous aspect of our approach is that we
have more analytical control over this system then is
typical in interacting disorder systems. In addition we
are able to perform numerical calculations with a system
size (& 30) which can only be achieved in other numerical
MBL studies with the use of matrix-product states23,24.
These wave functions are also conceptually simple, mak-
ing them an ideal setting to further our understanding of
MBL.

Laumann, Pal and Scardicchio studied numerically the
MBL state in the quantum Random Energy Model and
found that the MBL quantum phase transition is dis-
tinct from the quantum phase transition to the spin-glass
phase.25 Here we will find that in the RK wave functions
|ΨREM+sign〉, although they are not actual eigenstates of
the quantum REM model, the MBL and spin-glass tran-
sitions are also separate.

In this work we will be focused on three particular as-
pects of the problem- the transition to the MBL phase,
the scaling of the entanglement entropy with subsystem
size and the transition from being geometrically delo-
calized to localized in the Hilbert space. To identify the
ergodic and MBL phases, we use the Rényi entanglement
entropies Sn (where n is the Rényi index )

Sn =
1

1− n log TrρnA (1.3)

of a subsystem A whose size NA < N/2 is smaller than
half of the entire system. In the limit n → 1, Sn con-
verges to the von Neumann entropy. In an ergodic sys-
tem, there is a regime where the Rényi entropy obeys a
volume law which changes linearly as a function of NA.
Bauer and Nayak have argued that, for most states in an
MBL phase, their entanglement entropy scales at most
as an area law of the subsystem size.26 We will show
below that, in our MBL phase, the Rényi entropy is sub-
extensive as a function of subsystem size and is bounded
by a finite constant deep inside the MBL phase (Fig.
1). We take particular note of volume laws at an energy
density that corresponds to infinite temperature (ITV)
which scales as NA log 2. The scaling behavior of the en-
tanglement entropy may depend on the subsystem size

often showing a crossover from ITV to sub-extensive as
the subsystem gets larger. An important subtlety of our
model comes from the lack of correlation length in the
REM (inherent in a system at infinite dimension). This
makes the relevant parameter to consider in looking for
such a crossover not the absolute size NA but the ratio
t ≡ NA/N and our results will be quoted as a function
of this parameter.

While entanglement entropy can be used to distin-
guishing MBL from ergodic phases, geometric localiza-
tion is a measure of compactness of the wave function in
Hilbert space. In an Anderson insulator, the localization
is of the single-particle wave function in real space and
can be characterized by the inverse participation ratio
defined as

Yn =

∫
ddx|ψ(x)|2n (1.4)

where |ψ(x)|2 is the probability distribution of single-
particle state in real space.27 Generically, Yn takes the
scaling form

Yn ∼ N−τ(n) (1.5)

where the exponent τ(n) = Dn(n − 1). For the exten-
sive (delocalized) state, Dn = d, while for the localized
state Dn = 0. For the critical single-particle wave func-
tion at the mobility edge, Dn has a non-trivial depen-
dence on n, and it indicates that the critical wave func-
tion has a multifractal nature.28–33 For non-interacting
systems, this multifractal behavior34,35 is also manifest
in the Rényi entropy for the single-particle critical wave
function.36–38

Here we will present evidence that multifractal be-
havior also appears in the entanglement near the phase
transition into the MBL phase by looking at the scal-
ing behavior of the Rényi entropies. Loosely speaking
the many-body generalization of this multifractality mea-
sures the degree of localization of states in the multi-
dimensional Hilbert space (in a real-space basis) and not
just those of a single particle orbital. Multifractal be-
havior of weight of a state in a Hilbert space has been
studied recently by several authors.39,40 In these stud-
ies multifractality is used to characterize the geometry of
a state in Hilbert space, i.e. its degree of localization in
the Hilbert space. In those works, the Shannon-Rényi en-
tropies used to quantify the multifractal behavior of the
many-body states is a measure of the statistical proper-
ties of the wave functions as probability distributions and
are unrelated to the concept of quantum entanglement.
Multifractality has also been discussed in connection with
the fidelity of the ground state wave functions in systems
at the infinite-disorder fixed point.41 So far as we know,
multifractal behavior of quantum entanglement in wave
functions close to the MBL transition has not been dis-
cussed previously in the literature. This is one of the
main questions that we address in our work.
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A. Summary of the main results

In this paper, we consider the MBL transition, the
value of S(NA, N) ≡ 〈S(NA, N)〉 and the geometric lo-
calization of the wave function |ΨREM+sign[β]〉. We show
that the wave-function geometrically localizes in Hilbert
space at β = 1.18. We also find three regimes of en-
tanglement scaling for S2(NA;N =∞): a thermalized
regime (at infinite temperature) where the entanglement
entropies for a partition show volume law scaling as a
function of the subsystem size NA; a regime bounded
by constant entanglement entropy; and a regime which
is sub-extensive but not constant. The transition from
sub-extensive to constant happens at, or before, the ge-
ometric localization transition. Notice that the presence
of extensive scaling for any NA > 0 implies that the finite
size scaling of S2(N ;NA) as a function of N at a fixed

NA is also extensive. Because S2(ρA) is hard to compute
exactly, we analytically calculate lower and upper bounds
for it. In addition, we identify the MBL transition (with
respect to the second Renyi entropy) via a numerical scal-
ing collapse with 〈S2〉 and 〈δS2〉42,43 (see Section IV A).
We find that the the MBL transition is different from the
geometric localization transition and therefore the wave-
function is still geometrically delocalized in Hilbert space
at the MBL transition44,45 . While the entanglement
entropy S2(NA, N =∞) scales sub-extensively with NA
at the MBL transition, the transition to sub-extensive
scaling doesn’t correspond to the MBL transition. In
addition, the numerical evidence suggests that the MBL
transition (for S2, at NA/N = 1/2) happens at a β where

S2(N ;NA/N = 1/2) as a function of N still scales exten-
sively. While these statements hold for S2, we also con-
sider Sn, finding that the MBL transition as well as the
analytic bounds for sub-ITV scaling happen for different
n at different β. The former of these appears to scale
linearly in (n− 1)/n. In addition, the scaling exponents
identified from scaling collapse are different for different
n. This is an indication of multifractal behavior. We fur-
ther study the entanglement spectrum in this regime and
observe an entanglement gap between the lower continu-
ous band and the other higher eigenvalues and show that
this feature explains transitions which differ for different
n. In Fig.1 a and b, we give a succinct and broad sum-
mary of the phase diagram (including the phase diagram
of the classical REM for comparison).

We also explain the importance of the random sign
structure. This effect we compare the behavior of the
second Rényi entropies 〈S2(ρA)〉 for |ΨREM+sign〉 with
|ΨREM 〉 without random sign. The difference, ∆S2, is
found to decrease monotonically as a function of disor-
der strength. In the low disorder regimes, 〈S2(ρA)〉 for
|ΨREM 〉 is a constant and thus their difference ∆S2 takes
the maximal value. At the values of t ≤ 1/3, the differ-
ence disappears before entering into the MBL phase.

