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Abstract

Inelastic scattering and carrier capture by defects in semiconductors are the primary causes of hot-

electron-mediated degradation of power devices, which holds up their commercial development. At the

same time, carrier capture is a major issue in the performance of solar cells and light-emitting diodes. A

theory of nonradiative (multiphonon) inelastic scattering by defects, however, is non-existent, while the the-

ory for carrier capture by defects has had a long and arduous history. Here we report the construction of a

comprehensive theory of inelastic scattering by defects, with carrier capture being a special case. We distin-

guish between capture under thermal equilibrium conditions and capture under non-equilibrium conditions,

e.g., in the presence of electrical current or hot carriers where carriers undergo scattering by defects and

are described by a mean free path. In the thermal-equilibrium case, capture is mediated by a non-adiabatic

perturbation Hamiltonian, originally identified by Huang and Rhys and by Kubo, which is equal to linear

electron-phonon coupling to first order. In the non-equilibrium case, we demonstrate that the primary cap-

ture mechanism is within the Born-Oppenheimer approximation (adiabatic transitions), with coupling to the

defect potential inducing Franck-Condon electronic transitions, followed by multiphonon dissipation of the

transition energy, while the non-adiabatic terms are of secondary importance (they scale with the inverse

of the mass of typical atoms in the defect complex). We report first-principles density-functional-theory

calculations of the capture cross section for a prototype defect using the Projector-Augmented-Wave which

allows us to employ all-electron wavefunctions. We adopt a Monte Carlo scheme to sample multiphonon

configurations and obtain converged results. The theory and the results represent a foundation upon which

to build engineering-level models for hot-electron degradation of power devices and the performance of

solar cells and light-emitting diodes.
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I. INTRODUCTION

Elastic scattering of electrons by phonons, impurities, and other defects limits the conductivity

in metals and the carrier mobility in semiconductors. The fundamental theory is well established,

parameter-free mobility calculations have become possible [1, 2], and engineering-level modeling

methods are widely available. Inelastic scattering of hot electrons by defects has long been known

to cause device degradation. For example, hot electrons in Si-SiO2 structures can transfer energy

and release hydrogen from passivated interfacial Si dangling bonds [4, 5]. More recently, it was

found that hot electrons cause degradation of power devices based on wide-band-gap semicon-

ductors [6]. It has been shown that the degradation is caused by hot-electron-mediated release of

hydrogen from hydrogenated defects such as Ga vacancies or impurities [7]. In other cases, carrier

capture transforms benign defects to metastable configurations that cause recoverable degradation

[8]. Similarly, non-radiative carrier capture by defects, which is a special case of inelastic scatter-

ing, limits the performance of photovoltaic cells, light-emitting diodes and other devices [9, 10].

A theory of inelastic scattering by defects by multiphonon processes (MPPs) does not exist

while the theory of non-radiative carrier capture or emission by defects by MPPs has a long and

controversial history. In 1950, Huang and Rhys [11] reported a theory of how the energy of

lattice relaxation that accompanies the photoionization of a defect is dissipated by MPPs. The

process was described within the Born-Oppenheimer or adiabatic approximation (BOA) and the

Frank-Condon approximation (FCA). The former says that the electronic and nuclear (vibrational)

wave functions obey decoupled equations. The latter states that an electronic excitation occurs

instantaneously and relaxation processes follow at a relatively slow pace, allowing one to write the

excitation rate (Fermi’s golden rule) as a product P = AF , where A describes the instantaneous

electronic excitation in the initial lattice configuration and F, the so-called line-shape function,

describes the MPPs that occur during lattice relaxation. In the Huang-Rhys theory, the operator

that causes the excitation is strictly the photon field and MPPs dissipate only the energy of the

ensuing lattice relaxation.

In the same paper, Huang and Rhys [11] also proposed a theory for non-radiative multiphonon

transitions between defect levels. Such transitions are caused by the terms that are dropped when

the Born-Oppenheimer approximation (BOA) is made, namely derivatives of the electronic wave-

functions with respect to nuclear positions (non-adiabatic terms). In 1952, Kubo [12] indepen-

dently invoked the same non-adiabatic terms as being responsible for the thermal ionization of a
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defect. In subsequent years, Kubo and Toyozawa [13] and later Gummel and Lax [14] adopted

Kubo’s formalism to explore carrier capture and emission using analytical approximations. Ko-

varskii and Sinyavskii [15–17] published several papers expanding on Kubo’s formalism. In 1977,

in search of a practical scheme to model electron capture in experiments , Henry and Lang [18]

adopted a Huang-Rhys analog: the electronic transition is caused instantaneously by the perturba-

tion potential ∆V generated by atomic vibrations – the linear electron-phonon coupling potential

that is normally thought to cause elastic scattering and is used for mobility calculations. The

following year, Ridley [19] showed that the Henry-Lang model exhibits the correct temperature

dependence at high temperatures (the semi-classical limit), but pointed out that the correct way

to calculate non-radiative capture cross sections is through the non-adiabatic perturbation terms

identified by Huang and Rhys [11] and by Kubo [12]. In 1981, however, Huang showed that

the non-adiabatic perturbation Hamiltonian and the linear electron-phonon coupling perturbation

Hamiltonian are equivalent to first order [20]. The issue whether such a first-order calculation is

adequate remained open as, throughout the years of all these developments, only model calcu-

lations were pursued, largely analytical, employing model defect wave functions. Furthermore,

calculations of the line-shape function were typically restricted by the assumption that a single vi-

brational mode contributes to the MPPs. In the chemical literature, noradiative transitions between

molecular orbitals have been studied [21, 22]. It was recognized that inclusion of all vibrational

modes in the MPP calculation leads to exploding computational requirements as the size of the

molecule increases [21]. The so-called parallel-mode approximation or simply a single vibrational

mode are typically used [22].

The first application of modern density-functional-theory (DFT) calculations to MPPs in the

case of luminescence, i.e., the classic Huang-Rhys problem where an electronic transition is caused

by the photon field and MPPs dissipate the ensuing lattice relaxation, was reported by Alkauskas

et al. [23]. These authors studied the luminescence spectra of defects in GaN employing DFT

pseudo wave functions for the electronic matrix elements and the single-phonon-mode aproxima-

tion to the Huang-Rhys line-shape function. In a more recent paper, Alkauskas et al. [24] reported

calculations of non-radiative capture of carriers by defects using the linear electron-phonon cou-

pling perturbation Hamiltonian, pseudo wave functions, and a single-phonon-mode to calculate

the MPPs that dissipate the transition energy. They pointed out that the electronic transition is a

slow process because capture is mediated by the phonons that are localized around the defect.

In this paper we first revisit the theory of carrier capture by defects. We identify two distinct
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regimes that are governed by different processes. One is carrier capture under thermal equilibrium

conditions, i.e., capture occurs in tandem with emission and electrons in the conduction band (or

holes in the valence band) are not being accelerated. Under these conditions, capture and emission

are inverse processes, i.e., the role of the initial and final states is reversed. For an electron bound

at a defect, emission amounts to a transition to a band state that is an eigenstate of the same

Hamiltoninan (perfect crystal plus defect potential). Band states are occupied according to the

Fermi-Dirac distribution function. Any of these carriers can be captured into the defect’s ground

state. Under such conditions, band carriers are effectively undergoing diffusive Brownian motion.

In this case, the Huang-Rhys-Kubo (HRK) non-adiabatic Hamiltonian perturbation is the only

possible cause for these thermal transitions.

Under non-equilibrium conditions, however, e.g., in the presence of an electrical current, car-

riers are accelerated in a specific direction and a mean free path is defined by scattering events. It

is then standard procedure to treat the band electrons as being in eigenstates of the perfect crystal

Hamiltonian and consider scattering by the defects. In particular, one considers elastic scattering

by defects as a mechanism that limits the carrier mobility. In this case, the initial and final states

are eigenstates of the perfect crystal Hamiltonian and the defect potential acts as the perturbation

that causes the transitions, i.e., the defect potential is “turned on” in order to use time-dependent

perturbation theory and arrive at Fermi’s golden rule. Clearly, hot carriers can undergo inelastic

scattering as well, dropping to a Bloch state of lower energy, with the energy dissipated by MPP.

For such calculations, one must again “turn on” the defect potential, though the HRK non-adiabatic

perturbation must also be included. Transitions caused by the defect potential are within the BO

approximation, whereas those caused by the HRK perturbation Hamiltonian are non-adaiabatic.

Finally, under such non-equilibrium conditions, carrier capture can be viewed as a special case of

inelastic scattering: if the defect potential can cause elastic scattering and inelastic scattering with

energy dissipation via MPP, then it certainly should also be included as a cause for capture.

In the capture case, however, there is a subtle difficulty. In order to derive a transition rate

using Fermi’s golden rule, initial and final states must be eigenstates of the same Hamiltonian. In

the carrier capture case, however, the final state is an eigenstate of the crystal Hamiltonian plus

the defect potential, whereas the initial state is an eigenstate of the perfect crystal Hamiltonian.

