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We identify a nontrivial 4-state Landau-Zener model for which transition probabilities between any pair of
diabatic states can be determined analytically and exactly. The model describes an experimentally accessible
system of two interacting qubits, such as a localized state in a Dirac material with both valley and spin degrees
of freedom or a singly charged quantum dot (QD) molecule with spin orbit coupling. Application of the linearly
time-dependent magnetic field induces a sequence of quantum level crossings with possibility of interference
of different trajectories in a semiclassical picture. We argue that this system satisfies the criteria of integrability
in the multistate Landau-Zener theory, which allows us to derive explicit exact analytical expressions for the
transition probability matrix. We also argue that this model is likely a special case of a larger class of solvable
systems, and present a 6-state generalization as an example.

I. INTRODUCTION

Measurements of Landau-Zener transition probabilities
have become a powerful tool for characterization of cou-
pling constants and quantum state preparation in quantum dots
(QDs)1,2 and QD-molecules3,4. The central theoretical result,
which is frequently used in these studies, is the Landau-Zener
formula5 that provides transition probabilities for a 2-level
system with a time-dependent linear diabatic level crossing.
However, most of the modern applications consider interac-
tions of more than two states. In such cases, even linear time-
dependence of parameters does not usually implies the possi-
bility to derive exact analytical predictions. While numerical
simulations of such systems are accessible for a small number
of interacting states, exact nonperturbative analytical results
are desirable to develop the intuition and explore the possibil-
ity of optimization of quantum dynamics.

The multistate version of the two-state Landau-Zener
model is one of the most fundamental systems in nonstation-
ary quantum mechanics6. It describes the evolution of N
states according to the Schödinger equation with parameters
that change linearly with time:

i
dψ

dt
=
(
Â+ B̂t

)
ψ. (1)

Here, ψ is the state vector in a space of N states; Â and B̂ are
constant Hermitian N ×N matrices. One can always choose
the, so-called, diabatic basis in which the matrix B̂ is diag-
onal, and if any pair of its elements are degenerate then the
corresponding off-diagonal element of the matrix Â can be
set to zero, that is

Bij = δijβi, Anm = 0 if βn = βm, n 6= m ∈ (1, . . . N).
(2)

Constant parameters βi are called the slopes of diabatic levels;
nonzero off-diagonal elements of the matrix Â in the diabatic
basis are called the coupling constants, and the diagonal ele-
ments of the Hamiltonian,

Hii = βit+ εi,

where εi ≡ Aii, are called the diabatic energies. The goal
of the multistate Landau-Zener theory is to find the scattering

N ×N matrix Ŝ, whose element Snn′ is the amplitude of the
diabatic state n at t → +∞, given that at t → −∞ the sys-
tem was in the n′-th diabatic state. In most cases, only the
related matrix P̂ , Pnn′ = |Snn′ |2, called the matrix of tran-
sition probabilities, is of interest. Generally, for N > 2, the
analytical solution of the model (1) is unknown. Neverthe-
less, a number of exactly solvable cases with specific forms of
matrices Â and B̂ have been derived2,7–10.

In this article, we present a new solvable system of the type
(1) which can be realized in experiments on Landau-Zener
transitions in quantum dots and quantum dot molecules1,3. It
describes an interaction of a pair of two-level systems (qubits)
with a linearly time-dependent magnetic field.

II. MODEL

Let σ̂α and ŝα, α = x, y, z, be the Pauli matrices acting in
the space of, respectively, the first and the second qubit. The
most general Hamiltonian that we consider reads:

Ĥ = Eσ̂z + gσ̂x + γσ̂y ŝy + β1tŝz + β2tσ̂z ŝz. (3)

Physically, this Hamiltonian describes a QD-molecule made
of two small QDs charged with a single electron (or a hole)
that can tunnel between them. Operators ŝα act in the space of
the true spin of the electron and operators σ̂α act in the space
of two spatially separated localized states in the QD-molecule.
Thus, the first term in (3) describes the energy difference, 2E,
between the QDs in the limit of zero coupling between them.
The second term describes spin-conserving charge tunneling
with amplitude g. The third term describes the tunneling be-
tween QDs that flips the spin. This term is expected in the
presence of the spin orbit coupling. For example, heavy-hole
states of different InGaAs quantum dots generally have dif-
ferent degrees of mixing to the light-hole states. This differ-
ence originates from different shapes of self-assembled QDs.
Therefore, the tunneling hole experiences different spin-orbit
field in different QDs. The form of the third term in (3) is
constrained by the time-reversal symmetry at t = 0.