The rest of the paper is organized as follows. In Section
II, we explain the construction of a Rokhsar-Kivelson-
type wave function which assigns to the amplitude of a

(a) REM model
Non-Gaussian fluctuation

0 0.589 1.18

(b) REM wavefunction with random sign:
geometrical delocalized

sub-extensive

localized

0 (i) (iii) (ii) (iv) 

ȕ

ȕ* ȕc 1.18 ȕ

T=� volume

MBL phase

FIG. 1. (Color online). (a) Phase diagram for the classical
REM model as a function of β. The spin glass phase transition
occurs at β =

√
2 log 2. The shaded region between

√
log 2/2

and
√

2 log 2 has non-Gaussian fluctuation. (b) Schematic
phase diagram for the REM wave function in terms of the
entanglement entropy showing different scaling behaviors in
four different regimes as a function of β. In the regime (i)
〈Sn〉 is equal to NA log 2 for all NA. In the intermediate
regime (ii), 〈S2〉 is sub-extensive but does not saturate to a
constant. Regime (iii) is the MBL phase. In this regime, the
wavefunction is not localized in the Hilbert space. (iv) is also
the MBL phase with the wavefunction localized in Hilbert
space.

quantum many-body state the Gibbs weight of a classi-
cal spin glass model (the Random Energy Model) and
introduce a random sign structure into it to access repre-
sent typical excited states with a finite excitation energy
density. In Section III A we briefly review the classical
random energy model (REM) and interpret the classi-
cal spin glass phase transition in it. In the Section III B
we construct a REM wave function with a random sign
structure to mimic a highly excited state for a Hamil-
tonian with disorder. We will analytically compute the
Rényi entropy to show that there is a thermalized regime
and a many-body localized phase. In Section IV we calcu-
late the Rényi entropy numerically and find the location
of MBL phase transition by finite size scaling. In the
Section IV D we study the Rényi entropy for the REM
wave function without random sign and demonstrate the
importance of the sign structure. In the Section V we
summarize our results and conclude that there is a MBL
phase transition in the REM wave function with random
sign structure.

II. ROKHSAR-KIVELSON MODEL WAVE
FUNCTIONS

In the physics of strongly correlated systems there are
many examples in which the properties of a new state of
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matter can be represented by simple ‘model’ wave func-
tions. The best known examples of such model wave
functions include the BCS wave function for the ground
state of a superconductor and the Laughlin wave function
for the fractional quantum Hall fluid.

A. RK-type wave functions

In this paper we will give a description of the MBL
states using a particularly simple class of model wave
functions with a structure similar to the one proposed
by Rokhsar and Kivelson (RK) to capture the physics
of the ground states of strongly frustrated quantum
antiferromagnets.17 In the RK construction the quantum
mechanical amplitude of a many-body state is given by a
local function of the degrees of freedom, as expressed in
the orthonormal basis set {|C〉} where C is the ‘configura-
tion space’. In the RK problem the configuration space
is the set of dimer coverings of a 2D lattice. While in
the RK case the dimers are a qualitative representation
of spin singlets on each bond of the lattice, a picture of
this type has been generalized to many other systems, in-
cluding Kitaev’s Toric Code state,46 which represents the
topological (or deconfined) phase of a Z2 gauge theory.

Since the weights of the RK wave functions are lo-
cal and positive, they can also be regarded as the Gibbs
weights of a related problem in classical statistical me-
chanics with the same degrees of freedom on the same
lattice. Thus if the basis of orthonormal states is the
set {|C〉}, i.e. such that 〈C|C′〉 = δC,C′ , the generalized
normalized RK states are

|Ψ〉 =
1√
Z
∑
{C}

e−
β
2E[C]|C〉 (2.1)

where

Z =
∑
{C}

e−βE[C] (2.2)

Here E[C] and Z are, respectively, the energy for the
classical configuration C and the partition function for
the associated classical problem, and β plays the role of
the inverse temperature. The original RK wave function
is an equal-amplitude superposition of all dimer cover-
ings in 2D. This wave function can be associated with
the partition function for the classical dimer model and
is also the ground state of the quantum dimer model at
the critical point17–19 (for 2D bipartite lattices) and a
Z2 topological state47 (for non-bipartite lattices). States
of these type are exact ground states of a special type of
quantum Hamiltonians that are the sum of projection op-
erators and are closely related to classical dynamics.48,49

The generalized RK wave function |ΨREM 〉 inherits
many properties from the classical model. For instance,
the equal time correlation function of the wave function
is the same as the correlation function of the classical

model, and the quantum critical point in the wave func-
tion corresponds to the classical phase transition at tem-
perature 1/βc.

B. Random sign wave function

We want to consider our family of wave functions as
representing finite energy density states with the possi-
bility of supporting both ergodic and MBL phases. As
we noted above, there exists Hamiltonians constructed
by projection operators for which the RK wave functions
of the form of Eq.(2.1) are the exact ground states. How-
ever, we should note that its amplitudes are all strictly
positive. If the classical Hamiltonian used to generate
the RK state only has local interactions, we can show this
state must have an area law. This follows from the fact
that one can write a Schmidt decomposition of the state
where the number of terms is bounded by the number of
classical interactions which are broken (See Appendix A
for detail). The entanglement properties of these type of
states have been discussed in great detail in the case of
the quantum dimer model,50–52 of the associated quan-
tum Lifshitz model,53–55 and of the Toric Code state.56,57

To have the potential for ergodic states, then, we must
either use a non-local classical Hamiltonian or introduce
directly a more rich sign structure into the wave function
as done, e.g., in Refs. 21 and 22. While the classical
Hamiltonian we are using for the REM model is non-
local, it nonetheless supports an area law at low disorder;
in fact, at β = 0, the entanglement entropy is zero over
any cut. Therefore, we introduce a random sign structure
in the wave function giving

|ΨREM+sign〉 =
1√
Z
∑
{C}

sC e
− β2E[C]|C〉, (2.3)

where sC is a quenched random sign associated to each
configuration C. The average ratio between the number
of positive and negative signs is one. A similar construc-
tion was discussed in Ref. 58, where they showed that the
random sign structure can lead to a thermalized phase.
In this paper, we will study the MBL phase transition in
a RK-wave function with random sign.

III. MANY BODY LOCALIZATION PHASE
TRANSITION

In this section we will show that the RK wave function
with random signs has an ergodic (thermalized) regime
and an MBL phase. We begin with a summary of the
properties of the classical Random Energy Model whose
Boltzmann weights will enter into the structure our wave
function.
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A. The Random Energy Model

The random energy model (REM) is a simple classi-
cal model which has a phase transition to a spin glass
phase.20 This effectively infinite dimensional model has
2N configurations and is the infinite range coupling limit
of the Sherrington-Kirkpatrick spin glass model.59 In the
REM model, the energy for each configuration is no
longer given by the complicated spin glass Hamiltonian,
but rather simply an independent random variable. This
random variable has the Gaussian distribution

P (E) = (2Nπ)−1/2e−
E2

2N . (3.1)

The number of configurations in the energy interval
[Nε,N(ε+ δ)], in expectation, is

〈N (ε, (ε+ δ))〉 =

∫ ε+δ

ε

dxeNs(x) (3.2)

where

s(x) = log 2− x2

2
, with x =

E

N
(3.3)

In the thermodynamic limit, N → ∞, this expectation
value takes the asymptotic form

lim
N→∞

〈N (ε, (ε+ δ))〉 = exp{N maxx∈[ε,ε+δ]s(x)} (3.4)

Notice that s(x) > 0 only in the interval x ∈ [−ε∗, ε∗],
where ε∗ =

√
2 log 2. This means that for ε ∈ [−ε∗, ε∗],

〈N (ε)〉 is exponentially large, and the fluctuations are
very small. For ε outside the interval [−ε∗, ε∗], N (ε) is
exponentially small.