The difficuty can be overcome if we prepare a propagating state for the incoming electron that is

not aware of the bound state’s existence, with capture being triggered by the sudden turning on of

a suitable coupling (initial and final states must belong to the same Hamiltonian for the concept
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of a transition to be meaningful) to the defect potential. Such adiabatic transitions have not been

considered so far in the context of multiphonon transitions at defects in semiconductors, but they

are commonly invoked in chemistry for elecron transitions in molecules [25–27].

We will develop a comprehensive theory of inelastic scattering and capture for transitions

caused by both the defect potential (adiabatic transitions) and by the non-adiabatic HRK perturba-

tion Hamiltonian. We will show that, for carrier capture, adiabatic transitions are the zeroth-order

term in an expansion in the defect-atom displacements that following capture (lattice relaxation)

and are, therefore, dominant under non-equilibrium conditions. The electronic transition is caused

instantaneously by the defect potential (it is effectively a Franck-Condon transition) and the en-

ergy is dissipated by MPP. The next order in the series, which is linear in the atomic displacements,

comprises two terms, only one of which has been captured by prior theories [20, 24]. We estimate

that these “linear terms” make smaller contributions to the capture rate as they scale with 1/m,

where m is a typical nuclear mass in the defect complex. The adiabatic perturbation Hamiltonian

that couples the incoming electron to the defect is constructed in terms of Hamiltonian matrices as

in the Förster theory of electron and exciton transfer in molecules [25], which allows the derivation

of Fermi’s golden rule for these transitions.

In addition to presenting the basic elements of the fundamental theory, we report explicit calcu-

lations for capture cross sections as functions of energy transfer for a prototype defect using DFT

for the electronic matrix elements. We employ the Projector-Augmented Wave (PAW) scheme

[28], which allows the use of the all-electron defect potential and wave functions as opposed to

pseudopotentials and pseudo wave functions. For the calculation of the line-shape function, we

introduce a Monte Carlo scheme to sample the space of phonon combinations that contribute to

the MPP energy dissipation and find that random configurations containing up to twelve different

phonon modes and trillions of configurations are needed to obtain converged results.

A few more observations are in order before we describe the present theory in detail. In a

perfect crystal without defects, the HRK perturbation Hamiltonian is responsible for electron-

phonon scattering (only linear coupling is usually included) and for the formation of polarons,

which are electrons or holes dressed by phonons. Under strong-coupling conditions, the HRK

Hamiltonian can be responsible for polaron self-trapping. When a defect is present, the HRK

Hamiltonian can cause carrier capture. As Alkauskas et al. [24] pointed out, such capture is

very slow. Indeed it is caused by the derivatives of the electronic wave functions with respect to

nuclear displacements, which amounts to a “frozen electron approximation” (recall that the BO
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approximation is effectively a “frozen nuclei approximation”). As we already noted, this kind of

capture occurs under thermal equilibrium conditions, which corresponds to constant emission and

capture by inverse processes, i.e., the band electrons are definitely “aware” of the defects, i.e., they

should not be treated as “free” carriers with a mean free path, undergoing scattering by defects

and phonons. In this regard, the linear coupling approximation [24] should be viewed as the zero

mean-free-path limit, whereas the theory put forward in this paper represents the limit in which

the mean-free-path is only bounded by Lcapture, the mean distance an electron travels before being

captured by a defect.

The conditions under which capture cross sections are measured by junction capacitance meth-

ods [18] are close to equilibrium, i.e., they are slow. Similarly, in light-emitting diodes, carriers

by design have minimal acceleration through the pn-junction. However, even in such deliberate

setups, there must still be some nonequilibrium driving forces, e.g., a current must flow through

the system, in order to carry out the measurement or for the device to operate. The carrier mean-

free-path is always finite, never exactly zero. Therefore, a realistic model of the measured capture

cross sections can be obtained by scaling the difference between the two limits according to the

factor L/Lcapture where L is the elastic scattering mean-free-path,

σ =
L

Lcapture

σadiabatic + σnonadiabatic, (1)

where σnonadiabatic is the capture cross section due to the HRK Hamiltonian and σadiabatic is the

adiabatic capture cross section calculated in this paper.

For scattering of a carrier into another propagating state at a lower energy, the defect is left in

the same charge state, which requires that scattering by the defect potential is elastic (no energy can

be dissipated in the Franck-Condon approximation in such a case). We find that inelastic scattering

can still occur within the BOA by the first-order correction to the Franck-Condon approximation,

which are the linear terms discussed above.

II. FERMI GOLDEN RULE FOR ADIABATIC AND NON-ADIABATIC TRANSITIONS

As discussed in the previous section, in order to describe transitions, it is always necessary

to identify the piece of the total Hamiltonian that causes the transition between eigenstates of an

approximate Hamiltonian. Let us be more specific. In the hydrogen atom, one usually includes

only the Coulombic attraction between the proton and the electron, leaving out the electromagnetic
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field at large. The calculated energy levels are only eigenstates of this approximate Hamiltonian.

The electromagnetic field, treated as a perturbation, then causes a transition from, say, a 2p state to

the 1s state. In Auger transitions, one must leave out specific electron-electron interactions that are

then introduced to cause transitions [30]. Our task here is to identify the approximate Hamiltonian

whose eigenstates are the propagating state of the incoming electron that is not aware of the bound

state of the defect potential and the final state, which can be either another propagating state that

is not aware of the existence of a bound state at a lower energy or the bound state itself, and

determine the perturbation Hamiltonian that causes the transition.

In the BOA, the many-electron Hamiltonian depends parametrically on the nuclear positions

and the total wave functions are products of many-electron wave functions and phonon wave func-

tions. Within DFT, the many-electron wave functions are Slater determinants of Kohn-Sham wave

functions. We start by defining the many-electron Hamiltonian H0 for the perfect crystal and the

corresponding eigenvalue problem,

H0|Ψ0
n〉 = E0

n|Ψ0
n〉. (2)

For the crystal containing a single defect, we have

H|Φm〉 = Em|Φm〉. (3)

One normally writes

H = H0 +∆H. (4)

The partitioning of the total Hamiltonian H according to Eq. (4) is not useful for our purposes.

Instead, we write

H = H̃0 +HBO
1 , (5)

where,

H̃0|Ψn〉 = ǫn|Ψn〉. (6)

In order to obtain an explicit description of HBO
1 , which then defines H̃0 through Eq. (5), we

express ∆H in terms of the complete set of functions Ψn :

∆H =
∑

m

|Ψm〉〈Ψm|∆H
∑

n

|Ψn〉〈Ψn| =
∑

mn

|Ψm〉∆Hmn〈Ψn|. (7)

We then define HBO
1 by

HBO
1 = |Ψi〉∆Hif〈Ψf |+ |Ψf〉∆Hfi〈Ψi|, (8)
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where the subscripts i and f denote the eigenstates of H̃0 that are the initial and final states of

our problem. This definition of HBO
1 is analogous to the so-called Förster transition often used in

energy transfer in molecules [25]. In effect, HBO
1 eliminates the coupling of the incoming electron

via the defect potential to the final state, whether propagating or bound. The defect potential ∆H,

which can be arbitrarily strong, is still present. It is the perturbation Hamiltonian HBO
1 that is

weak and can cause transitions whose rate is describable by Fermi’s gold rule, i.e., to first order in

HBO
1 . Note also that the state |Ψi〉 contains an incoming electron that “sees” the defect potential,

but does not couple to the bound state. Also, for all practical purposes, for carrier capture we have

|Ψf〉 = |Φf〉 (i.e., the bound sate is not affected by the presence of an incoming electron that does

not couple to the defect).

The adiabatic transition rate is given by the usual Fermi’s golden rule by

wBO
if =

2π

~

∑

f

∣

∣〈Xf |〈Ψf |HBO
1 |Ψi〉|Xi〉

∣

∣

2
δ(Θf −Θi + ǫif ), (9)

where Θi,f are the total phonon energies of states |Xi,f〉 and ǫif = ǫf − ǫi is the energy difference

between the electronic states |Ψi〉 and |Ψf〉. For capture, it is usually assumed that there is one

final electronic state with a given energy difference ǫif , but there are many phonon configurations

that can make up this difference. If there are multiple electronic states at the same energy we need

to sum Eq. (9) over all such states.

In addition to HBO
1 , there are terms beyond the BOA, usually referred to as the non-adiabatic

terms [11, 12], that cause multiphonon transitions. These terms contain derivatives of the electron

wave functions with respect to nuclear coordinates {Rk} and are the terms neglected when one

invokes the BOA. They contribute to the total transition rate wif via the matrix element,

−
∑

k

~
2

2mk

[

〈Xf |〈Ψf |∇2
Rk

(|Ψi〉|Xi〉)− 〈Xf |〈Ψf |Ψi〉∇2
Rk

|Xi〉
]

, (10)

where mk is the mass of atom k. This contribution will be discussed in detail later.

One can define a cross section for inelastic scattering or carrier capture by

σif =
wifΩ

vg
, (11)

where vg is the group velocity of the incident electron, Ω is the volume over which the state |i〉 is

normalized, so that vg/Ω represents the flux of the incoming electrons.

