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We study transport properties of a quantum dot coupled to a Majorana zero mode and two normal
leads. We investigate the full counting statistics of charge tunneling events and obtain complete
information on current fluctuations through the dot. Using Keldysh path-integral approach, we
compute cumulant generating function of the current. We first consider a spinless case and find
that for the symmetric dot-lead couplings, the zero-frequency cumulants are independent of the
microscopic parameters and exhibit a universal pattern described by Euler numbers. We then
consider spinful system and investigate effect of both weak and strong Coulomb interactions. We
show that cases with and without Majorana coupling exhibit qualitatively different full counting
statistics of charge tunneling events despite the fact that differential linear conductance might have
zero-bias features in both cases.

PACS numbers: 73.21.Hb, 71.10.Pm, 74.78.Fk, 72.70.+m

I. INTRODUCTION

Majorana zero-energy modes (MZMs) have recently at-
tracted enormous theoretical and experimental attention
[1–4] due to their exotic non-Abelian braiding statistics
[5–7] and potential application to fault-tolerant topolog-
ical quantum computation [8]. A large number of theo-
retical proposals has been put forward to realize MZMs
in topological superconductors (TSCs) [9–17], see also
reviews [4, 18, 19] for more details. One of the most
promising proposals involves a semiconductor nanowire
with strong spin-orbit interaction coupled to a conven-
tional s-wave superconductor [13, 14]. An appropriate
combination of the spin-orbit coupling, Zeeman splitting
and induced s-wave pairing allows one to realize an effec-
tively spinless p-wave superconductivity at the interface
which is characterized by the presence of MZMs bound
to certain defects (i.e vortices in 2D and domain walls
in 1D) [7, 20]. The simplest way to detect MZMs is
to measure local density of states at the defect and to
probe the emergence of the zero-energy resonance across
the topological phase transition. The first Majorana
tunneling spectroscopy experiment, based on a semicon-
ductor/superconductor heterostructure proposal [13, 14],
was performed in Delft [21]. Later on, the observation
of zero bias peak in a finite magnetic field, consistent
with the theoretical predictions [22], was reported by
many other experimental groups [21, 23–28]. The main
challenge of these measurements is to exclude the other
false-positive contributions to the zero-bias peak that are
ubiquitous in condensed matter systems such as Kondo
effect [29, 30], disorder in the topological region[31–35]
and in the leads [36, 37] as well as some other resonant
Andreev scattering phenomena [19]. The feature distin-
guishing the Majorana origin of the zero-bias peak from
the other mechanisms is the quantized zero-bias peak
conductance of 2e2/h which is a universal property of
Majorana zero modes [38, 39]. However, due to the large

subgap conductance (so-called “soft gap” problem) ob-
served in tunneling experiments [21, 23–28], the largest
observed height of the zero-bias peak was at most 30% of
the predicted value. Therefore, additional experimental
tests [37, 40–55] are necessary in order to conclusively
confirm the presence of MZMs in the semiconductor-
superconductor heterostructures.

In this paper, we study current correlations in a meso-
scopic device consisting of a quantum dot (QD) coupled
to a MZM and two normal leads. The possibility to tune
the couplings between QD and other conductors as well
as QD gate voltage allows one to study current corre-
lations in a well-controlled environment. We show here
that in the case of a symmetric left-right normal metal
coupling, see Fig.1 for a layout of the proposed device,
current fluctuations are characterized by a universal pat-
tern of the zero-frequency cumulants. We argue that the
measurement of such cumulants allows one to exclude
other false-positive signatures in tunneling transport and
uniquely identify the presence of the putative Majorana
modes.