The partition function for this model is simply given
by

Z =

2N∑
i=1

e−βEi =

∫
dE N (E) e−βE =

∫
dx eNφ(x).

(3.5)
where φ(x) equals to

φ(x) = log 2− x2

2
− βx, (3.6)

Similar to the calculation for 〈N (ε)〉, we can also use
the saddle point approximation to calculate the partition
function to obtain

Z = exp{N max[φ(x)]} (3.7)

which is the exact result in the thermodynamic limit,
N → ∞. By computing φmax = max[φ(x)], it is easy to
show that the free energy density equals to

f(β) = − logZ
βN

= −φmax

β

=

{
−β2 −

log 2
β β < βsg

−(2 log 2)1/2 β ≥ βsg
(3.8)

At βsg =
√

2 log 2, there is a discontinuity in the second
derivative of the free energy density, showing that there is
a phase transition at this point, the spin glass transition.

This phase transition can be further studied by com-
puting the inverse participation ratio (IPR),60,61

Yn(β) ≡
2N∑
i

pni =

∑2N

i e−nβEi

(
∑2N

i e−βEi)n
. (3.9)

This quantity measures how many configurations effec-
tively contribute to the partition function and measur-
able quantities. The expectation value for Y2 equals to61

〈Y2(β)〉 =

{
0 β < βsg

1− βsg
β β ≥ βsg

(3.10)

At low temperatures, β > βsg, the participation ra-
tio takes a finite value. This means that the system
is completely frozen to O(1) number of configurations
and is in a non-ergodic phase. At high temperature,
β < βsg, all configurations will contribute to the ther-
modynamic properties of the system. For instance, in
the high temperature limit β → 0, the Boltzmann’s mea-
sure becomes uniform and the second participation ratio
becomes Y2(β → 0) = 2−N . When N → ∞, Y2 → 0. In
general, when β < βsg, Yn scales with the system size

Yn ∼ D−τ(n), with D = 2N (3.11)

From the results on logZ(β), we can compute the expo-
nent τ(n) (for n > 1)

τ(n) =


(n− 1)(1− γn), 0 ≤ γ < 1

n2

n(1−√γ)2, 1
n2 < γ < 1

0, γ > 1

(3.12)

where γ = β2

2 log 2 . We will use τ(n) to give a upper bound

for the Rényi entropy of the wave function |ΨREM+sign〉
later.

Although the REM model is a simple toy model, it
has a spin glass phase transition, i.e., it undergoes a lo-
calization transition. It also shows a rich structure in the
fluctuation of the free energy. According to the results of
Ref. 62, for the ergodic phase, which occurs for β < βsg,
there are two regimes with different fluctuation behavior
of the free energy. When β <

√
log 2/2, the fluctuations

of the free energy are Gaussian, and satisfy the central
limit theorem. When βsg > β >

√
log 2/2, there are

non-Gaussian fluctuations of the free energy driven by
the Poisson process of the extreme values of the random
energies. This regime does not satisfy the central limit
theorem. The resulting phase diagram of classical REM
model is shown in Fig.1 (a).
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B. Random sign REM wave function

We can now construct a quantum state following the
procedure of Eq.(2.3),

|ΨREM 〉 =
1√
Z
∑
{C}

e−
β
2E[C]|C〉 (3.13)

whose amplitudes are the Boltzmann weights of the clas-
sical REM. By further introducing the random sign struc-
ture, the wave function takes the form

|ΨREM+sign〉 =
1√
Z
∑
{C}

sCe
− β2E[C]|C〉 (3.14)

Here both sC and E[C] are random variables and are in-
dependent of each other. The random sign sC takes the
values ±1 with equal probability over the entire Hilbert
space of 2N spin configurations.

Before we do any calculations, we can first estimate the
scaling behavior of the Rényi entropy for this quantum
state in the extreme limits. In this wave function, β is
a tuning parameter and has the physical meaning of the
disorder strength. The random sign structure is used to
represent a highly excited quantum state. When there is
no disorder, i.e., β = 0, the amplitude for every configu-
ration is the same. At this point, the Rényi entropy for
the subsystem A with different Rényi index is equal to
the thermal entropy at infinite temperature. Thus this
wave function is thermalized, and the entanglement en-
tropies obey a volume law.21 As β increases, the disorder
becomes stronger and the entanglement entropy becomes
smaller. The wave function is eventually localized to a
small fraction of the configurations as β > βsg. As we
already showed in the previous section, since the number
of these configurations is only O(1), in this regime the
Rényi entropy is bounded by a finite constant.

1. Nomenclature and thermodynamic limit for scaling

The entanglement entropy 〈Sn〉 at fixed β depends on
both the subsystem size NA as well as the total system
size N and there can be separate functional forms for the
scaling of 〈Sn〉 with respect to either of these parameters.
While in many physical systems, these scalings coincide,
this is not the case in our model and so it is important to
be clear about the distinction. Unless otherwise specified,
our discussion will always focus on scaling with NA at
fixed system size N .

For the thermodynamic limit considered in this work,
we let both NA and N go to infinity but their ratio t =
NA/N to be a finite value. The changes in entanglement
scaling we identify then happen at particular values of t
for 0 ≤ t ≤ 1/2 for different values of β. The MBL phase
in our terminology is identified with scaling collapse.

2. Analytic Bounds

We now analytically compute bounds to the Rényi en-
tropy. Notice that for a disordered system, we need to
take a quenched ensemble average of the Rényi entropy,

〈Sn(ρA)〉 =
1

1− n 〈log TrρnA〉 (3.15)

In this quenched average the disorder is frozen and does
not evolve with time. We mainly focus here on the second
Rényi entropy, but the results are easily extended to the
other Rényi entropies.

We begin by noting that the quenched average in
Eq.(3.15) is redundant if, in the thermodynamic limit,
the system is self-averaging.63 However, this will not al-
ways be the case. For brevity, we sometimes will denote
〈Sn(ρA)〉 ≡ 〈Sn〉.

Let us define a bipartition our system of N spins into
two subsets (or regions), A and B. The reduced density
matrix for region A is

ρAa,a′ =
1

Z

(∑
b

sa,bsa′,be
− β2 (Ea,b+Ea′,b)

)
|Ca〉 ⊗ 〈Ca′ |

=
ρ̃Aa,a′

Z (3.16)

where ρ̃Aa,a′ is the unnormalized reduced density matrix.

For the above reduced density matrix, 〈Sn(ρA)〉 equals
to

〈Sn(ρA)〉 =
1

1− n (〈log Trρ̃nA〉 − n〈logZ(β)〉) (3.17)

The second term 〈logZ(β)〉 can be calculated by the sad-
dle point approximation and the result is already shown
in Eq.(3.8). However, the first term 〈log Trρ̃nA〉 is hard to
obtain analytically. Instead of calculating it directly, we
compute a lower bound and upper bound for it.