We will work within DFT so that the many-electron wavefunctions are Slater determinants of

Kohn-Sham one-electron wavefunctions and the many-electron Hamiltonians are those of non-
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interacting Kohn-Sham quasi-particles in the presence of an effective single-particle external po-

tential. From now on we will view the Hamiltonians and wavefunctions in Eqs. (9) and (10) as

one-electron Kohn-Sham Hamiltonians and electron wave functions without change of notation.

A. Adiabatic series

We now examine the electronic part of the transition matrix element in the BOA by showing

explicitly its dependence on the atomic coordinates,

MBO
e ({Rj}) =

∣

∣〈Ψf({Rj})|HBO
1 ({Rj})|Ψi({Rj})〉

∣

∣

2
. (12)

The BOA by itself does not separate electron and phonon matrix elements. A further approxima-

tion is needed. We expand

MBO
e ({Rj}) = MBO

e ({R(0)
j }) +

∑

k

(Rk −R
(0)
k ) · ∇Rk

MBO
e ({Rj}) + . . . , (13)

in terms of the atomic displacements Rk−R
(0)
k where R

(0)
k are the atomic positions in a reference

state, which will be determined later. The transition rate is then,

wBO
if =

2π

~

∣

∣

∣
MBO

e ({R(0)
j })

∣

∣

∣

2∑

f

|〈Xf |Xi〉|2 δ(Θf −Θi + ǫif)

+
2π

~

∑

f

∣

∣

∣

∣

∣

∑

k

∇Rk
MBO

e ({R(0)
j }) · 〈Xf |(Rk −R

(0)
k )|Xi〉

∣

∣

∣

∣

∣

2

δ(Θf −Θi + ǫif ) + ....(14)

Here the cross terms are dropped because the zeroth order and first order terms cannot have the

same final phonon wave functions – the number of phonons needed to ensure a nonzero overlap

matrix element are different for the two cases. The first term in this expansion represents a com-

plete separation of the electron and phonon wave functions as if they are independent of each other

and corresponds to the Frank-Condon approximation. The second term is the first order correction

to the Frank-Condon approximation arising from the BOA perturbation Hamiltonian HBO
1 .

B. Non-adiabatic series

According to Huang [20], the non-adiabatic matrix element defined in Eq. (10) can be evaluated

for linear phonon coupling,

∑

k

〈Ψf({R(0)
j })|∇Rk

He({R(0)
j })|Ψi({R(0)

j })〉 · 〈Xf |(Rk −R
(0)
k )|Xi〉, (15)
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where He is the electron part of the Hamiltonian. When electron-phonon coupling Hep =

He({Rj}) − He({R(0)
j }) is introduced, the electron wave functions are changed by a perturba-

tion,

|δΨi({Rj})〉 =
∑

i′ 6=i

〈Ψi′|Hep|Ψi〉
ǫi′ − ǫi

|Ψi′({R(0)
j })〉, (16)

(and a similar equation for the final states). We write both the initial and final states in the form,

|Ψi(f)({Rj})〉 = |Ψi(f)({R(0)
j })〉+ |δΨi(f)〉. (17)

Substituting this into Eq (10) and keeping only the linear terms,

−
∑

k

~
2

2Mk

[

〈Xf |∇2
Rk

(

〈Ψf({R(0)
j })|δΨi〉|Xi〉

)

− 〈Xf |〈Ψf({R(0)
j })|δΨi〉∇2

Rk
|Xi〉

]

= (Θi −Θf) 〈Xf |〈Ψf({R(0)
j })|δΨi〉|Xi〉

=
∑

k

∑

i′ 6=i

ǫif
ǫi′ − ǫi

〈Ψi′ |∇Rk
H|Ψi〉〈Ψf({R(0)

j })|Ψi′({R(0)
j })〉 · 〈Xf |(Rk −R

(0)
k )|Xi〉

=
∑

k

〈Ψf |∇Rk
He|Ψi〉 · 〈Xf |(Rk −R

(0)
k )|Xi〉. (18)

Here the first equality results from the Schrödinger equations for the phonon wave functions and

for the second equality we used Θi −Θf = ǫif .

We note that the above linear-order term in the non-adiabatic series has the same phonon matrix

element as the linear-order term in the BOA series of the previous section. This indicates that the

leading non-adiabatic term is a smaller contribution to the electron capture rate compared to the

zeroth-order BOA term. The electronic matrix element in the non-adiabatic series is different than

the BOA series. We will show later that both these terms scale as 1/m, where m is the mass of a

typical atom in the defect complex.

The linear term in Eq. (15) is usually referred to as the linear electron-phonon coupling term.

A similar term has been calculated by Alkauskas et al [24], with the exception that in that work

the wave functions are |Φi(f)〉 which are the eigenstates of the full Hamiltonian He, whereas in our

case the wave functions are Ψi(f) which are the eigenstates of the Hamiltonian H̃0. We recover

the term calculated by Alkauskas et al. if we combine the BOA and the non-adiabatic series. We

make use of the result in Eq. (24) and get for our final result

11



wif =
2π

~

∣

∣

∣
MBO

e ({R(0)
j })

∣

∣

∣

2∑

f

|〈Xf |Xi〉|2 δ(Θf −Θi + ǫif )

+
2π

~

∑

f

∣

∣

∣

∣

∣

∑

k

[

〈Φf |∇Rk
He|Φi〉 − 〈Φf |Ψ0

i 〉〈Φf |∇Rk
He|Φf 〉

]

· 〈Xf |(Rk −R
(0)
k )|Xi〉

∣

∣

∣

∣

∣

2

×

× δ(Θf −Θi + ǫif ) + . . . . (19)

Here the first term is the zeroth-rder term that corresponds to the Franck-Condon approximation

and thes second terms is the totality of contributions from the linear terms in the two series. The

first term in square brackets is precisely the term that Alkauskas et al. [24] calculated. We note

that there exists a second term, which has the appearance of a force term. These two terms can

either add or subtract. We will show shortly that these linear-order terms are proportional to 1/m,

where m is a typical atomic mass in the defect complex, and are, therefore, significantly smaller

than the zeroth-order Franck-Condon term, which is dominant.

III. ELECTRON MATRIX ELEMENTS

We first consider the zeroth order term in the BOA series, which yields a capture cross section

that can be written in the familiar factorized form,

σif = AifFif , (20)

where Aif contains the electronic part of the matrix element ,

Aif =
Ω

~vg

∣

∣

∣
〈Ψf({R(0)

j })|HBO
1 ({R(0)

j })|Ψi({R(0)
j })〉

∣

∣

∣

2

, (21)

and F is called the line shape factor due to vibrations,

Fif =
∑

f

|〈Xf |Xi〉|2 δ (Θf −Θi + ǫif ) . (22)

Next we will consider these two factors separately.

Detailed derivations given in Appendices I and II find the final results

MBO
e = −〈Φf |Ψ0

i 〉ǫif , (23)

and
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∇Rk
MBO

e + 〈Ψf |∇Rk
H|Ψi〉 = 〈Φf |∇Rk

H|Φi〉 − 〈Φf |Ψ0
i 〉〈Φf |∇Rk

H|Φf〉. (24)

For the evaluation of the above matrix elements, we employ the PAW scheme, which allows us

to use all-electron wave functions instead of pseudo wave functions. Details are given in Appendix

III.

IV. PHONON MATRIX ELEMENTS

First, we consider the effect of displacements for a classical Hamiltonian. We derive this Hamil-

tonian for the ion motion from which the phonon wave functions and matrix elements can be

calculated. For this purpose we start with a supercell containing na number of atoms with the

defect site at its center. This supercell is repeated N times using the Born-von-Karman periodic

boundary condition. For the initial state, the equilibrium positions of the atoms are Rk where the

subscript k runs through both the atomic index within the supercell and the cartesian components.

Each atom oscillates around its equilibrium position with displacement ukl, where the subscript

l labels different copies of the supercell under the Born-von-Karman periodicity. Using the har-

monic approximation for the potential energy, under which only terms that are second order in

displacements make a contribution and introducing force constants Φkl,k′l′ , we can write [25],

H ′
i =

1

N

∑

kl

[

1

2
mk

(

dukl

dt

)2

+
1

2N

∑

k′l′

uklΦkl,k′l′uk′l′

]

(25)

where the atomic mass mk also carries the subscript k for convenience even though it depends

only on the atomic index and not the coordinate component index.

When an electron is absorbed or emitted from the lattice, the equilibrium position of the atoms

change. The new equilibrium positions are Rk + ∆k. The new Hamiltonian has the same form

after initial displacement vectors ukl are replaced by u′
kl = ukl −∆k. The final state Hamiltonian

is then written as

H ′
f =

1

N

∑

kl

{

1

2
mk

[

d (ukl −∆k)

dt

]2

+
1

2N

∑

k′l′

(ukl −∆k)Φkl,k′l′ (uk′l′ −∆k′)

}

(26)

where we make an assumption that force constants do not change due to the electron capture

or absorption. Since displacements ∆k do not depend on time, the kinetic energy term remains

unchanged. Expanding the potential energy to first order in displacements reproduces the same

13



term in the original Hamiltonian plus a term that includes uk′l′∆k.