The last two terms in (3) describe interaction of the QD-
molecule with an external linearly time-dependent out-of-
plane magnetic field: the term with β1 describes the average
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FIG. 1. (Color online) Adiabatic energy levels (blue curves) and their
pairwise couplings (parameters g and ±γ) of the Hamiltonian (4)
shown at corresponding avoided level crossings. Ket-vectors mark
states that correspond to adiabatic energies at t → −∞. Two exact
crossing points at t = 0 are guaranteed by the time-reversal sym-
metry. Parameters are: β1 = 2.7, β2 = 1.0, E = −1, g = 0.16,
γ = 0.2.

Zeeman coupling, while the last term, with β2 in (3), origi-
nates from the difference of the Lande g-factors of different
QDs.

In the basis, (1, 2, 3, 4) ≡ (| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉), of
eigenstates of operator σ̂z ŝz , the Hamiltonian (3) is a 4×4
matrix:

Ĥ =

 b1t+ E 0 g −γ
0 −b1t+ E γ g
g γ b2t− E 0
−γ g 0 −b2t− E

 , (4)

where

b1 = β1 + β2, b2 = β1 − β2. (5)

The Hamiltonian (4) has already encountered in the litera-
ture on quantum dot molecules11. It is the most general, irre-
ducible by a change of the basis, single electron Hamiltonian
for spin tunneling between two discrete states that is consis-
tent with the time-reversal symmetry at zero magnetic field.
We note here that the assumption of an out-of-plane direction
of the magnetic field is not crucial. For the case of a tilted
linearly time-dependent magnetic field, one can switch to the
diabatic basis in which the Hamiltonian has a canonical form
(4) with redefined coupling constants.

It is convenient to visualize a multistate Landau-Zener
model with a plot of instantaneous eigenenergies of the
Hamiltonian as functions of t, as shown in Fig. 1 for the case
of the Hamiltonian (4). Note that due to the time-reversal sym-
metry at t = 0 this plot contains two points of exact adiabatic
level crossing.

More exotic but physically possible realization of the
Hamiltonian (4) can also be a single electron state localized
near a short range impurity in a massive Dirac semiconductor,

such as MoS2. A short range potential can couple nearly de-
generate states of different valleys. A localized state would be
characterized then by both spin and valley indexes. Let τ̂α be
the Pauli operators acting in the valley space. Then the spin-
valley Hamiltonian that is consistent with the time-reversal
symmetry would be

Ĥsv = Eτ̂z ŝz + gτ̂x − γτ̂z ŝx, (6)

where the first term is due to the Kane-Mele type of the spin-
orbit coupling, the second term is due to the valley mixing by
the impurity potential, and the third term is due to the Rashba-
type of the spin-orbit coupling. Application of an out-of-plane
magnetic field would introduce similar time-dependent terms
β1tτz + β2tŝz , where the term with β1 describes the valley
splitting by a magnetic field, the term with β2 is the standard
Zeeman coupling. In the basis, | ↑↑〉, | ↓↓〉, | ↓↑〉, | ↑↓〉, of
eigenstates of the operator τ̂z ŝz , the Hamiltonian has the same
matrix form as in Eq. (4).