Lower Bound : Consider the annealed average

Sn(〈ρ̃A〉) =
1

1− n (log〈Trρ̃nA〉 − n〈logZ(β)〉) (3.18)

which is much easier to compute. By using Jensen’s
inequality,64 when n > 1, it is straightforward to see that
the annealed average of the Rényi entropy Sn(〈ρ̃A〉) pro-
vides a lower bound for the quenched average 〈Sn(ρA)〉,
i.e.

〈Sn(ρA)〉 ≥ Sn(〈ρ̃A〉) (3.19)

To obtain the annealed average S2(〈ρ̃A〉), we need to
calculate 〈Trρ̃2

A〉. By means of simple manipulations we
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find

〈Trρ̃2
A〉 =

∑
a,a′

〈(ρ̃Aa,a′)2〉

=
∑
a

〈
(
ρ̃Aa,a

)2〉+
∑
a 6=a′
〈
(
ρ̃Aa,a′

)2〉
=
∑
a

〈
(∑

b

e−βEa,b
)2

〉

+
∑
a6=a′
〈
(∑

b

sa,bsa′,be
− β2 (Ea,b+Ea′,b)

)2

〉

=2Ne2Nβ2

+ (2NB − 1)2NeNβ
2

+ (2NA − 1)2NeNβ
2

(3.20)

where the last step is derived by using that for a Gaussian

distribution 〈e−αE〉 = eα
2N/2.

In the thermodynamic limit, when NA < N , the an-
nealed average of the second Rényi entropy becomes

S2(〈ρ̃A〉) =

{
NA log 2, β ≤ β1

N(log 2− β2), β > β1
(3.21)

where β1 =
√

(1− t) log 2 and t is the ratio NA/N . The
result is plotted in Fig.2 (a), where the black dashed
curve is the lower bound for 〈S2〉/ST at t = 1/3. ST =
NA log 2 is the thermal entropy for subsystem NA at in-
finite temperature. Notice that when β ≤ β1, since the
lower bound S2(〈ρ̃A〉) = ST , 〈S2(ρA)〉 must be equal to
NA log 2. When β >

√
log 2, S2(〈ρ̃A〉) < 0, this lower

bound is replaced by zero and is not useful anymore.
Upper Bound : It is easy to see that Trρ2

A can be
bounded from below by the second participation ratio of
the classical REM. Indeed,

Trρ2
A >

∑
a(
∑
b e
−βEa,b)2

Z(β)2
>
Z(2β)

Z(β)2
= Y2(β)(3.22)

Thus, an upper bound for the quenched average 〈S2(ρA)〉
is given by

〈S2(ρA)〉 < τ2(β)N log 2 (3.23)

where τ2(β) is defined in Eq.(3.12). This upper bound
puts a constraint on 〈S2(ρA)〉, showing that when

β > βub(n = 2) = (1−
√
t

2
)
√

2 log 2 (3.24)

then

〈S2(ρA)〉 < NA log 2 (3.25)

which is the thermal entropy at infinite temperature.
The red solid curve in Fig.2 (a) is the upper bound for
〈S2〉/ST at t = 1/3.

Using a similar approach, we can prove that when n
is an even number, TrρnA ≥ Yn(β), and the quenched
averaged nth Rényi entropy satisfies

〈Sn(ρA)〉 < τn(β)N log 2

n− 1
(3.26)

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

�S 2�S T�

 L o w e r  b o u n d
 U p p e r  b o u n d

( a )

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0 ( b )

 n = 2
 n = 4
 n = 6
 n = 8
 n = 1 0
 n = �

�S n�S T�
β

FIG. 2. (Color online) (a) The lower and upper bound for
〈S2〉. The black dashed curve is for the lower bound and
the red solid curve is for the upper bound. The system size
N = 300 and the ratio t = 1/3. (b) The upper bound for
〈Sn〉. The setup is the same as (a).

This upper bound indicates that when

β > βub(n) = (1−
√
n− 1

n
t)
√

2 log 2 (3.27)

we obtain the bound

〈Sn(ρA)〉 < NA log 2 (3.28)

which, again, is the thermal entropy at the infinite tem-
perature. The result for the upper bound is shown in
Fig.2 (b). Notice that when β ≤ βub(n =∞), the differ-
ent curves in Fig.2 (b) are overlapping with each other.
When βub(n =∞) < β < βsg, the upper bounds for 〈Sn〉
show different scaling behavior. Combining the upper
and lower bounds for different n leads to a regime where
the n = 2 Rényi entropy satisfies a volume law and be-
haves like a thermal entropy at infinite temperature, but
for n > 2 is strictly below this bound.

a. Implications from the bounds : From the above
results, we find an upper and lower bound for the Rényi
entropy. Here we consider 〈S2〉 in detail, which thus has
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t

β

S2 transition
S2 lower bound
S2 upper bound
S∞ upper bound

βsg

ITV (S2) MBL (S2)

Intermediate regime (S2)

FIG. 3. (Color online) A summary of our knowledge of the
phase diagram of ΨREM+sign, based on 〈Sn〉. The dotted
black line indicates a bound to the left of which 〈S2〉 analyt-
ically follows the T = ∞ volume law (ITV). The dotted red
line indicates a bound to the right of which 〈S2〉 analytically
is strictly below the T = ∞ volume law. βsg indicates an-
alytically the transition to a localized Hilbert space for any
NA/N and a guaranteed constant for all 〈Sn〉. The solid pur-
ple dots indicate the numerically computed transition points
for 〈S2〉 (the purple line is a fit for the eye). In comparison,
the blue dashed line indicates a bound to the right of which
〈S∞〉 analytically is strictly less then ITV, and suggests mul-
tifractality.

the following behaviors
〈S2〉 = S2(〈ρ̃A〉) = NA log 2, β ≤ β1

N(log 2− β2) < 〈S2〉 < NA log 2, β2 < β < βsg
〈S2〉 < − log(1− βsg/β), β > βsg

(3.29)

where β2 = βub(n = 2) = (1−
√
t/2)
√

2 log 2.
For 〈S2〉, there is a regime where 〈S2〉 satisfies the

volume law and equals the thermal entropy at T = ∞.
When β > βsg, 〈S2〉 is bounded by a finite constant. A
phase transition into the MBL phase is expected to be
between β1 ≤ β ≤ βsg . To find the location of the MBL
phase transition, we will use scaling collapse in Section
IV.

C. Localization properties of the wave function

We end this Section with a discussion of the statistical
properties of the states |ΨREM 〉 and |ΨREM+sign〉. Given
these states, we can define the amplitudes, i.e. their over-
lap with an eigenstate of the spins |C〉. For each state, the
square of the amplitude defines a probability distribution
for the configuration C to occur in the state (and hence
the random sign does not affect the probability distribu-
tion). The resulting probability distribution is thus the

same for both states, and it is given by the probability
of the configuration C in the classical REM,

P [C] = |〈C|ΨREM 〉|2 =
1

Z e
−βE[C] (3.30)

Given this probability distribution, we can compute its
Shannon-Rényi entropies, which one can immediately
see, c.f. Eq.(3.9), to be the same as the IPR of the classi-
cal REM. Hence, the localization of wave function in the
Hilbert space can be characterized by the IPR defined in
the configuration space. For REM wave function,

Yn =
∑
{C}
|〈Ψ|C〉|2n =

∑2N

i=1 e
−nβEi(∑2N

i=1 e
−βEi

)n (3.31)

This is the same as the IPR for the classical REM model
defined in Eq.(3.9). Since τ(n), defined in Eq.(3.11), is
the multifractal spectrum, given explicitly in Eq.(3.12),
in the regime 0 < β < βsg, the wave function itself has
multifractal behavior. The multifractality of the wave
function indicates the pre-freezing behavior before enter-
ing into the MBL phase. Similar phenomenon was also
observed in Refs.44 and 45, where they found that at the
MBL phase transition point, the whole wave function is
still delocalized in the configuration space.