H ′
f = H ′

i −
1

N

∑

kl,k′l′

Φkl,k′l′∆kuk′l′ (27)

Transforming to the normal-mode representation in terms of the generalized coordinates,

qj =
1√
N

∑

kl

√
mkuklwj,kl, (28)

where wj,kl is the klth element of the eigenvector for mode j. Note that in this definition of the

generalized coordinate qj , it has absorbed the mass factor
√
mk. The Hamiltonian is expressed as,

H ′
f =

1

2

∑

j

q̇2j +
1

2

∑

j

ω2
j q

2
j −

1√
N

∑

j

qj
∑

kk′

Dkk′(kj)wjk′
√
mk∆k, (29)

where ωj are the eigenfrequencies. A phase factor of the form exp(ikj · rl′), where kj is the wave

vector of mode j, from wj,k′l′ is absorbed into the force constant matrix Φ yielding the dynamical

matrix D, and reducing wj,k′l′ to wjk′ (independent of l′). Since we assume that force constants

remain the same after electron capture,

∑

k′

Dkk′(kj)wjk′ = ω2
jwjk (30)

The linear term causes a general coordinate displacement,

δqj = − 1√
N

∑

k

√
mk∆kwjk. (31)

We can express the normal coordinates of the lattice for the final (f ) state, qfj , in terms of those for

the initial (i) state, qj ,

qf,j = qj + δqj, (32)

so that the final Hamiltonian is:

H ′
f =

1

2

∑

j

q̇2f,j +
1

2

∑

j

ω2
j q

2
f,j (33)

A. Zeroth-order phonon matrix elements

We have derived the expression for the generalized coordinates resulting from the lattice dis-

placements. These generalized displacements enter the phonon wave functions |Xni
j
(qj)〉 and

14



|Xnf
j
(qj + δqj)〉, respectively in the quantized versions of the harmonic oscillator Hamiltonians

H ′
i and H ′

f . Now we turn to the evaluation of phonon matrix elements 〈Xnf
j
(qj + δqj)|Xni

j
(qj)〉.

When the displacement δqj are small, we can show that the dominant contribution comes from

single phonon emission or absorption for each normal mode. Suppose the initial state of mode j

has n phonons and its final state has n + p phonons, (we dropped the index for the mode, since it

is present in the notation of generalized coordinate). Using the integrals provided in Appendix IV,

the matrix elements for the phonon part are,

〈Xn+1(qj + δqj)|Xn(qj)〉 = −
√

(n+ 1)ωj

2~
δqj, (34)

〈Xn−1(qj + δqj)|Xn(qj)〉 =
√

nωj

2~
δqj. (35)

The integrals for phonon modes that maintain the same occupation numbers are calculated to

second order in qj ,

〈Xn(qj + δqj)|Xn(qj)〉 = 1− (2n + 1)ωj

4~
δq2j . (36)

Now we consider how to evaluate Eq. (22). The total number of phonon modes in the supercell

is M = 3(na−1) excluding the translational motion, and the total number of phonon modes in the

entire system is MN , since supercell is repeated N-times. We assume that there is a one-to-one

correspondence between phonon bands before and after the capture. The wave function of the

initial phonon state is

|Xi〉 =
MN
∏

j=1

∣

∣

∣
Xni

j

〉

, (37)

and that of any one of the final phonon states is

|Xf 〉 =
MN
∏

j=1

∣

∣

∣
Xnf

j

〉

, (38)

where ni
j and nf

j are the occupation numbers of phonon mode j before and after the capture,

and are also used to label the wave functions. The total phonon energies for initial and final

configurations are

Θi =
1

N

MN
∑

j=1

ni
jhω

i
j , (39)

and

Θf =
1

N

MN
∑

j=1

nf
j hω

f
j , (40)
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respectively, where ωi
j and ωf

j is the phonon frequency of mode j in the initial and final configura-

tion of the defect, respectively. With the overlap matrix for each individual mode expressed as Eq.

(1) and using Eqs. (37), (38), (39), and (40), Eq. (22) now takes the form,

Fif =
∑

{nf
j }

{

MN
∏

j=1

∣

∣

∣

∣

ˆ

Xnf
j
(qj + δqj)Xni

j
(qj)dqj

∣

∣

∣

∣

2
}

δ

(

1

N

MN
∑

j=1

(nf
j ~ω

f
j − ni

j~ω
i
j) + ǫif

)

, (41)

where nf
j = ni

j −1, ni
j , n

i
j +1. We will see below that as the limit of N → ∞ is taken, the discrete

modes in N will become continuous spectra in k over the Brillouin zone of the reciprocal space.

Now we are ready to put all the phonon matrix elements together and perform the configura-

tional sum. To do this we follow the steps of Huang and Rhys [11], but generalize it for a system

with multiple phonon frequencies. For multiple phonon bands, we assume that the frequency vari-

ation within each band is much smaller than the frequency difference between the bands. This is

the flat band approximation that is complemented with the requirement of finite spacing between

the bands. We finally find,

Fj = exp

[

pj~ωj

2kT
− Sj coth

(

~ωj

2kT

)]

Ipj

[

Sj

sinh(~ωj/2kT )

]

, (42)

and

F =
1

Ωk

∑

{pj}















(

M
∏

j=1

Fj

)

M
∑

j=1















pj +
Sj

sinh(~ωj/2kT )

Ipj+1

[

Sj

sinh(~ωj/2kT )

]

Ipj

[

Sj

sinh(~ωj/2kT )

]















D(ωj)















∣

∣

∣

∣

∣

∣

∣

∣∑M
j=1

pj~ωj+ǫif=0

,

(43)

where

Sj =
ωj

2~
Nδq2j , (44)

and Ip is the modified Bessel function of order p.

B. Linear phonon matrix elements

To evaluate the phonon matrix elements for the linear term, we rewrite it in terms of the normal

mode coordinates qj ,

∑

f

∣

∣

∣

∣

∣

∑

j

Mj〈Xf |qj|Xi〉
∣

∣

∣

∣

∣

2

=
∑

f

∑

j

|Mj〈Xf |qj|Xi〉|2

=
1

2

∑

f

∂2

∂λ2

∣

∣

∣

∣

∣

〈Xf |
∏

j

[1 + λMjqj exp(iφj)] |Xi〉
∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

λ=0

, (45)
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where φj is a random phase introduced to cancel out the cross terms, and,

Mj = 〈Φf |∂qjHe|Φi〉 − 〈Φf |Ψi〉〈Ψf |∂qjHe|Ψf〉. (46)

The rest of the steps are exactly the same as for the zeroth order matrix elements. Using the

integrals provided in Appendix IV, the matrix elements for the phonon part are,

〈Xn+1(qj + δqj)| [1 + λMjqj exp(iφj)] |Xn(qj)〉 = −
√

(n + 1)ωj

2~

[

δqj −
λ~Mj

ωj
exp(iφj)

]

,

(47)

〈Xn−1(qj + δqj)| [1 + λMjqj exp(iφj)] |Xn(qj)〉 =
√

nωj

2~

[

δqj +
λ~Mj

ωj
exp(iφj)

]

, (48)

and,

〈Xn(qj + δqj)| [1 + λMjqj exp(iφj)] |Xn(qj)〉 = 1− (2n + 1)ωj

4~
δq2j −

1

2
λMjδqj exp(iφj)

= 1− Sj

2N
− 1

2
λMjδqj exp(iφj). (49)

Define,

S±(λ) =





n+ 1

n





ωj

2~
N

∣

∣

∣

∣

δqj ∓
λ~Mj

ωj
exp(iφj)

∣

∣

∣

∣

2

≈





n+ 1

n





ωj

2~
Nδq2j

∣

∣

∣

∣

exp

[

∓2
λ~Mj

ωjδqj
exp(iφj)

]∣

∣

∣

∣

. (50)

The approximation in the second step is accurate to λ2, with the ocnsideration that terms such as

λ2 sin 2φj and λ2 cos 2φj drop out after the configurational average. Then,

√

S+S− ≈
√

n(n + 1)Sj, (51)

S+(λ)

S−(λ)
≈ n + 1

n

∣

∣

∣

∣

exp

[

−4
λ~Mj

ωjδqj
exp(iφj)

]∣

∣

∣

∣

. (52)

The λ-dependent line-shape factor for a single phonon band is,

Fj(λ) = exp

[

pj~ωj

2kT
− Sj coth

(

~ωj

2kT

)

− λNδqj |Mj exp(iφj)|
]

Ipj

[

Sj

sinh(~ωj/2kT )

]

×
∣

∣

∣

∣

exp

[

−2λpj
~Mj

ωjδqj
exp(iφj)

]∣

∣

∣

∣

. (53)

Let us now compare the two λ factors by evaluating the ratio

Nωjδq
2
j

2~
=

mωjδR
2

~
. (54)
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For a hydrogenated vacancy defect our calculation shows that δR ≈ 0.2 Å for the nearest Si atom.