As the coupling parameters for real QDs are expected to be
in GHz range, it would be practically impossible to achieve
the nonadiabatic regime of the model (4) with true time-
dependent magnetic fields. However, optically induced ef-
fective magnetic fields with needed characteristics to control
the quantum dot spins have been already demonstrated in
self-assembled QD-molecules12. The idea of such an optical
control is to couple the states of the quantum dot to a high-
energy exiton state by a circularly polarized off-resonant op-
tical beam. If the frequency of the beam is well detuned, one
can avoid dissipative transitions while inducing effective time-
dependent Zeeman couplings via the inverse Faraday effect
(also known as the optical Stark effect). Such optical pulses
can be prepared with picosecond precision and considerable
amplitude of the effective field that they create13. For exam-
ple, valley selective energy splitting, as large as 18meV, in
WS2 Dirac semiconductor was achieved in14, which is similar
to the expected value of the Kane-Mele spin orbit coupling of
electronic bands of this material.

We recall that the inverse Faraday effect appears as the 2nd
order perturbation in the electric field, so the induced effective
field is generally proportional to the intensity of the beam. For
example, one can initialize the system in the ground state in
the presence of a strong but constant magnetic field and apply
an optical pulse with a linearly growing intensity so that the
effective field sweeps from large negative to large positive val-
ues. After this, the pulse can be instantly terminated in pres-
ence of the original constant external field. Since, this would
be equivalent to the sudden change of the field direction, such
an optical pulse switch-off would not induce additional tran-
sitions among diabatic states.

III. SOLUTION OF THE MODEL

At large negative or positive times, eigenenergies of the
Hamiltonian are well separated so that transitions between
them are suppressed according to the adiabatic theorem. Adia-
baticity is violated when pairs of energy levels appear close to
each other. There are four avoided crossing points in Fig. 1. If
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FIG. 2. (Color online) Diabatic energy levels (diagonal elements of
the Hamiltonian (4)) and two semiclassical trajectories connecting
the state 2 ≡ | ↑↓〉 at t → −∞ to the state 1 ≡ | ↑↑〉 at t → +∞
(red and blue arrows).

such regions were sufficiently far from each other, one would
be able to justify the, so-called, independent crossing approx-
imation, according to which, in order to determine the scatter-
ing amplitudes, one should simply follow the diabatic levels,
as illustrated in Fig. 2, and apply the two-state Landau-Zener
formula to pair-wise avoided level crossings in the chronolog-
ical order of their appearance and trivially include the phase
gain along semiclassical trajectories.

It has been noticed previously2,6–9 that, surprisingly, all
known exactly solvable models of the type (1) with a finite
number of interacting states have exact solutions for the scat-
tering matrix that coincide with the prediction of the inde-
pendent crossing approximation. Moreover, all such solvable
models have two properties9:

(i) the absence of the dynamic phase effect on transition
probabilities in the semiclassical framework, and

(ii) the exact crossing of adiabatic energies at intersections
of diabatic states (i.e. diagonal elements of the Hamiltonian)
without direct couplings.

Here by the dynamic phase we mean the trivial phase

φdyn = −
∫ ∞
−∞

[βk(t)t+ εk(t)] dt, (7)

where k(t) is the index of the level along a semiclassical tra-
jectory. Its time-dependence follows from the possibility of
switching diabatic level indexes at level crossing points.

The main observation of this article, is that the model
(4) satisfies criteria (i-ii). Consider Fig. 2 that shows time-
dependence of the diabatic energy levels in this model. Con-
dition (ii) is satisfied trivially: diabatic levels 1 and 2 are not
directly coupled and their crossing corresponds to the adia-
batic level crossing in Fig. 1. The same is true for the case of
the crossing of levels 3 and 4.

In order to verify the condition (i), we will derive the
prediction for the transition probabilities in the independent
crossing approximation explicitly. Only trajectories that turn
forward in time in Fig. 2 are allowed in the semiclassical limit.
According to8,9, the transition amplitudes at a crossing of a
pair of states after a passage through a crossing point are de-

scribed by the Landau-Zener formula with a trivial assump-
tion about the phase change. Namely, if a diabatic level i
crosses another level j with a corresponding nonzero coupling
gij then one should assume that with an amplitude

si→i =
√
pi→j , pi→j ≡ e−2π|gij |

2|/|bi−bj | (8)

the system will remain in the same diabatic state after the level
crossing. Here pi→j is the standard Landau-Zener transition
probability for a two level crossing. The amplitude to turn to
another level should be assumed

si→j = ±i
√

1− pi→j , (9)

where (±) is the sign of the coupling constant at the level in-
tersection. Here we note that the full semiclassical approxima-
tion predicts an additional complex phase prefactor in (9) that
depends on the coupling constants8. However, in all found
integrable models, this prefactor either cancels or factorizes
from the final transition amplitude, and does not lead to the
change of the transition probability matrix, as it is discussed
in detail in8. Therefore, we will assume the form of the phase
prefactor as in Eq. (9) and test the final result a posteriory.