We can now use the results of the inverse participa-
tion ratios of the classical REM summarized in section
III A to draw conclusions on the degree of localization
in the 2N -dimensional Hilbert space of the |ΨREM 〉 and
|ΨREM+sign〉 wave functions. From the results of Section
III A we find that for β > βsg =

√
2 log 2 all the inverse

participation ratios are finite as N → ∞ and, hence,
that the Shannon-Rényi entropies for the wave functions
are finite (and are not extensive). Thus, in this regime
these wave functions are (exponentially) localized. On
the other hand, for β < βsg, the IPRs of the REM vanish
exponentially fast as N → ∞, and so do the Shannon-
Rényi entropies of the wave functions. In this regime the
wave functions are not localized. In this regime the mul-
tifractal nature of these wave functions is manifest in the
size dependence of their Shannon-Rényi entropies. We
should emphasize that, beyond setting the bounds that
we have discussed earlier in this section, the knowledge
the behavior of the Shannon-Rényi entropies alone yields
no information on the scaling of quantum entanglement,
which is our main interest.

IV. NUMERICAL RESULTS ON MBL PHASE
TRANSITION

In the previous section, we were able to analytically es-
tablish the existence of a regime in which the quenched
averaged second Rényi entropy 〈S2〉 is strictly less than
ITV scaling, and happens strictly before the localization
transition. Nothing prevents this regime from being one
in which 〈S2(NA)〉 still scales linearly but at finite T ;
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in addition, it doesn’t separate the MBL transition from
the localization transition. To establish this, we numer-
ically identify the transition point via scaling collapse.
We explicitly construct different disorder samples from
the random sign REM wave function and calculate the
quenched average 〈Sn〉 with at least 1000 disorder realiza-
tions. First, we focus on the n = 2 case, and then discuss
the other values of n. As a sanity check, we verify that
our numerical results are consistent with the analytical
results above at large and small β.

The following is a summary of our numerical results.
At small β : Analytically we anticipate ITV for

n = 2. In Fig. 4, we concretely consider β = 0.3 at
N = 30 with 2000 disorder realizations. We see that it
corresponds to the expected 〈S2〉 = NA log 2.

As NA log 2 is the maximal entanglement entropy for
any given realization, for a T = ∞ volume law to hold,
essentially all but a measure zero fraction of configura-
tions must have this entropy. From the inset of Fig.7b,
one can see that the standard deviation of 〈S2〉 at β = 0.3
is zero showing this is indeed the case. Similar behavior
can be observed for 〈Sn〉 with other Rényi indices, where
〈Sn〉 = NA log 2 and 〈δSn〉 is close to zero as β ≤ β∗.

At large β > βsg : We find analytically that 〈Sn〉
with n ≥ 2 is bounded by a finite constant and, hence,
in this range the state is in the MBL phase. Note that a
constant for small n gives a bound for the entanglement
entropy for all larger m as Sn > Sm if m > n. In Fig.4
the numerical results for β = 1.5 are presented, and show
that when NA increases, 〈Sn〉 saturates to some constant
value. Notice also from the inset of Fig.7b, that as we
move deeper into the localized phase, the standard devi-
ation is monotonically decreasing.

The change from ITV to constant in the entanglement
entropy can be seen in Fig.5, which shows d〈S2〉/dNA
as a function of β. As system sizes increases, the slope
quickly approaches log 2 for β < 0.5, and approaches
0 for β > 1.2. The slopes for all 5 values of N start
to drop around β = 0.6, which is less than the β2 =
(1−

√
1/6)
√

2 log 2 ≈ 0.6967 in Eq.(3.29) for subsystem
ratio t = 1/3 and is consistent with the analytical result.

A. Finite-size scaling

To locate the MBL phase transition, we use both 〈S2〉
and its standard deviation, δS2.42,43 For instance, in the
bottom inset of Fig. 7, it is shown that when β > 0.5,
δS2/ST will increase rapidly and reach the maximum
value at some β. Fig. 7 (bottom) shows that the stan-
dard deviation at intermediate values of β is actually a
non-trivial fraction of the maximum thermodynamic en-
tropy. In fact, because of the breakdown in the REM of
the Central Limit Theorem, the fluctuation of the Rényi
entropy is non-Gaussian. This is seen, for example, in
the distribution of S2/ST at β = 0.72 shown in Fig.6,
which is peaked around 1 and has a long tail. This long
tail has power law scaling behavior shown in the inset
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FIG. 4. (Color online) The numerical results for 〈Sn〉 with n
from 1 to ∞ at different values of β. The total system size is
N = 30. Each point in the plot is averaged over 2000 disorder
realizations. At β = 0.3, Sn shows ITV behavior for all n. At
β = 0.66, 1.1, 〈Sn〉 deviates from the ITV with increasing β,
but the speed at which it moves away depends on its Rényi
index. At β = 1.5, 〈Sn〉 is a constant for all n.

of Fig.6, with a power-law exponent between -3 and -
2, which implies a well-defined average but an infinite
variance in the thermodynamic limit (which is consistent
with the peak scaling as ST ). This may be related to the
quantum Griffiths phase found in Ref. 43, 65, and 66.
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FIG. 5. (Color online) d〈S2〉
dNA

vs β graph at t = 1/3, where the

slopes are obtained from finite differences. As β increases,
the slopes drop from log 2 towards 0 for all 5 different system
sizes.

While we can use the peak of δS2 and the transition of
〈S2〉 from maximal to zero to locate the phase transition,
these quantities scale with system size. We therefore use
finite-size scaling to find the MBL phase transition. In
the regime of interest, we perform a scaling collapse of the
data for the two ratios 〈S2〉/ST and δS2/ST separately,
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FIG. 6. (Color online) The distribution of S2/ST at β = 0.72.
The total number of samples is 2000. The number of bins used
to make the histogram is 100. The inset shows a log-log plot
with a linear fit, which indicates a power law distribution.
The number of bins in the log-log scale is 20 for S2/ST from
0 to 1. However, as many of the bins have 0 sample, some
points are not included the log-log plot.

using scaling functions of the form

N bΦ((β − βc)Na) (4.1)

and determine the form of the scaling functions Φ(x) nu-
merically. The exponent b is expected to be very close to
0 for 〈S2〉/ST . When doing the scaling analysis, we find
that the quality of the 〈S2〉/ST collapse is better than
that of the δS2/ST . Error analysis is only performed on
the scaling parameters obtained from 〈S2〉/ST , although
generally the δS2/ST collapse yields similar values for βc.

Notice that this scaling form assumes the existence of
only one transition in spite of the fact that we have ana-
lytical bounds that show the presence of ITV, constant,
and sub-ITV scaling; numerically the latter appears to
be neither constant nor linear with subsystem size.