Using m ≈ 4.66× 10−26 kg for the Si atom and ωj ≈ 1012 sec−1, we have,

Nωjδq
2
j

2~
≈ 0.09. (55)

Thus the first λ factor has a much smaller contribution than the second one. The final linear phonon

squared matrix element is,

F1 =
1

2Ωk

∑

{pj}







∂2

∂λ2

[

M
∏

j=1

Fj(λ)

]∣

∣

∣

∣

∣

λ=0

M
∑

j=1















pj +
Sj

sinh(~ωj/2kT )

Ipj+1

[

Sj

sinh(~ωj/2kT )

]

Ipj

[

Sj

sinh(~ωj/2kT )

]















D(ωj)















∣

∣

∣

∣

∣

∣

∣

∣∑M
j=1 pj~ωj+ǫif=0

. (56)

C. Ratio of zeroth-order and linear terms

From the different expressions for the zeroth-order and the linear phonon matrix elements, we

can estimate the ratio between the linear term and the zeroth-order term in the transition rate. This

is of the order of

2

∣

∣

∣

∣

Mj~pj
MBO

e ωjδqj

∣

∣

∣

∣

2

. (57)

To estimate Mj/M
BO
e , we note that the leading term in Mj is (see Eq. (4)),

Mj ≈ −ǫif 〈
∂Φf

∂qj
|Ψi〉. (58)

To estimate ∂Φf/∂qj , we assume rigid atomic orbitals, where the atomic wave functions move

rigidly in space with each atom. The derivative of such a wave function with respect to atomic

displacements simply reflects the change in the relative spatial phase, which is dictated by the

phonon wave vector,

∂Φf

∂qj
≈ i

√

N

m

2π

λj

Φf exp(iφ), (59)

where λj is the acoustic wavelength for mode j, m is the mass of an atom, and φ is the phase

factor due to the movement of the atoms, which is different in each Born-von-Karman supercell.

Integrating over all N Born-von-Karman supercells, the sum of the exp(iφ) factors scales as 1/N

for large N . Thus,

Mj ≈ i
2π√
Nmλj

MBO
e . (60)
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Finally, pj is mostly zero, occasionally taking the values ±1, and δqj ≈
√

(m/N)δR where δR is

the largest atomic displacement and m is the mass of the corresponding atom. The ratio between

the linear and zeroth order terms simplifies to,

2

(

~

cmδR

)2

, (61)

where c is the sound velocity in the material. For a hydrogenated vacancy defect our calculation

shows that δR ≈ 0.2 Å for the nearest Si atom. Using this number and c ≈ 8 × 103 m/s for bulk

silicon and m ≈ 4.66× 10−26 kg for the Si atom, we find,

2

(

~

cmδR

)2

≈ 3.6× 10−4. (62)

Thus the linear phonon term (non-adiabatic term) is several orders of magnitude smaller than the

leading BOA term.

D. Monte Carlo method for configurational sum

The summation over all configurations {pj} involves a large number of terms when P =
∑

j |pj| is greater than a few. We use a Monte Carlo approach to calculate this sum. For a given

number of phonon modes, P , and a given number of bands, B, we use Monte-Carlo to construct

a fixed number of configurations, K. We rewrite the sum over the configurations as a sum over

the number of phonons P of a configuration, a sum over the number of bands B used to con-

struct a configuration with P phonons and a sum over the configurations sampled (Monte Carlo

steps). In each Monte Carlo step, we randomly pick B bands and then we construct all the possible

configurations with P phonons constructed by these bands.

In order to generate and count the configurations correctly, we first rewrite Eq. (43) as,

F =
1

Ωk

∑

P=1

P
∑

B=1

wB

K
∑

{pj}′

{(

M
∏

j=1

Fj

)

×

M
∑

j=1















pj +
Sj

sinh(~ωj/2kT )

Ipj+1

[

Sj

sinh(~ωj/2kT )

]

Ipj

[

Sj

sinh(~ωj/2kT )

]















D(ωj)















∣

∣

∣

∣

∣

∣

∣

∣∑M
j=1 pj~ωj+ǫif=0

. (63)

Then, we normalize the sum so that the total weight, wB, in each sub-group of configurations

(configurations with the same number of bands) is equal to the total number of possible configu-
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rations for this number of bands,

wB =
1

K

M !

B!(M −B)!
. (64)

All configurations with up to four phonon modes are constructed and calculated explicitly. For

configurations with more than four phonons, all the configurations constructed with up to three

bands are calculated explicitly and the above equations are use to calculate the line shape function

for configurations with more than three bands.

The last step in the Monte Carlo scheme is to collect the line shape function into different en-

ergy bins for a distribution. To do this, we note that with an incomplete sampling of the phase

space via Monte Carlo, we may not be able to resolve the energy distribution to arbitrary accu-

racy. Specifically, when we sample one configuration and weigh it according to Eq. (64), we are

effectively using it to approximate several configurations with different energies. Thus, the energy

resolution must be consistent with the number of configuration samples - fewer configurations

should correspond to coarser energy resolution. For this reason, we define the energy bin width

separately for each value of P based on the requirement that there is at least one configuration

inside each energy bin. To ensure the correct normalization, we rewrite the phonon density of

states for band j as,

D(ωj) =
1

∆E

ˆ

D(E)dE =
Ωk

∆E
(65)

where ∆E is the energy bin width and we assume that the phonon band is sufficiently flat so that

it falls entirely within one energy bin. Then Eq. (63) becomes,

F =
1

∆E

∑

P=1

P
∑

B=1

wB

K
∑

{pj}′

{(

M
∏

j=1

Fj

)

×

M
∑

j=1















pj +
Sj

sinh(~ωj/2kT )

Ipj+1

[

Sj

sinh(~ωj/2kT )

]

Ipj

[

Sj

sinh(~ωj/2kT )

]





























∣

∣

∣

∣

∣

∣

∣

∣∑M
j=1

pj~ωj+ǫif=0

. (66)

The evaluation of the linear phonon terms is similar.

V. APPLICATION TO A DEFECT IN SILICON

In this paper, we will present only one application of the theory and computer codes for the

capture cross section of a prototype defect in Si, namely a triply hydrogenated vacancy with a
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bare dangling bond. Our purpose here is to demonstrate the feasibility of calculations, especially

the first-ever calculation of the line-shape function that is converged with respect to the number

of phonon modes that are used to construct random configurations whose energy is equal to the

amount of energy that needs to be dissipated following the instantaneous electronic transition. We

defer calculations for defects for which experimental data are available to a future paper where we

anticipate using hybrid functionals in the DFT calculations of the electronic matrix elements. Such

calculations are computationally demanding, but would provide more accurate transition energies

and electronic matrix elements. In addition, we plan to code the additional contributions from the

linear terms which we estimated to be significantly smaller because they scale with the inverse of

the mass of a typical atom in the defect cluster. It will be interesting to see how the two terms in

the square brackets in eq. 19 add or subtract for different defects.

In Fig. 1, we show the values of calculated electronic matrix elements as a function of energy.

At each energy value, there are a number of k points that contribute. Their contributions are

indicated by red symbols. The size of the energy bin is determined by the number of k points.

For the example shown in Fig. 1 the average matrix element as a function of energy is shown

by the blue line. The size of the energy bin fixes the resolution. A smooth curve can only be

obtained with very small energy bins, which requires a very large number of k points. It is clear

from the figure that the capture electronic matrix element is relatively constant as a function of

energy, whereby it seems best at this point to take it to be a constant, either an average value or the

value at the threshold for capture, which introduces an error bar of a factor of ∼ 1.7 (clearly, to

validate the theory against accurate experimental data, we need a very accurate calculation in the

near-threshold region).

In Fig. 2, we show the calculated capture cross section using a constant matrix element to show

clearly the convergence of the line-shape function as we increase the number of phonon modes

that are used to construct configurations (the electronic matrix element is just a multiplier that sets

the absolute value). The dominant contribution to the line-shape function comes from the balance

between the modes with largest general coordinate displacement (GCD) and the growth of the

number of allowed combinations with smaller GCD. Note that the curves are smooth because we

employ millions of configurations at each energy and therefore we have very tiny energy bins. It is

clear that a single-phonon-mode approximation would be very poor indeed. In Fig. 3 we show the

convergence of the capture cross section at threshold (for electrons at the bottom of the conduction

band), which is what is usually measured. Once more, it is clear that the single-phonon mode
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FIG. 1: Calculated electronic matrix elements as a function of the initial state electron energy for a triply

hydrogenated vacancy in Si with a bare dangling bond. Red points: matrix element values at each energy

for different k points; blue curve: Averaged matrix element over all k points for each energy.

approximation would be inadequate.