Let us consider a transition from level-1 at t → −∞ to
level-3 at t→ +∞. Starting from state-1, we move along the
diabatic level-1 in the positive time direction. First, according
to Fig. 2, we encounter the crossing point with level-2, which
is an exact crossing point that, according to (8) does not in-
fluence dynamics in the independent crossing approximation.
The next encountered crossing will be with level-4 and cou-
pling −γ. In order to end up on level-3 we have to assume
that we pass this crossing by staying on level-1, which hap-
pens with the amplitude

s1→1 = e
− πγ2

|b1−(−b2)| = e−
πγ2

2β1 ,

where we assumed that β1, β2 > 0. The next encountered
crossing point would be with level-3, at which we should turn.
The corresponding amplitude is

s1→3 = i

√
1− e−

πg2

β2 .

There are no more crossing points and no alternative trajecto-
ries connecting the same initial and final states. Therefore, we
can write the semiclassical amplitude for the transition proba-
bility:

S31 = ieiφ
31
dyne−

πγ2

2β1

√
1− e−

πg2

β2 , (10)

where φ31dyn is the dynamic phase along this trajectory. The
explicit expression for this phase is not needed because it can-
cels after we take the absolute value squared of the ampli-
tude in order to obtain the transition probability from state-1
to state-3:

P31 = |S31|2 = e−
πγ2

β1

(
1− e−

πg2

β2

)
. (11)
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Thus, we found that the dynamic phase is canceled in the ex-
pression for the transition probability (11) obtained in the in-
dependent crossing approximation. Hence condition (i) is sat-
isfied for this particular transition. The reason for cancellation
of φ31dyn is because there is only a single semiclassical trajec-
tory describing a given transition, so there are no interference
effects through which the dynamic phase can influence the
transition probability. By examining all possible transitions
that start at states 1 and 3, we find that the same property is
satisfied for all of them.

The only nontrivial situation is when the system starts either
at levels 2 or 4 and ends up at levels 1 or 3. An example for
the transition from level-2 to level-1 is shown in Fig. 2, where
we mark the allowed trajectories by red and blue arrows. One
can find, however, that dynamic phases along the red and blue
trajectories are identical. So, even though there is interference
of two amplitudes, this particular phase factorizes and cancels
in the expression for the transition probability from level-2 to
level-1. Hence condition (i) is satisfied despite the path inter-
ference. To show this, we recall that the dynamic phase (7)
is the area between the trajectory and the time axis8. Due to
the symmetry of the diabatic level structure in Fig. (2), under
reflection t → −t the blue and red trajectories transfer into
each other under this transformation, which means that they
sweep the same area below them. Hence, the dynamic phase
does not influence the final transition probability.

According to the rules (8)-(9), we find amplitudes of the red
and blue trajectories in Fig. 2 up to the same dynamic phase
factor:

Sred
12 = i2e−

πg2

2β2

√
(1− e−

πγ2

β1 )(1− e−
πg2

β2 ), (12)

Sblue
12 = −i2

√
(1− e−

πg2

β2 )(1− e−
πγ2

β1 )e−
πg2

2β2 . (13)

Comparing (12) and (13), we find that the amplitudes of
red and blue trajectories are different only by a sign, which
can be traced to the sign difference near the coupling γ at
two avoided crossings in Fig. 1. Therefore, these trajectories
interfere destructively, and the total transition amplitude and
the corresponding transition probability are identically zero:

P12 = 0. (14)