The transport properties of a strongly interacting QD
coupled to a MZM and a single normal lead (NL) have
been studied using master equations, valid in the high-
temperature regime, in Ref. 41. The low-temperature
behavior of the MZM-QD-NL system and the interplay
between Kondo and Majorana couplings was considered
in Ref. 43 finding that zero bias tunneling conductance
exhibits strong temperature dependence, which is dis-
tinct from that of a MZM-NL structure [38, 39]. Later
on, Cheng, et al. [46] revisited the the low-temperature
behavior of the MZM-QD-NL system, and found that
Majorana coupling significantly modifies the low-energy
properties of the QD and drives the system to a new (dif-
ferent from Kondo) infrared fixed point. They also con-
firmed that the temperature dependence of the zero bias
conductance at the particle-hole symmetric point is sim-
ilar to that of the MZM-NL structure [39]. The zero-bias
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conductance of a noninteracting QD with a side-coupled
MZM (ungrounded TSC) through two normal leads was
considered in Refs. 42 and 45, where it was predicted
that the tunneling conductance is given by e2/2h for
symmetric QD-lead couplings. Ref. 44 considered a spin-
ful QD in the Kondo regime for this two-lead structure,
and studied the QD spectrum and zero-bias conductance
by using numerical renormalization group method, which
shows that the zero-bias conductance is 3e2/2h for small
QD-MZM coupling. The shot noise of a different two-lead
structure (with a grounded TSC) has been studied in Ref.
56 for both noninteracting spinless QD and spinful Kondo
QD predicting that the shot noise not only shows univer-
sal behaviors but also can be used for qualitatively distin-
guishing MZMs with other modes. There has been also
an experimental interest in QD-superconductor devices.
The interplay of the Kondo effect and superconductivity
has been revisited in Refs. [28, 29, 57, 58]. A natural
realization for the proposed experimental setup, see Fig.
1, involves a T-junction of the semiconductor nanowires
which can be grown using vapour - liquid - solid growth
technique [59]. The QD can be created near the junction,
two normal leads and the TSC are connected to each leg
of the T-junction. Another electron channel capacitively
couples the junction, and can be used as a charge sensor
to measure the charge distribution function. Thus, we
believe that the setup we propose in the paper is within
the experimental reach.

Although conductance and shot noise exhibit peculiar
universal dependence due to the MZM coupling, it is in-
sightful to obtain the full probability distribution func-
tion of the charge transferred through the QD, which can
serve as the Majorana sensor. The theory of full count-
ing statistics (FCS) [60–62] for charge transport in meso-
scopic systems was established by analyzing nonequilib-
rium transport. A great effort has been made to investi-
gate various aspects of FCS in a variety of systems the-
oretically [63–77] and experimentally [78–85]. Recently,
the FCS calculation has also been considered for electron
transport through multiterminal networks of MZMs [76].
In this paper, we study FCS of charge tunneling through
a QD with a side-coupled TSC, or equivalently a QD
coupled to a MZM. The charge transport is measured
between two normal leads. Here we assume that TSC is
grounded so there is also Andreev current between (left)
lead and the superconductor. Using the Keldysh path-
integral approach [86], we compute the cumulant generat-
ing function. We first consider a noninteracting spinless
QD, and find that for the symmetric dot-lead couplings,
the zero-frequency cumulants exhibit a universal pattern
described by Euler polynomial. This result is indepen-
dent of the microscopic parameters such as QD energy
level and QD-MZM coupling. For a spinful QD with
a small QD Zeeman splitting, we compute FCS in the
regime of weak (perturbative regime) and strong (single-
electron occupancy regime) Coulomb interactions. In the
former case, we compute the interaction-induced correc-
tion to the cumulant generating function up to the lead-
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𝜸𝟏 𝜸𝟐
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FIG. 1. Proposed experimental setup to measure the distri-
bution function of the transmitted charge, namely the full
counting statistics. The QD is created near the center of the
semiconductor nanowire T-junction, two normal metal leads
are attached to the upper and lower legs, and an s-wave super-
conductor is in proximity to the third lead. The latter realizes
topological superconductor hosting two MZMs γ1 and γ2.

ing order in U (i.e. U2). In the latter case, we study
the FCS due to the interplay between the Kondo and
Majorana coupling.

The paper is organized as follows. In Sec. II, we re-
view the formalism of the FCS calculation for the meso-
scopic transport problem. In Sec. III, we introduce the
QD-MZM model and compute the cumulant generating
function for this model with noninteracting spinless QD.
In Sec. IV, we consider weak Coulomb interaction effect
for a spinful QD, and compute the leading order inter-
action correction to the cumulant generating function by
using a diagrammatic perturbation method. In Sec. V,
we consider strong Coulomb interaction effect for a spin-
ful QD, and study how Kondo and Majorana couplings
affect the FCS. Finally, the conclusions are shown in the
Sec. VI.