Fig. 7 shows the scaling collapsed for 〈S2〉 at t = 1/3.
In previous work on MBL phase transition, ν ≡ a−1

in Eq.(4.1), is the critical exponent for the localiza-
tion length and is expected to satisfy Harris inequality
ν ≥ 2/d, where d is the spatial dimension. However
REM model is a highly non-local model and d here is
equal to infinity, which suggests that there is no bound
for ν. To make sure the scaling parameters obtained are
truly associated with this transition, one can use them
to scale the 〈Sn〉/ST data following Ref. 45. For each
β, we plot 〈Sn〉 vs N as shown in the inset of Fig. 10 ,
from which one can see that the scaled curves bifurcate
smoothly into the two branches depending on β. Fur-
thermore, Fig. 10 indicate that the system experiences a
phase transition rather than a crossover, because of the
clear separation of the two branches at large N .
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FIG. 7. (Color online). a) Scaling collapse of 〈S2〉/ST at
t = 1/3, where ST = NA log 2. It can be noticed that b
is very close to 0. b) Scaling collapse of δS2/ST . The left
insets show the original curves. Two scaling collapses give
very close βc values. Error analysis is only performed on the
scaling collapse of 〈S2〉/ST .

We have also done scaling collapse for 〈S2〉 with other
subsystem ratios. At t = 1/2, we get βc = 0.693; and
at t = 1/5, we get βc = 0.965. These results are shown
as purple dots on Fig. 3. All our collapsing results are
summarized in Table I.

Based on the above numerical results, we conclude that
the MBL transition (both of 〈S2〉 and all the other 〈Sn〉
(see Sec.IV C and Appendix C) happen separately from
the localization transition at βsg. The MBL phase tran-
sition is at βc and is smaller than βsg. Between βc and
βsg, although it is in the MBL phase, the whole wave
function is still delocalized in the Hilbert space. Only
when β > βsg, the wave function becomes localized in
the Hilbert space and is already deep in the MBL phase.
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FIG. 8. (Color online) (a) Scaling collapse of 〈S∞〉/ST at
t = 1/3, where ST = NA log 2. It can be noticed that b is
very close to 0. (b) Scaling collapse of δS∞/ST . The left
insets show the original curves. Two scaling collapses give
very close βc values. Error analysis is only performed on the
scaling collapse of 〈S∞〉/ST .

B. Intermediate regime

According to the scaling collapse in Fig. 7, the MBL
phase transition for 〈S2〉 happens at around 0.8 at t =
1/3. From Eq.(3.24), we also know that when β > 0.697,
〈S2〉 < NA log 2. This implies that there is an intermedi-
ate regime between ITV and MBL phase (regime (ii) in
Fig.1 (b)). In this regime, 〈S2〉 is sub-extensive and the
slope

0 < s(NA) =
1

log 2

d〈S2〉
dNA

< 1. (4.2)

This regime is not a cross-over but sharply defined with
non-analyticities in the curve s(t) signaling its beginning.
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FIG. 9. (Color online) βc vs n−1
n

curve at t = 1/3. The
linear fit line’s slope is −0.3213 ± 0.0034, and its y-intercept
is 0.9709± 0.0023.
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FIG. 10. (Color online) This graph uses the scaling parame-
ters obtained from Fig. 7 to scale the 〈S2〉/ST vs N curves
for β values ranging from 0 to 2. The scaled graph clearly
shows two branches – (1) curves with large β flow to low en-
tanglement entropy; (2) curves with small β flow to T = ∞
entanglement entropy, i.e. NA log 2. The right inset shows the
original curves, where each curve corresponds to a different
β.

While a combination of our analytical bounds and numer-
ical results can bound the location of this transition, we
are not able to numerically pinpoint its location. It is
interesting to note, though, that all the curves in Fig. 5
seem to cross at a single point; for t = 1/3, this point
is approximately β = 0.72 which is surprisingly close to
the β2 bound. While we can’t say anything definitive
about the value of the s(NA) in the intermediate regime,
Fig. 5 shows only two plateaus suggesting that the s(NA)
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β.

t n a b βc

1/3 1 0.811 0.007 0.970

1/3 1.5 0.897 0.0093 0.8680

1/3 2 0.906 0.0006 0.8072
〈Sn〉
ST

1/3 3 0.902 0.0095 0.755

1/3 20 0.8389 0.025 0.6657

1/3 ∞ 0.817 0.039 0.651

1/2 2 0.90 0.070 0.693

1/5 2 0.766 0.010 0.965

1/3 1 0.893 0.321 0.983

1/3 1.5 0.902 0.396 0.861

1/3 2 0.923 0.400 0.798
δSn
ST

1/3 3 0.908 0.399 0.753

1/3 20 0.835 0.383 0.655

1/3 ∞ 0.824 0.397 0.643

1/2 2 0.909 0.090 0.678

1/5 2 0.856 0.147 0.963

TABLE I. Collected scaling collapse data

in this intermediate regime is not constant. Instead we
conjecture that the slope changes continuously as a func-
tion of NA in this regime in a nonlinear way. This means
that this regime is non-thermal and doesn’t correspond
to a thermal density matrix at any temperature. It is
not clear whether to call this regime a separate phase,
particularly as the data collapse on 〈S2〉/ST and δS2/ST
only identify a single transition.

C. Multifractality of the Rényi entanglement
entropies

While we have identified transitions in 〈S2〉, we can
also consider 〈Sn〉 for n 6= 2. The analytical bounds
(Fig.2) show that there is a regime where S2 is still ITV
where S∞ scales at a rate less then ITV. We can also
use scaling collapse to identify the MBL phase transition
in 〈Sn〉; for example, see Fig. 8. More scaling collapse
graphs with different n and subsystem ratio t can be
found in Appendix C. We summarize the NA/N = 1/3
results for various n in Fig.9, from which one can clearly
see the transition depends on n. We attribute this as a
sign of multifractal behavior similar to the multifractal
behavior found in the critical wave function of the Ander-
son localization phase transition point.29 In the Anderson
localization problem it is known that multifractality is a
feature of the wave function for the mobility edge.29 It is
not known if this is also the case in MBL or if there is a
multifractal phase. From our data we cannot at present
make a definitive determination. It is interesting to note
that βc(n) is linearly proportional to (n−1)/n. The phase
transition point βc for von Neumann entropy is 0.97 and
we identify this as the true MBL transition.

We can understand the different scaling behavior of
〈Sn〉 by considering the entanglement spectrum. Fig.12 is
the distribution of eigenvalue λ of ρA for a randomly cho-
sen disorder configuration at different β. When β = 0.3,
λ forms a continuous band around 0.001 which is ap-
proximately equal to 1/2NA . While for β = 0.66, 1.1 and
1.5, there is an obvious gap between the lower continuous
band and the other higher eigenvalues. The entanglement
gap increases as β increases.