For a calculation of the cross section using electronic matrix elements that depend on energy,

the resolution is limited by the energy bin size. We show the result in Fig. 4. Clearly, the size of

the energy bin is important. For capture cross sections, one is often interested only in the thresh-

old value. The calculations presented here are a prelude to calculations of hot-electron inelastic

multiphonon scattering, for which the energy dependence is important. The energy dependence is

also important in luminescence curves, i.e., the classic Huang-Rhys problem that was treated in

the single-phonon approximation in Ref. 23 (in the case of luminescence, MPPs dissipate only the

relaxation energy of the defect, when one expects the phonon mode corresponding to the actual re-

laxation to dominate; nevertheless, a fully convergent calculation would be needed to establish the
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FIG. 2: Calculated electron capture cross section using a constant electron matrix element and different

number of phonon modes.

degree of accuracy one obtains with the single-mode approximation). The accuracy of the calcu-

lation of the line shape function is controlled by the accuracy of the calculation of the generalized

displacements. The latter depends on the accuracy of the calculation of the atomic displacements.

We found that accuracy is enhanced significantly if we allow the entire supercell to relax, which

allows the defect’s neighbors to relax more freely. At the same time, a dense k-point mesh is nec-

essary. In Fig. 5, we present the atomic displacements of the triply-hydrogenated Si vacancy as a

function of the distance from the vacancy site for a 64-atom supercell. Using only one k-point and

not allowing the supercell to relax we get only the Si-atom near the defect to move significantly

while the rest of the crystal remains essentially frozen (blue dots). This kind of relaxation leads to

only a few phonon modes being significant and thus the system is artificially able to dissipate en-

ergy efficiently at certain frequencies. On the other hand the well-relaxed crystal of the (3×3×3)
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FIG. 3: Convergence of the calculated electron capture cross section at the threshold as a function of the

number of phonon modes.

k-points grid (red dots) has more atoms contributing to the generalized displacements and thus

almost all the phonon modes contribute in the dissipation to the energy of the incoming electron.

The use of supercells with more than 64 atoms would be prohitively expensive for the line-shape

function calculation.

VI. SUMMARY

We have presented a comprehesive theory of inelastic multiphonon carrier capture and scatter-

ing processes. We showed that, under non-equilibrium conditions, i.e., in the presence of currents

or hot electrons, the defect potential is primarily responsible for capture throught a zeroth-order

term in an expansion in terms of the atomic displacements (relaxation) that accompanies capture.

These terms were not included in any prior theory. Instead, the focus has always been on the linear
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FIG. 4: Calculated full capture cross section using the electron matrix element from Fig. 1 and 12 phonon

modes in the line-shape function.

terms, which we showed here to be much smaller because they depend on the inverse of the mass

of typical atoms in the defect complex. The linear terms are dominant only in the limit of ther-

mal equilibrium. For the first time, we used accurate all-electron wave functions obtained by the

PAW method for the electronic matrix elements and an accurate Monte Carlo scheme to sample

random configurations of up to 12 distinct phonon modes for the line-shape functions to achieve

convergence (a single-phonon-mode approximation has been standard in prior calculations). We

presented results for a prototype defect. More accurate hybrid exchange-correlation functionals

are needed to produce results that are accurate enough for comparison with experimental data. In

addition, a reliable comparison with data can only be made with experimental measurements of

capture cross sections simultaneously with the determination of the elastic mean-free-path and the

capture mean-free-path, as they appear in Eq. (1).
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I. EVALUATION OF THE ELECTRONIC MATRIX ELEMENT FOR BOA TRANSITION

In the basis of |Ψn〉, the unperturbed Hamiltonian H̃0 is diagonal with eigenenergies ǫn. The

total electron Hamiltonian H = H̃0+HBO
1 has coupling terms only between states |Ψi〉 and |Ψf〉.

We can, therefore, construct solutions of

(H̃0 +HBO
1 )|Φ〉 = E|Φ〉. (1)

in the form |Φ〉 = a|Ψi〉+ b|Ψf〉, so that





ǫi ∆Hif

∆Hfi ǫf









a

b



 = E





a

b



 . (2)

There are two sets of solutions,

Ei(f) =
1

2

[

ǫi + ǫf ±
√

(ǫi − ǫf )2 + 4|∆Hif |2
]

, (3)

where state i takes the + sign and state f take the − sign, since Ei > Ef . The coefficients satisfy

ǫiai +∆Hifbi = Eiai (4)

and

|ai|2 + |bi|2 = 1. (5)

There is an arbitrary phase factor within ai. We can define a set of solution as,

ai = b∗f =

√

√

√

√

1

2
+

√

1

4
−
∣

∣

∣

∣

∆Hif

Ei − Ef

∣

∣

∣

∣

2

(6)

and

bi = −a∗f =
∆Hif

Ei − Ef

1
√

√

√

√

1

2
+

√

1

4
−
∣

∣

∣

∣

∆Hif

Ei − Ef

∣

∣

∣

∣

2

. (7)

If we can compute the overlap integral 〈Φf |Ψi〉 = af , then we can solve for |∆Hif |2 from |af |2

and find,

|∆Hif |2 =
|〈Φf |Ψi〉|2 − |〈Φf |Ψi〉|4

(1− 2|〈Φf |Ψi〉|2)2
ǫ2if . (8)
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To be consistent with the phase of Eq. (7), we have,

MBO
e = 〈Ψf |HBO

1 |Ψi〉 = ∆Hif = −
√

1− |〈Φf |Ψi〉|2
1− 2|〈Φf |Ψi〉|2

〈Φf |Ψi〉ǫif . (9)

The wave function |Ψi〉 is related to that of a perfect crystal |Ψ(0)
i 〉 through a perturbation expan-

sion,

|Ψ(0)
i 〉 = |Ψi〉 −

∑

i′ 6=i,f

〈Ψi′|∆H|Ψi〉
ǫi′ − ǫi

|Ψi′〉. (10)

Because H1 has only nonzero elements between the states |Ψi〉 and |Ψf〉, for j 6= i, f , the wave

functions |Ψj〉 = |Φj〉 so that 〈Φf |Ψj〉 = 0. Thus, to first order in the defect potential,

〈Φf |Ψi〉 = 〈Φf |Ψ0
i 〉, (11)

and, assuming that |〈Φf |Ψ0
i 〉| ≪ 1, we arrive at Eq. (23), which simplifies the evaluation of the

overlap integral.

II. EVALUATION OF THE GRADIENT TERMS

Using the result in the previous section for the matrix element MBO
e , we now calculate the

gradient terms in Eq. (19), ∇Rk
MBO

e + 〈Ψf |∇Rk
He|Ψi〉. Neglecting higher order |〈Φf |Ψi〉|2

terms, the first gradient term is,

∇Rk
MBO

e = − (〈∇Rk
Φf |Ψi〉+ 〈Φf |∇Rk

Ψi〉) ǫif − 〈Φf |Ψi〉∇Rk
ǫif

= − (〈∇Rk
Φf |Ψi〉+ 〈Φf |∇Rk

Ψi〉) ǫif − 〈Φf |Ψi〉〈Ψf |∇Rk
H0|Ψf〉, (1)

where in the last step we used the fact that ∇Rk
ǫi = 0 (the initial state is at equilibrium) and the

Helmann-Feynman theorem for ∇Rk
ǫf . From Eq. (16) we have,

|∇Rk
Ψi〉 =

∑

i′ 6=i

〈Ψi′ |∇Rk
He|Ψi〉

ǫi′ − ǫi
|Ψi′〉, (2)

where we used ∇Rk
Hel = ∇Rk

He. Because |Ψi′〉 = |Φi′〉 for i′ 6= i, f and 〈Φf |Ψf〉 = 1 +

O(|〈Φf |Ψi〉|2), we have,

〈Φf |∇Rk
Ψi〉 =

〈Ψf |∇Rk
He|Ψi〉

ǫif
〈Φf |Ψf〉 =

〈Ψf |∇Rk
He|Ψi〉

ǫif
. (3)

Similarly,

〈∇Rk
Φf |Ψi〉 = −〈Φf |∇Rk

He|Φi〉
ǫif

〈Φi|Ψi〉 = −〈Φf |∇Rk
He|Φi〉

ǫif
. (4)
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Combining these results and noting that HBO
1 does not have diagonal components, we arrive at

∇Rk
MBO

e + 〈Ψf |∇Rk
H|Ψi〉 = 〈Φf |∇Rk

H|Φi〉 − 〈Φf |Ψi〉〈Ψf |∇Rk
H|Ψf〉. (5)

We can use Eq. (11) and approximate |Ψf〉 ≈ |Φf〉 to get Eq. (24).