II. FULL COUNTING STATISTICS: GENERAL
FORMALISM

In this section, we will review the formalism for calcu-
lating full counting statistics (FCS) of charge fluctuations
in a mesoscopic system, we refer a reader to Ref. [87] for
more details. Consider the distribution function Pq for q
electrons to be transferred through a mesoscopic device
within the measurement time T . Here we assume that
the measurement time is long enough (T � e/I) so that
the average number of electrons M transferred within T
is large, i.e. M � 1. The distribution function Pq al-
lows one to extract more information about the nature of
the charge carriers as well as the statistics of the charge
fluctuations. In particular, tails of the distribution con-
tain information about the statistics of rare events. From
the theoretical point of view, rather than Pq, it is more
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convenient to compute the cumulant generating function
(CGF) χ(λ), defined by a Fourier transform

χ(λ) =
∑
q

eiqλPq. (1)

Here the auxiliary variable λ represents a counting field.
From the CGF, one can calculate the cumulants 〈〈δnq〉〉
(irreducible moments of Pq)

〈〈δnq〉〉 =
∂n

∂(iλ)n
lnχ(λ)

∣∣∣
λ=0

. (2)

Thus, the average current and zero-frequency sym-
metrized current noise can be obtained by a simple dif-
ferentiation:

I =
1

T

∫ T
0

dt〈Î(t)〉 =
−i
T
∂lnχ

∂λ

∣∣∣
λ=0

, (3)

S =

∫ T
0

dt〈δÎ(t)δÎ(0) + δÎ(0)δÎ(t)〉 =
−1

T
∂2lnχ

∂λ2

∣∣∣
λ=0

.

(4)

The third cumulant and the fourth cumulant describe the
asymmetry (or skewness) and the kurtosis (or sharpness)
of the distribution function, and can be also straightfor-
wardly obtained using χ(λ).

In order to define the CGF in a proper way, Levitov
and Lesovik introduced a “gedanken scheme”, in which
a spin-1/2 system magnetically couples to the electric
current [60, 61]. Based on their definition, the CGF in a
Keldysh formalism is given by

χ(λ) =
〈
TC exp

[
− i
∫
C

dtHλ(t)
]〉

(5)

with

Hλ(t) = H +
λ(t)

2
Î . (6)

Here, the integration is preformed along the Keldysh
contour C, TC is time ordering; 〈· · · 〉 is the quantum-
mechanical average [86]. The second term in Eq.(6)
describes the interaction between electron current and
counting field, and λ(t) has different sign on the two
branches of the Keldysh contour, i.e. λ(t) = λ(1) for for-
ward branch and λ(t) = λ(2) for backward branch with
λ(1) = −λ(2) = λ.

III. FCS FOR A SPINLESS QD WITH
SIDE-COUPLED MZM

A. Theoretical Model

We now consider the setup shown in Fig. 1 - a quantum
dot (QD) is coupled to an end of a one-dimensional (1D)
topological superconductor (TSC) hosting two Majorana
zero modes (MZMs) γ1 and γ2 at the opposite ends. For

pedagogical reasons, we first consider the spinless model
for this setup (assuming that the Zeeman splitting is very
large), and relegate the discussion of the spinful case to
the next sections. In the former case, the model is essen-
tially noninteracting, and one can calculate FCS exactly.
The QD is coupled to two normal spinless leads which
can be used for transport measurements. Given that
each lead couple to the QD at a single point, one can per-
form unfolding transformation and reduce the problem to
the one corresponding to a quantum impurity coupled to
one dimensional free fermions. Thus, the corresponding
Hamiltonian reads

H = HLead +HQD−MZM +HT, (7)

where the Hamiltonians for the leads, QD-MZM system,
the Lead-QD couplings are respectively given by

HLead = −ivF
∑
α=L,R

∫
dxψ†α(x)∂xψα(x), (8)

HQD−MZM = εdd
†d+ iκ(d+ d†)γ1 + iδγ1γ2, (9)

HT =
∑
α=L,R

(
tαψ

†
α(0)d+ t∗αd

†ψα(0)
)

(10)

Here ψ†α (d†) is creation operator for an electron in the
α-lead (QD), εd is the energy level in the QD, and tαk
(κ) is the tunnel coupling between the leads (MZM) and
the QD. The effective Hamiltonian for the TSC is given
in terms of the low-energy degrees of freedom (MZMs)
assuming that the induced superconducting gap ∆ is the
largest energy scale in the problem. For a finite-length L
TSC, the coupling δ between two MFs is exponentially
small δ ∼ ∆ exp(−L/ξ) with the coherence length being
ξ = vF /∆.

We now derive the CGF for our QD-MZM model as-
suming the symmetric source-drain bias (µL = eV/2 and
µR = −eV/2). The Hamiltonian including the counting
field can be written as

Hλ(t) = H +
∑

α=L,R

λα(t)

2
Îα. (11)

where the current operator for the α-junction is Îα =
ie[H,Nα] with the electron number operator Nα for the
α lead. One can apply a gauge transformation to remove
the last term in the Hλ(t), and obtain

Hλ = HLead +HQD−MZM +Hλ
T, (12)

Hλ
T =

∑
α=L,R

(
tαe
−iλα(t)/2ψ†α(0)d+ h.c.