This inspires us to write down a simplified two-level
model for entanglement spectrum which includes a flat
band and a single λmax. If we assume that 〈Sn〉 is ap-
proximately equal to its upper bound in Eq.(3.26), by
using Sn=∞ = − log λmax, we have

λmax = 2
−(1− β√

2 log 2
)2N

(4.3)

All the other λ1 ≈ 1/2NA and there is a gap between λ1

and λmax. This toy model exhibits the multifractal be-
havior described above with a transition to constant en-
tanglement slope that scales with n > 2. The transition
in this simplified model is direct from ITV to constant;
to capture our intermediate regime, the single λmax can
be replaced by a finite number λi with each of them are
separated by a finite gap. Also the lower flat band can be
replaced a continuous band with more complicated band
structure. These additional ingredients are required to
have an intermediate regime with sub ITV as well as
accurately finding the constant n = 1 von Neumann en-
tropy.
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FIG. 12. (Color online) Entanglement spectrum for one ran-
domly chosen disorder configuration at β = 0.3, 0.66, 1.1 and
1.5, with N = 30, NA = 10. The gaps in the entanglement
spectrum become evident when β gets larger.

D. The random sign structure in the wave function

We have introduced a random sign structure to convert
our ground state wave function into one at finite energy
density. While for any strictly positive wave function,
the introduction of random signs can only increase the
entanglement entropy, it is interesting to ask what effect,
if any, the random sign has here. This requires com-
puting the Rényi entropy 〈Sn(ρ′A)〉 for the REM wave
function without the random sign |ΨREM 〉. Different
from |ΨREM+sign〉, the Rényi entropy for |ΨREM 〉 is not
a monotonic function with β and has more complicated
scaling behavior. In fact |ΨREM 〉 has zero entanglement
entropy at both β = 0 and β → ∞. It is interesting
to note that while 〈S2(ρA)〉 and 〈S2(ρ′A)〉 have long tails
and infinite variance in the thermodynamic limit at in-
termediate β, their difference ∆S2 = 〈S2(ρA)〉−〈S2(ρ′A)〉
appears to have finite variance (as shown in Fig. 13).

Since the quenched average 〈S2(ρ′A)〉 is hard to access
analytically, we can compute a lower bound via Eq.(3.18)
using Jensen’s inequality64 (see Appendix B for details).
We find that if t < 1/3, there is a region

√
2t log 2 ≤ β ≤√

(1− t) log 2 where |ΨREM 〉 has ITV entanglement. As
this is the maximal allowed value, it then directly follows
that there is no difference between 〈S′2〉 and 〈S2〉 due to
the introduction of signs.

Moreover, we conjecture that ∆S2 decreases monoton-
ically as a function of β. This is consistent with the nu-
merical results shown in Fig.14. Following from this con-
jecture, we would have that ∆S2 = 0 for all β ≥ √2t log 2
and t < 1/3. This is because, for all t < 1/3 both models

show ITV between β =
√

2t log 2 and
√

(1− t) log 2 and
hence ∆S2 = 0. The regions B, C, D in Fig. 15 denote
where |ΨREM 〉 and |ΨREM+sign〉 have the same 〈S2〉.
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FIG. 13. (Color online) 〈S2〉 of REM+sign and REM, and
their difference. The 1000 disorder configurations are the
same for REM+sign and REM. Error bars here represent
standard deviations. The difference of the 〈S2〉 has well
bounded variance for all β.
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FIG. 14. (Color online) Difference of 〈Sn〉 between REM+sign
and REM for n = 0.1, . . . , 0.9 in 0.1 steps (triangles), and for
n = 1.5, n = 2, . . . , 20, and ∞ (full circles), at N = 30 and
NA = 10. The number of disorder configurations is 2000. The
random configurations are not the same for REM+sign and
REM.

Having identified regimes where the introduction of
random signs doesn’t affect the entanglement entropy,
we also identify regimes where the entanglement entropy
can be shown to be different. When β = 0, |ΨREM 〉 is a
constant (actually a product state) whereas |ΨREM+sign〉
is a volume law. We can argue that this extends to larger
β. Defining X = Trρ̃2

A and Y = Tr(ρ̃′A)2, where ρ̃A is
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FIG. 15. (Color online) Different behaviors of ∆S2 =
〈S2(REM +sign)〉−〈S2(REM)〉 on the t vs β graph. Region
A represents the area where 〈S2(REM + sign)〉 follows ITV
and 〈S2(REM)〉 is a constant, so ∆S2 obeys ITV. Region B
represents the area where 〈S2(REM+sign)〉 and 〈S2(REM)〉
are both ITV, and ∆S2 is zero. As a result, ∆S2 is also zero
in Region C based on the monotonicity argument. In Region
D, both 〈S2(REM + sign)〉 and 〈S2(REM)〉 are localized in
Hilbert space and ∆S2 is zero. We do not have enough infor-
mation to determine the behavior ∆S2 in Region E.

the unnormalized reduced density matrix, we have

〈log
X

Y
〉 ≤ log〈X

Y
〉 ≤ log

〈X〉
〈Y 〉 (4.4)

where the second inequality, while not true in general,
appears to be numerical validated in our case. In the

thermodynamic limit, log 〈X〉〈Y 〉 can be directly computed

(see Eq.(3.20) and Eq.(B1)). We find that when t < 1/3

and β ≤ √2t log 2, log 〈X〉〈Y 〉 = 0. In this region, 〈S2〉 for

|ΨREM+sign〉 continues growing as volume while |ΨREM 〉
stays constant, indicating that the random sign structure
can thermalize the wave function and is responsible for
the volume law scaling behavior. Fig. 16 is the numerical
result for 〈S′n〉 at β = 0.4. We can see that when n ≥ 2,
they all saturate to a constant. This region is highlighted
in blue on Fig. 15 and marks a region where the models
differ maximally.

Finally, we note that ∆Sn can be numerically com-
puted. Fig.14 is ∆Sn for N = 30 and NA = 10. We
find that for all n, ∆Sn = 0 when β > 0.8. This re-
sult, while only for N = 30 and so not absent finite-size
effects happens to be at the location of the 〈S2〉 MBL
phase transition.
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FIG. 16. (Color online) The numerical results for 〈S′n〉 with-
out random sign with n from 1.5 to ∞ at β = 0.4. The total
system size is N = 30. Each point in the plot is the average
of 2000 disorder realizations.

V. CONCLUSIONS

We have studied the many-body localization phase
transition in a class of many-body wave functions. We fo-
cused our analysis in a class of wave functions, |ΨREM 〉,
whose amplitudes are the Boltzmann weights of a clas-
sical spin glass model in infinite dimension, the Random
Energy Model. In order to mimic the structure of wave
functions of highly excited states with a finite excita-
tion energy density we considered another class of states,
|ΨREM+signs〉, whose amplitudes are obtained by multi-
plying the amplitudes of |ΨREM 〉 by a random sign for
each configuration. We studied the MBL problem in the
|ΨREM+signs〉 wave function, for different regime of the
parameter β, by using both analytical and numerical ap-
proaches.