One can then find, e.g., that similar two trajectories that
connect initial level-2 and final level-3 interfere construc-
tively. We are now in a position to summarize predictions of
the independent crossing approximation in the form of the ma-
trix of transition probabilities, with elements Pnm ≡ Pm→n:

P̂ =

 p1p2 0 p2q1 q2
0 p1p2 q2 p2q1

p2q1 q2 p1p2 0
q2 p2q1 0 p1p2

 , (15)

where

p1 ≡ e−
πg2

2β2 , p2 ≡ e−
πγ2

β1 qn ≡ 1− pn. (16)

FIG. 3. (Color online) Numerical test of transition probability in-
dependence of the energy bias E for initially populated (a) level-2
and (b) level-3. All discrete points correspond to results of direct nu-
merical simulations of the evolution with the Hamiltonian (4) from
t = −600 to t = 600. Solid lines are theoretical predictions of
Eq. (15). The choice of parameters is: (a) g = 0.45, γ = 0.30,
β1 = 0.85, β2 = 0.55; (b) g = 0.55, γ = 0.35, β1 = 0.95,
β2 = 0.65.

IV. NUMERICAL CHECK

So far, our derivation of the transition probability matrix
was purely semiclassical. It is expected to be predictive only
for sufficiently large values of parameter E that characterizes
the separation of the avoided crossing points. In order to prove
that the matrix (15) is, in fact, the exact nonperturbative solu-
tion of the model with the Hamiltonian (4) we perform direct
numerical simulation of the quantum mechanical evolution of
this model. The algorithm for such simulations is described
in the supplementary file for Ref.15. First, we test the predic-
tion of Eq. (15) that transition probabilities do not depend on
parameterE, even when it is close to zero so that the indepen-
dent crossing approximation cannot be justified. Figure 3 con-
firms our expectations. Even when parameter E is substan-
tially smaller than the sizes of coupling constants, transition
probabilities agree with the theoretical prediction. We also
note that, physically, the energy bias E between two quantum
dots usually can be tuned by a gate voltage12, so the predic-
tion of independence of transition probabilities of E can be
verified experimentally.

In Fig. 4, we show results of additional tests of Eq. (15) at
different values of the coupling constants and different initial
conditions. In all such tests we found that Eq. (15) is in perfect
agreement with numerical results, leaving no doubts in that
the matrix (15) is, indeed, the exact nonperturbative solution
of the multistate Landau-Zener problem (4).

V. PARTIAL PROOF

Here we show that some of the matrix elements in Eq. (15)
and equalities between some of them can be derived from the
discrete symmetry of the model Hamiltonian (4). Let us in-
troduce time-dependent amplitudes of the four diabatic states:
ψ ≡ (a1(t), a2(t), a3(t), a4(t))

T . The Schrödinger equation
(1) with the Hamiltonian (4) remains invariant after simulta-
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FIG. 4. (Color online) Numerical check of transition probabilities
in Eq. (15) (a) as function of γ at initially populated level-3; (b)
as function of g at initially populated level-4. All discrete points
correspond to results of direct numerical simulations of the evolution
with the Hamiltonian (4) from t = −600 to t = 600. Solid lines are
theoretical predictions of Eq. (15). The choice of constant parameters
is: (a) g = 0.45, E = −0.5, β1 = 1.0, β2 = 0.5; (b) γ = 0.37,
E = 0.45, β1 = 1.1, β2 = 0.54.

neous application of three mutually commuting operations:
(a) time reversal T̂ , i.e. the change of t → −t, as well as

ai → a∗i , i = 1, 2, 3, 4;
(b) complex conjugation Ĉ, i.e., the change of the sign near

the imaginary unit i → −i and replacing ai → a∗i or vice
versa;

(c) parity operation P̂ , i.e. renaming the amplitudes a1 →
−a2, a2 → a1, and a3 → −a4, a4 → a3.

The latter operation can be considered as part of the time-
reversal operation if we recall that, e.g., amplitudes a1 and a2
describe the states of the spin-1/2. However, our definition
makes interesting connections with other previously studied
multistate Landau-Zener systems, in which such symmetries
have been found useful without an obvious spin interpretation
of the Hamiltonian16.