III. EVALUATION OF THE OVERLAP INTEGRAL WITHIN THE PAW

Consider the problem of evaluating the overlap integral 〈Ψ|Φ〉 between two wave functions

from two different solids (e.g., one is a perfect crystal and the other contains a defect). Using the

PAW expansion of the full wave functions:

|Ψ〉 = |Ψ̃〉+ |ΨAE〉a − |ΨPS〉a, (1)

where |Ψ̃〉 is the pseudo wave function and |ΨAE〉a and |ΨPS〉a are the atomic wave functions

inside the augmentation sphere of each atom a, and similarly,

|Φ〉 = |Φ̃〉+ |ΦAE〉b − |ΦPS〉b. (2)

Now, 〈Ψ|Φ〉 is given as:

〈Ψ|Φ〉 =
(

〈Ψ̃|+a 〈ΨAE| −a 〈ΨPS|
)(

|Φ̃〉+ |ΦAE〉b − |ΦPS〉b
)

= 〈Ψ̃|Φ̃〉+ 〈Ψ̃|ΦAE〉b − 〈Ψ̃|ΦPS〉b +a 〈ΨAE |Φ̃〉 −a 〈ΨPS|Φ̃〉

+
(

a〈ΨAE| −a 〈ΨPS|
) (

|ΦAE〉b − |ΦPS〉b
)

. (3)

The first term, 〈Ψ̃|Φ̃〉, is the overlap of the pseudo wavefunctions and can be easily calculated

since the pseudo wavefuntions are expanded in the same base set of plane waves.

In order to evaluate the terms 〈Ψ̃|ΦAE〉b − 〈Ψ̃|ΦPS〉b and a〈ΨAE|Φ̃〉 −a 〈ΨPS|Φ̃〉, we make use

of the unitary operators constructed by the projectors |p̃〉 and the pseudo atomic wavefunctions

|φ̃〉:
∑

b,ib

|p̃bib〉〈φ̃
b
ib
| = 1 (4)

and
∑

a,ia

|φ̃a
ia〉〈p̃aia| = 1 (5)
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inside the augmentation sphere of each atom b of the perfect crystal and each atom a of the solid

with the defect respectively. Thus:

〈Ψ̃|ΦAE〉b − 〈Ψ̃|ΦPS〉b =
∑

b,ib

(

〈Ψ̃|p̃bib〉〈φ̃
b
ib
|ΦAE〉b − 〈Ψ̃|p̃bib〉〈φ̃

b
ib
|ΦPS〉b

)

(6)

and

a〈ΨAE|Φ̃〉 −a 〈ΨPS|Φ̃〉 =
∑

a,ia

(

a〈ΨAE|φ̃a
ia〉〈p̃aia|Φ̃〉 −a 〈ΨPS|φ̃a

ia〉〈p̃aia|Φ̃〉
)

(7)

Equations (6) and (7) ensure that in the case that if the two solids are identical, i.e. |Ψ̃〉 and

|Φ̃〉 are eigenstates of the same Hamiltonian and the augmentations spheres are identical, the one

center expansion
∑

i |φ̃〉〈p̃|Ψ̃〉 of the pseudo wavefunction is identical to the pseudo wavefunction

|Ψ̃〉 inside the augmentations sphere and

〈Ψ̃f |ΦAE〉 − 〈Ψ̃|ΦPS〉 = 〈Ψ̃PS|ΦAE〉 − 〈Ψ̃PS|ΦPS〉. (8)

To evaluate Eqs. (6) and (7), we need the projections of the pseudo wavefunctions of the first

solid to the projectors of the atomic wavefunctions of the second solid, 〈Ψ̃|p̃bib〉, and vise versa for

the projections 〈p̃aia |Φ̃〉. This can be easily calculated since both the pseudo wavefunctions and the

projectors are expanded in the same base set of plane waves.

The difficulty in evaluating the last term in Eq. (3)
(

a〈ΨAE| −a 〈ΨPS|
) (

|ΦAE〉b − |ΦPS〉b
)

is

that the cutoff spheres for the two wave functions are usually not identical. We can bypass this

difficulty by evaluating the integral with the assistance of a complete set of plane waves |k〉,
(

a〈ΨAE| −a 〈ΨPS|
) (

|ΦAE〉b − |ΦPS
i 〉b

)

=
∑

k

(

a〈ΨAE| −a 〈ΨPS|
)

|k〉〈k|
(

|ΦAE〉b − |ΦPS〉b
)

=
∑

k

(

a〈ΨAE|k〉 −a 〈ΨPS|k〉
) (

〈k|ΦAE〉b − 〈k|ΦPS〉b
)

.

The plane waves can be expanded in either sphere as

eik·r = 4π
∑

lm

iljl(kr)Y
∗
lm(k̂)Ylm(r̂). (9)

and using,

|k〉 = 1√
V
eik·r, (10)

the all-electron and the pseudo atomic wave functions is written as:

|ΦAE〉b =
∑

b,ib

RAE
b,ib

Ylb,mb
〈p̃b,ib|Φ̃i〉, (11)
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|ΦPS〉b =
∑

b,ib

RPS
b,ib

Ylb,mb
〈p̃b,ib |Φ̃i〉, (12)

a〈ΨAE|k〉 −a 〈ΨPS|k〉 = 4π√
V

∑

a,ia

〈Ψ̃|p̃a,ia〉eik·RailaY ∗
la,ma

(k̂)

ˆ ra

0

jla(kr)(R
AE
a,ia − RPS

a,ia)r
2dr,

(13)

and

〈k|ΦAE〉b − 〈k|ΦPS〉b =
4π√
V

∑

b,ib

〈p̃b,ib|Φ̃〉e−ik·Rb(−i)lbYlb,mb
(k̂)

ˆ rb

0

jlb(kr)(R
AE
b,ib

− RPS
b,ib

)r2dr,

(14)

IV. PHONON INTEGRALS

The overlap matrix between the initial and final states for the mode j is,

〈Xnf
j
(qj + δqj)|Xni

j
(qj)〉 =

ˆ

Xnj+pj(qj + δqj)Xnj
(qj)dqj . (1)

where ni
j = nj and nf

j = nj + pj .

For convenience, we drop the subscript j for nj and pj . Expanding Xn(qj + δqj) in terms of

δqj ,

Xn(qj + δqj) =
∑

l

1

l!

dlXn(qj)

dqlj
δqlj . (2)

Defining the raising and lowering operators

â± = ∓
√

~

2ωj

d

dqj
+

√

ωj

2~
qj , (3)

we have,

â+Xn(qj) =
√
n+ 1Xn+1(qj), (4)

and

â−Xn(qj) =
√
nXn−1(qj). (5)

Subtracting the two, we find,

d

dqj
Xn(qj) =

√

ωj

2~
(â− − â+)Xn(qj) =

√

nωj

2~
Xn−1(qj)−

√

(n + 1)ωj

2~
Xn+1(qj). (6)

Using this recursive relation, we find that the lowest order term for
´

Xn(qj + δqj)Xn+k(qj)dqj is

δq
|k|
j . Therefore, for small δqj only k = ±1 terms dominates. It means that each mode would at

most emit or absorb a single phonon.
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The result for the integrals are,

ˆ

dXn(q)

dq
Xn+1(q)dq = −

√

(n+ 1)ωj

2~
, (7)

(note that this was incorrectly given as −(
√

~mω/2)
√
n + 1 in Ref. 11), and,

ˆ

dXn(q)

dq
Xn−1(q)dq =

√

nωj

2~
. (8)

For linear phonon matrix elements, we have,

qjXn(qj) =

√

~

2ωj
(â− + â+)Xn(qj) =

√

n~

2ωj
Xn−1(qj) +

√

(n+ 1)~

2ωj
Xn+1(qj). (9)

The integrals needed are,
ˆ

Xn(q)Xn+1(q)qdq =

√

(n+ 1)~

2ωj
, (10)

ˆ

Xn(q)Xn−1(q)qdq =

√

n~

2ωj
, (11)

and,
ˆ

dXn(q)

dq
Xn(q)qdq = −1

2
. (12)

V. LINE SHAPE FUNCTION

We first consider a single phonon band, i.e., all of the phonon modes ωj = ω(kj) form a

single continuous band described by wave vectors kj . Because of the Born-von-Karman periodic

boundary condition, the phonon band is discretized into N modes. Suppose that s modes go down

by one quantum and s+ p modes go up by one quantum. Then the line shape factor, Eq. (41) with

M = 1, contains contributions formed from the following products,
{

N
∏

j=1

tj

}{

∏

k∈s

fk,−

}{

∏

l∈s+p

fl+

}

×

×δ





∑

l∈s+p

[ni
l~(ω

f
l − ωi

l) + ~ωf
l ] +

∑

k∈s

[ni
k~(ω

f
k − ωi

k)− ~ωf
k ] +

∑

m∋{s,s+p}

ni
m~(ω

f
m − ωi

m) + ǫif



 ,

{

N
∏

j=1

tj

}{

∏

k∈s

fk,−

}{

∏

l∈s+p

fl+

}

δ

(

∑

l∈s+p

~ωf
l −

∑

k∈s

~ωf
k +

N
∑

j=1

ni
j~(ω

f
j − ωi

j) + ǫif

)

, (1)
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where
∑N

j=1 n
i
j~(ω

f
j − ωi

j) is the energy difference because of the different phonon frequencies of

the initial and final configuration of the defect and tj , f−, and f+ are defined as:

tj =

∣

∣

∣

∣

ˆ

Xnj
(qj)Xnj

(qj + δqj)dqj

∣

∣

∣

∣

2

fk,− =

∣

∣

∣

∣

ˆ

Xnk
(qk)Xnk−1(qk + δqk)dqk

∣

∣

∣

∣

2

∣

∣

∣

∣

ˆ

Xnk
(qk)Xnk

(qk + δqk)dqk

∣

∣

∣

∣

2 (2)

fl,+ =

∣

∣

∣

∣

ˆ

Xnl
(ql)Xnl+1(ql + δql)dql

∣

∣

∣

∣

2

∣

∣

∣

∣

ˆ

Xnl
(ql)Xnl

(ql + δql)dql

∣

∣

∣

∣

2 .