We showed that there is a direct phase transition into
the MBL phase. Here we assume that the MBL phase
is characterized that the entanglement entropies, as a
function of the size of the observed region NA, scale to
a constant value, a feature that we observed explicitly
for large enough values of β. The location of the phase
transition point is identified by scaling collapse of Rényi
entropy and its standard deviation. In the thermalized
regime, there is a regime where the Rényi entropies with
different Rényi index all equal to the thermal entropy
ST at T = ∞. When β > βc, the system enters into
the MBL phase where the entanglement entropy is sub-
extensive. The MBL phase transition point βc is smaller
than βsg and this suggests that the MBL phase transi-
tion and the classical spin glass phase transition are dif-
ferent. Upon entering the MBL phase, the random sign
structure is not important any more and 〈∆Sn〉 between
|ΨREM+sign〉 and |ΨREM 〉 is zero. For β > βsg, the wave
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function is deep inside the MBL phase and only O(1)
number of the configurations in the REM wave function
contributes significantly to the statistical average. The
Rényi entropy in this regime will reduce to a finite con-
stant. We find that close to the phase transition point
βc, the fluctuation of Rényi entropy is strong in the fi-
nite size system. In this regime, Rényi entropies with
different Rényi index show different scaling behavior and
are similar to the multifractal behavior observed at the
Anderson localization phase transition point. Moreover,
〈Sn〉 has a phase transition at different βc. Finally we
note that we have refrained ourselves from performing
the same extensive studies for the wave function without
random signs, |ΨREM 〉. While we have evidence that this
wave function too has a thermalized regime, since it has
only strictly positive amplitudes we do not expect it to
provide an useful description of the MBL problem. Nev-
ertheless it may be useful to investigate its properties in
a separate publication.
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Appendix A: Entanglement entropy for the
RK-wave function with classical local Hamiltonian

For the RK-wave function defined in Eq.(2.1), if the
related classical model has a local Hamiltonian, the en-
tanglement entropy satisfies the area law. This scaling
behavior only relies on the property of the RK state and
does not depend on whether the quantum model is crit-
ical or not. Here, we will briefly review the calculation
following Ref.67.

For the RK state with a classical local Hamiltonian,
after partitioning the system into two parts A and B, it
can be approximately written in this way,

|Ψ0〉 =
∑

Γ

λΓ|ΨA(Γ)〉|ΨB(Γ)〉 (A1)

where ΨA(Γ) and ΨB(Γ) are the RK wave functions de-
fined in region A and region B with the same boundary
configuration Γ

|ΨA(Γ)〉 =
∑
A

e−
β
2HA(Γ)√
ZA(Γ)

|cA(Γ)〉

|ΨB(Γ)〉 =
∑
B

e−
β
2HB(Γ)√
ZB(Γ)

|cB(Γ)〉 (A2)

When Γ 6= Γ′, they satisfy 〈ΨA(Γ)|ΨA(Γ′)〉 = 0 and
〈ΨB(Γ)|ΨB(Γ′)〉 = 0. The summation in Eq.(A1) is the
sum over all possible boundary configurations along the
cut and λΓ =

√
ZA(Γ)

√
ZB(Γ)/

√
Z.

Thus Eq. (A1) is the Schmidt decomposition of the
wave function, the reduced density matrix in regime A is

ρA =
∑

Γ

λ2
Γ|ΨA(Γ)〉〈ΨA(Γ)| (A3)

Since the dimension of ρA only depends on the dimension
of the Hilbert space along the boundary, the entangle-
ment entropy should satisfy the area law.

Appendix B: Lower bound for 〈S2(ρ′A)〉

For the REM wave function without random sign, the
quenched average 〈S2(ρ′A)〉 is hard to access analytically,
instead we calculate the annealed average S2(〈ρ′A〉) de-
fined in Eq.(3.18), which gives the lower bound for 〈S′2〉.
To obtain S2(〈ρ′A〉), we need to know 〈Tr(ρ̃′A)2〉 first,
where ρ̃′A is the unnormalized reduced density matrix.

〈Tr(ρ̃′A)2〉 =2Ne2Nβ2

+ (2NB − 1)2NeNβ
2

+(2NA − 1)2NeNβ
2

+ (2NA − 1)(2NB − 1)2Ne
Nβ2

2

(B1)

This gives S2〈(ρ′A)〉 in the thermodynamic limit. When
0 < t ≤ 1/3, there are three regimes,

S2(〈ρ′A〉) =


β2N

2 , β ≤ √2t log 2

NA log 2,
√

2t log 2 < β ≤
√

(1− t) log 2

N(log 2− β2), β >
√

(1− t) log 2

(B2)

When 1/3 < t < 1/2, there are two regimes

S2(〈ρ′A〉) =

{
β2N

2 , β ≤
√

2 log 2/3

N(log 2− β2), β >
√

2 log 2/3
(B3)
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52 J. M. Stéphan, S. Furukawa, G. Misguich, and

V. Pasquier, Phys. Rev. B 80, 184421 (2009).
53 E. Fradkin and J. Moore, Phys. Rev. Lett. 97, 050404

(2006).
54 B. Hsu, M. Mulligan, E. Fradkin, and E.-A. Kim, Phys.

Rev. B 79, 115421 (2009).
55 B. Hsu and E. Fradkin, J. Stat. Mech. P09004 (2010).
56 A. Hamma, R. Ionicioiu, and P. Zanardi, Physics Letters

A 337, 22 (2005).
57 M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405

(2006).
58 V. Khemani, A. Chandran, H. Kim, and S. L. Sondhi,

Phys. Rev. E 90, 052133 (2014).
59 D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35,

1792 (1975).
60 B. Derrida, Phys. Rev. B 24, 2613 (1981).
61 M. Mezard and A. Montanari, Information, Physics, and

Computation (Oxford University press, Oxford, UK, 2009).
62 A. Bovier, I. Kurkova, and M. Lowe, Ann. Prob. 30, 605

(2002).
63 E. Buffet, J. Phys. A 26, 1823 (1993).
64 M. Reed and B. Simon, I: Functional Analysis, revised

ed., Methods of Modern Mathematical Physics (Academic

http://arxiv.org/abs/arXiv:1403.7837
http://dx.doi.org/http://dx.doi.org/10.1016/j.nuclphysb.2014.12.014
http://dx.doi.org/http://dx.doi.org/10.1016/j.nuclphysb.2014.12.014
http://dx.doi.org/ 10.1103/PhysRevB.91.085425
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726
http://dx.doi.org/10.1103/PhysRevA.92.023625
http://dx.doi.org/10.1103/PhysRevA.92.023625
http://arxiv.org/abs/arXiv:1412.3534
http://arxiv.org/abs/arXiv:1509.00483
http://arxiv.org/abs/arXiv:1509.01244
http://dx.doi.org/http://dx.doi.org/10.1103/PhysRevLett.113.200405
http://dx.doi.org/http://dx.doi.org/10.1103/PhysRevLett.113.200405
http://dx.doi.org/10.1088/1742-5468/2013/09/P09005
http://dx.doi.org/10.1088/1742-5468/2013/09/P09005
http://arxiv.org/abs/arXiv:1508.01714
http://dx.doi.org/10.1103/PhysRevLett.112.057203
http://dx.doi.org/10.1103/PhysRevLett.112.057203
http://dx.doi.org/10.1103/PhysRevB.92.014208
http://dx.doi.org/10.1103/PhysRevB.92.014208
http://dx.doi.org/10.1103/PhysRevB.92.054203
http://dx.doi.org/10.1103/PhysRevB.92.054203


17

Press, London, UK, 1981).
65 K. Agarwal, S. Gopalakrishnan, M. Knap, M. Mueller, and

E. Demler, Phys. Rev. Lett. 114, 160401 (2015).
66 A. C. Potter, R. Vasseur, and S. A. Parameswaran, Phys.

Rev. X 5, 031033 (2015).
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