After performing those operations, resulting amplitudes ai
satisfy the same set of ordinary differential equations as the
original amplitudes ai. Note that each operation preserves the
Hermitian property of the Hamiltonian. Hence, each opera-
tion can be reformulated in terms of a transformation of the
unitary evolution matrix of the Schrödinger equation. Since
application of operations (a-c) preserves the form of the evo-
lution equation, the evolution matrix should also remain in-
variant.

Let Ŝ(+∞|−∞) be the scattering matrix of the model with
the Hamiltonian (4) for evolution from t = −∞ to t = +∞.
Time reversal operation converts it to T̂ ∗ Ŝ(+∞| − ∞) =

Ŝ(−∞| +∞) = Ŝ†(+∞| −∞). Complex conjugation cor-
responds to replacement of elements of the evolution matrix
by their complex conjugated values, i.e., (Ĉ ∗ Ŝ)ij = S∗ij .
Finally, the parity operation changes places of the matrix ele-
ments and adds a proper sign to them, e.g., (P̂ ∗ Ŝ)11 = S22,
(P̂ ∗ Ŝ)12 = −S21, (P̂ ∗ Ŝ)13 = S24, e.t.c.. Let

Ŝ =

 S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

 (17)

be the original scattering matrix, then

Ŝ′ ≡ ĈP̂ T̂ ∗ Ŝ =

 S22 −S12 S42 −S32

−S21 S11 −S41 S31

S24 −S14 S44 −S34

−S23 S13 −S43 S33

 . (18)

Since Ŝ = Ŝ′, we can equate corresponding elements of these
matrices. For example, comparing elements S12 and S′12 we
find S12 = −S12, which can be satisfied only if S12 = 0.
Similarly, we find that S12 = S21 = S34 = S43 = 0, from
which zero values of the corresponding transition probabilities
in Eq. (15) follow. Comparing elements along the main diago-
nals of the scattering matrices we find the relations S22 = S11,
S33 = S44, e.t.c.. Let us now write the scattering matrix that
includes only elements that cannot be equated to others by a
pair-vise comparison of Eqs. (17)-(18):

Ŝ =

 S11 0 S13 S14

0 S11 S23 S24

S24 −S14 S44 0
−S23 S13 0 S44

 . (19)

As any unitary matrix, it satisfies the relation

ŜŜ† = 1̂, (20)

where 1̂ is the unit matrix. Comparing diagonal components
of matrices on both sides of this equation we recover the con-
servation of probability laws, e.g.,

P11 + P13 + P14 = 1, P11 + P23 + P24 = 1, (21)

where we denote Pij = |Sij |2. Comparing off-diagonal ele-
ments of matrices in (20), we find relations of the type

(ŜŜ†)12 = S13S
∗
23 + S14S

∗
24 = 0, (22)

(ŜŜ†)13 = S11S
∗
24 + S13S

∗
44 = 0. (23)

Moving one of the terms in such equations to the right hand
side and then equating the absolute value squared of expres-
sions on both sides we find additional relations between tran-
sition probabilities:

P13P23 = P14P24, P11P24 = P13P44. (24)

Substituting (21) into the first of equations in (24) we find that
P13 = P24 and substituting this into the 2nd equation in (24)
we find that P11 = P44. We can now summarize all such
results in the following formulas:

P11 = P22 = P33 = P44, (25)
P13 = P24 = P31 = P42, (26)
P14 = P23 = P32 = P41, (27)
P12 = P21 = P34 = P43 = 0, (28)