A naive way to sum over all possible configurations is to neglect the difference in the frequencies

and apply the same counting method as Huang and Rhys [11] to write the configurational sum for

all such combinations of phonons as,

1

s!(s+ p)!

{

N
∏

j=1

tj

}{

N
∑

k=1

fk,−

}s{ N
∑

l=1

fk,+

}s+p

δ

(

∑

l∈s+p

~ωf
l −

∑

k∈s

~ωf
k +

N
∑

j=1

ni
j~(ω

f
j − ωi

j) + ǫif

)

.

(3)

This would not be correct if the frequencies are different for each mode. Furthermore, the sum-

mation over configurations for large N is needed to integrate out the δ function. Therefore the δ

function cannot be left outside the summations. Let us consider one term in the δ function at a

time. Consider one the plus terms ~ωf
m and insert the δ function into one of the summations,

1

s!(s+ p)!

{

N
∏

j=1

t

}{

N
∑

k=1

fk,−

}s{ N
∑

l=1

fk,+

}s+p−1

N
∑

m=1

{

fm,+δ

(

~ωf
m +

∑

l∈s+p−1

~ωf
l −

∑

k∈s

~ωf
k +

N
∑

j=1

ni
j~(ω

f
j − ωi

j) + ǫif

)}

. (4)

For large N , each of the summations inside the curly brackets can be converted into integrals and

evaluated,

S± =

N
∑

k=1

fk,± =
N

Ωk

ˆ

fk,±dk =





n + 1

n





ω

2~
Nδq2, (5)

where Ωk is the volume of the reciprocal space Brillouin zone. In the last step we assumed that

the frequency and displacement do not change with k.
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In order to evaluated the last factor that includes the δ function, we note that each term in the

summation over m has a different ωf
m, which spans the entire phonon band when m scans from 1

to N . Thus as we convert the sum over m to integral over k, the argument ωf
m is also converted to

ωk,

N
∑

m=1

{

fm,+δ

(

~ωf
m +

∑

l∈s+p−1

~ωf
l −

∑

k∈s

~ωf
k +

N
∑

j=1

ni
j~(ω

f
j − ωi

j) + ǫif

)}

≈ N

Ωk

ˆ

fk,+δ

(

~ωf
k
+

∑

l∈s+p−1

~ωf
l −

∑

k∈s

~ωf
k +

N
∑

j=1

ni
j~(ω

f
j − ωi

j) + ǫif

)

dk

= S+
D(ω)

Ωk

∣

∣

∣

∣

~ωf+
∑

l∈s+p−1
~ωf

l
−
∑

k∈s ~ω
f

k
+
∑N

j=1
ni
j~(ω

f
j −ωi

j)+ǫif=0

, (6)

where D(ω) is the phonon density of states. Combining the above equations and then setting all

frequencies to ω, Eq. (4) now becomes,

1

s!(s+ p)!

{

N
∏

j=1

t

}

Ss
−S

s+p
+

D(ω)

Ωk

∣

∣

∣

∣

p~ω+
∑N

j=1 n
i
j~(ω

f
j −ωi

j)+ǫif=0

. (7)

But there is one such contribution for each ωk or ωl in the δ function, regardless of the sign of the

frequency. For s modes subtracting a phonon and s + p modes adding a phonon there are total

2s+ p such contributions. We thus sum over all the terms and obtain,

2s+ p

s!(s+ p)!

{

N
∏

j=1

tj

}

Ss
−S

s+p
+

D(ω)

Ωk

∣

∣

∣

∣

p~ω+
∑N

j=1
ni
j~(ω

f
j −ωi

j)+ǫif=0

. (8)

Finally, the factor
∏N

j=1 tj is,

N
∏

j=1

∣

∣

∣

∣

ˆ

Xnj
(qj)Xnj

(qj + δqj)dqj

∣

∣

∣

∣

2

=

[

1− (2n+ 1)ω

4~
δq2
]2N

= exp [−(S+ + S−)] . (9)

The line shape factor for a single phonon band is,

D(ω)

Ωk

∣

∣

∣

∣

p~ω+ǫif=0

exp [−(S+ + S−)]
∞
∑

s=0

2s+ p

s!(s+ p)!
Ss+p
+ Ss

−

=
D(ω)

Ωk

∣

∣

∣

∣

p~ω+ǫif=0

exp [−(S+ + S−)]

(

S+

S−

)p/2

×
[

pIp

(

2
√

S+S−

)

+ 2
√

S+S−Ip+1

(

2
√

S+S−

)]

. (10)

To generalize the above expression to multiple phonon bands, the normalization factor must be

evaluated with a summation over both the band index and the k points within each band. If we use

34



Fj to denote the factor for a band that adds net pj phonons, i.e.,

Fj =
∞
∑

sj=0

1

sj!(sj + pj)!

{

N
∏

m=1

tjm

}{

N
∑

k=1

fjk,−

}sj { N
∑

l=1

fjl,+

}sj+pj

(11)

then in a similar manner as for the case of a single phonon band, Fj is evaluated to be,

Fj =

(

nj + 1

nj

)pj/2

exp [−Sj(2nj + 1)] Ipj

[

2Sj

√

nj(nj + 1)

]

. (12)

Now we insert the δ function into the product of Fj in the same manner as in the case of a

single band to form the full line shape factor, one phonon band at a time. For now let us consider

the case where all pj’s are positive. We have,

∏M
j=1 Fj

Fj′′

∞
∑

sj′′=0

2sj′′ + pj′′

sj′′!(sj′′ + pj′′)!

{

N
∏

m=1

tj′′m

}{

N
∑

k=1

fj′′k,−

}sj′′
{

N
∑

l=1

fj′′l,+

}sj′′+pj′′−1

×

N
∑

m=1

fj′′m,+δ



~ωf
j′′m +

∑

l∈sj′′+pj′′−1

~ωf
j′′l −

∑

k∈sj′′

~ωf
j′′k +

N
∑

l′=1

ni
j′′l′~(ω

f
j′′l′ − ωi

j′′l′)+

∑

j′ 6=j′′,l∈sj′+pj′

~ωf
j′l −

∑

j′ 6=j′′,l∈sj′

~ωf
j′l +

N
∑

j′ 6=j′′,k′=1

ni
j′k′~(ω

f
j′k′ − ωi

j′k′) + ǫif





=

(

M
∏

j=1

Fj

)

D(ωj′′)

Ωk

∣

∣

∣

∣∑
j′ pj′~ωj′+

∑Md
j=1

∑N
l=1

ni
jl
~(ωf

jl
−ωi

jl
)+ǫif=0

×






pj′′ + 2Sj′′

√

nj′′(nj′′ + 1)
Ipj′′+1

[

2Sj′′
√

nj′′(nj′′ + 1)
]

Ipj′′

[

2Sj′′
√

nj′′(nj′′ + 1)
]







. (13)

where j′′ is one of the phonon bands and we have used Eqs. (5) and (6). Summing over all possible

j′′ terms and with an additional summation over all configurations {pj}, we find,

F =
1

Ωk

∑

{pj}







(

M
∏

j=1

Fj

)

M
∑

j=1







pj + 2Sj

√

nj(nj + 1)
Ipj+1

[

2Sj

√

nj(nj + 1)
]

Ipj

[

2Sj

√

nj(nj + 1)
]







D(ωj)







∣

∣

∣

∣

∣

∣∑M
j=1

pj~ωj+ǫif=0

.

(14)

If some of the pj’s are negative, we need to switch the roles of S+ and S− following Ref. 11.

Redefining sj + pj → sj and sj → sj − pj in Eq. (13), the factor corresponding to pj becomes,

−pj + 2Sj

√

nj(nj + 1)
I−pj+1

[

2Sj

√

nj(nj + 1)
]

I−pj

[

2Sj

√

nj(nj + 1)
]

= pj + 2Sj

√

nj(nj + 1)
Ipj+1

[

2Sj

√

nj(nj + 1)
]

Ipj

[

2Sj

√

nj(nj + 1)
] , (15)
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using the recurrence relation for the Bessel functions. Therefore Eq. (14) is valid for both positive

and negative pj’s. Applying thermodynamic average to the occupation numbers, nj is replaced by

the Bose-Einstein distribution function,

nj →
1

exp(~ωj/kT )− 1
, (16)

nj + 1

nj
→ exp

(

~ω

kT

)

, (17)

2nj + 1 → coth

(

~ω

2kT

)

, (18)

and

2
√

nj(nj + 1) → 1

sinh(~ω/2kT )
, (19)

we obtain Eqs. (42) and (43).
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