which are in perfect agreement with (15). This set of equa-
tions is also supplemented by the conservation of probabili-
ties, Eq. (21), which leaves only two independent transition
probabilities undetermined.
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FIG. 5. (Color online) (a-b) Adiabatic energy levels (blue curves) and
their pairwise couplings (parameters g and ±γ) of the Hamiltonian
(30) shown at corresponding avoided level crossings. Numbers mark
diabatic levels that correspond to adiabatic energies at t→ ±∞. Pa-
rameters are: ε = 3, g = 0.25, γ = 0.2 and (a) β1 = 1, b2 = 0.556,
(b) b1 = 1, b2 = 1.8. (c-d) Tests of independence of transition prob-
abilities of the parameter ε at (c) b1 = 0.75, b2 = 1.25, γ = 0.3,
g = 0.27 and (d) b1 = 1.2, b2 = 0.7, γ = 0.29, g = 0.38. (e-
f) Tests of Eqs. (32)-(33) at (e) ε = 0.25, b1 = 0.25, b2 = 1.5,
g = 0.55 and (f) ε = 0.3, b1 = 1.85, b2 = 0.24, γ = 0.55. In
(c-f), discrete points correspond to results of numerical simulations
of quantum evolution from t = −800 to t = 800 with a time step
dt = 0.00001. Solid curves are predictions of Eqs. (32)-(33).

Until now, our discussion could be equally applied to a
more general situation that describes the evolution over any
symmetric, around t = 0, time interval. Moreover, it could be
applied not only to linear time-dependence of diagonal matrix

elements, e.g, CPT-symmetry is still present if we replace time
t in the Hamiltonian (4) by tα, where α is an arbitrary odd
integer number. However, for the multistate Landau-Zener
systems of the form (1), we can achieve more by using some
previously derived facts that are specific only for the linear
time-evolution of diabatic energies.

If the diabatic level has the extremal slope, then the semi-
classical expression for the transition probability to remain at
the same level after evolution in t ∈ (+∞,−∞) is known to
coincide with its exact value at arbitrary choice of the model
parameters. In our case, the extremal slope levels have indexes
1 and 2, so

P11 = p1p2 (29)

is the exact result, which is the consequence of the application
of the Brundobler-Elser formula6 to the model with the Hamil-
tonian (4). This formula was rigorously proved previously17

for any model of the type (1). Hence, combining (29) with
(25), we obtain all elements along the main diagonal in the
matrix (15) exactly, which also appear in agreement with the
“semiclassical” prediction.

This leaves only one independent parameter in the tran-
sition probability matrix, e.g., the element P14, undeter-
mined, while all other facts about Eq. (15) follow from the
Brundobler-Elser formula and the elementary discrete sym-
metry of the model. As the CPT-symmetry is insufficient to
fix the value of this parameter, we leave the full form of the
transition probability matrix (15) as a conjecture. However,
we note that, in addition to Figs. 3, 4, we performed a se-
ries of numerical tests for parameters of the Hamiltonian (4)
beyond the semiclassical and perturbative limits. In all such
tests, the deviation of the numerically obtained value of P14

from its analytical prediction, P14 = q2, was found to be be-
low the third significant digit, and it was also within the same
accuracy range as the numerically obtained diagonal proba-
bilities Pjj . It is likely that the complete proof of (15) can be
obtained by the method that was used previously to prove the
Brundobler-Elser17 and no-go18 formulas.

VI. EXTENSION OF THE MODEL

We showed that the CPT symmetry is at least partially re-
sponsible for the integrability of the model (4). However,
the conjecture of integrability (i-ii) appeared more useful here
both to recognize the model (4) as solvable and to obtain its
transition probability matrix.

While currently there is no known algorithm to generate
models with these properties, we did a trial and error search
for conditions (i-ii) among systems that have a similar level
crossing patterns to the model (4). One example that we found
describes the system of 6-states:



7

Ĥ =


b1t− ε 0 0 0 −γ g

0 b1t+ ε 0 0 γ g
0 0 −b1t− ε 0 g γ
0 0 0 −b1t+ ε g −γ
−γ γ g g −b2t 0
g g γ −γ 0 b2t

 . (30)

This model can also be interpreted in terms of an electron hop-
ping between two quantum dots. One of the dots, in this case,
has a more complex structure. At zero magnetic field, instead
of a single spin-degenerate quantum level with energy E, it
has two spin-degenerate quantum levels with energy distances
±ε from the level of the other dot. Figures 5(a-b) show the
adiabatic energies of the Hamiltonian (30) as functions of t.
This time, there are five exact crossing points: three at t = 0

and additional two at zero values of diabatic energies, which
are the consequence of additional discrete symmetries of the
system. Let us denote

p1 ≡ e−
2πg2

|b1−b2| , p2 ≡ e−
2πγ2

b1+b2 , qn ≡ 1− pn. (31)

The independent crossing approximation makes different pre-
dictions for transition probabilities, depending on whether
b1 > b2 or b1 < b2:

P̂ (b2>b1) =


p1p2 q22 0 p2q1q2 p1p2q2 p2q1

(p2q1)
2 p1p2 p2q2q1 0 q2 p22p1q1

0 p2q2q1 p1p2 (p2q1)
2 p22p1q1 q2

p2q2q1 0 q22 p1p2 q1p2 p1p2q2
q2 p1p2q2 p2q1 p22p1q1 (p1p2)

2 0
p22p1q1 p2q1 q2p2p1 q2 0 (p1p2)

2

 , (32)

P̂ (b1>b2) =


p1p2 (p1 − p2)2 0 q1q2 p2q2 p1q1
0 p1p2 q1q2 0 p1q2 p2q1
0 q1q2 p1p2 0 p2q1 p1q2
q1q2 0 (p1 − p2)2 p1p2 p1q1 p2q2
p1q2 p2q2 p1q1 p2q1 (p1 + p2 − 1)2 0
p2q1 p1q1 p2q2 p1q2 0 (p1 + p2 − 1)2

 . (33)

In Figs. 5(c-f) we test predictions of Eqs. (32)-(33) in the
regime beyond the semiclassical limit and find perfect agree-
ment of numerical and analytical results. This observation
leaves practically no doubts that the models (4) and (30) are
exactly solvable, and conditions (i-ii) can be used as a guide to
search for exact results in the multistate Landau-Zener theory.
Moreover, considering the existence of a solvable 6-state sys-
tem with similar symmetries9, it is likely that the models (4),
(30) and the 6-state model, discussed in9, are the instances
of a bigger class of solvable systems. There are hints that
may become useful in search for this class. All its found in-
stances have multiple exact crossing points of adiabatic levels
at t = 0, which suggests that models of this class describe
fermionic systems under the action of a time-dependent mag-
netic field, with time-reversal invariance at zero magnetic field
value. We also note that the presented models are similar in
structure to the reducible 4- and 6-state models described in2,
which points to a possible duality between these systems or
existence of a similar algebraic structure responsible for inte-
grability. We would also like to mention a different view on
integrability of multistate Landau-Zener systems that was pro-

posed recently in10. It relates presence of exact adiabatic level
crossings with existence of nontrivial commuting Hamiltoni-
ans at arbitrary time values19.

VII. CONCLUSION

We identified and explored 4- and 6-state Landau-Zener
models, for which we determined the exact form of the ma-
trix of transition probabilities. These models show a relatively
complex behavior due to the possibility of semiclassical path
interference leading to either constructive or destructive inter-
ference. Our numerical simulations and the partial proof con-
firm that the transition probability matrices, which we derived
in a semiclassical framework, are exact, i.e., they describe ar-
bitrary choices of the model parameters.

Not all exact results in the multistate Landau-Zener theory
have found practical applications. For example, the general-
ized bow-tie model8, having been mathematically influential,
looks quite artificial from the practical point of view, and its
physical realization is unknown. Our result shows that there
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are solvable multistate Landau-Zener systems that can be of
a practical interest to the on-going experimental studies. One
useful property of the solution (15) is that some of the transi-
tion probabilities depend only on the parameter γ that charac-
terizes the spin-orbit coupling. This suggests a simple way to
extract this coupling constant experimentally. Another prop-
erty is the existence of completely destructive interference for
some transitions, which should be strongly sensitive to deco-
herence.

Finally, we argued that the considered models are likely

only special instances of a more general class of integrable
systems. It would be highly desirable to find a general Hamil-
tonian for this class in order to obtain an exact framework to
explore complex interactions in nonstationary quantum me-
chanics.
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