)
. (13)

We note that for κ = 0, the gauge symmetry of the
Hamiltonian allows one to gauge away one of the count-
ing fields so it is enough to keep the counting field in one
of the junction. In the general case (i.e κ 6= 0), however,
we need to keep both counting fields λα.

We can now compute the path integral for the effective
action defined by the Hamiltonian (12). Given that the
presence of superconductor (i.e. MZM coupling) breaks
particle number conservation, the QD Green function
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contains anomalous contributions, e.g. 〈TCd(t)d(t′)〉 6=
0. Therefore, we introduce Nambu spinors: ~Ψ†α =

(ψ†α, ψα)/
√

2 and ~Ψ†d = (d†, d)/
√

2, where α = L,R is
the lead index. The effective Keldysh action now reads

S = SLeads + SQD−MZM + ST, (14)

where

SLeads =
∑
α

∫
C

∫
C

dtdt′~Ψ†α(t)Q̆−1
0,α(t, t′) ~Ψα(t′)

SQD−MZM =

∫
C

∫
C

dtdt′~Ψ†d(t) Q̆
−1
0,dd(t, t

′) ~Ψd(t
′), (15)

ST = −
∑
α

∫
C

dt
(
tαe
−iλα(t)

2 ψ†αd+ c.c.
)

(16)

= −
∑
α

∫
C

dt(~Ψ†α(t)MT,α
~Ψd(t) + h.c.), (17)

are the actions for leads, QD, and Lead-QD coupling,
and

MT,α =

(
tαe
−iλα(t)

2 0

0 −t∗αei
λα(t)

2

)
. (18)

Here we have already integrated out the bulk degrees of

freedom in the leads and kept only the field ~Ψ†α(t) at the
x = 0, i.e. at the QD. The free lead Green’s function
Q̆0,α at x = 0 in the Nambu space N can be written as

Q̆0,α(ω) =

(
g0
α(ω) 0
0 g̃0

α(ω)

)
(19)

where g̃0
α(t − t′) is the P-H conjugation of g0

α(t − t′).
We perform Larkin-Ovchinnikov (L-O) rotation, and the
Green function in Keldysh space becomes

g0
α(ω) = −iπρF

(
1 2(1− 2nα)
0 −1

)
, (20)

g̃0
α(ω) = −iπρF

(
1 2(1− 2ñα)
0 −1

)
. (21)

One notices that g0,R
α (ω) = −g̃0,A

α (−ω) and g0,K
α (ω) =

−g̃0,K
α (−ω). Here, nα is the Fermi distribution function

of the α lead with chemical potential µα, and ñα cor-
responds to the Fermi distribution function with −µα.
Assuming the symmetric source-drain bias µL = eV/2
and µR = −eV/2, one can relate the Fermi function for
particles and holes ñL = nR and ñR = nL. The free QD
Green function (with MZM coupling) can be written as

Q̆0,dd(ω) =


GR

0,dd̄
GK

0,dd̄
FR0,dd FK0,dd

0 GA
0,dd̄

0 FA0,dd
FR

0,d̄d̄
FK

0,d̄d̄
GR

0,d̄d
GK

0,d̄d

0 FA
0,d̄d̄

0 GA
0,d̄d

 , (22)

where the retarded components read [41, 56]

GR0,dd̄(ω) =
ω + iηS + εd − ΣM(ω)

(ω + iηS − 2ΣM(ω))(ω + iηS)− ε2d
(23)

GR0,d̄d(ω) =
ω + iηS − εd − ΣM(ω)

(ω + iηS − 2ΣM(ω))(ω + iηS)− ε2d
(24)

FR0,dd(ω) = FR0,d̄d̄(ω) =
−ΣM(ω)

(ω + iηS − 2ΣM(ω))(ω + iηS)− ε2d
.

(25)

Here the the self-energy due to MZM coupling is
ΣM(ω) = κ2ω/(ω2 − δ2), and the infinitesimal ηS → 0.
The Keldysh components are proportional to ηS , and,
thus, can be set to zero. After L-O rotation, the action
for the tunneling part becomes

ST = −
∑
α

∫ ∞
−∞

dt
[
~Ψ†α
( ∑
i=cl,q

M i
T,α ⊗ γi

)
~Ψd

+~Ψ†d
( ∑
i=cl,q

M i
T,α ⊗ γi

)†~Ψα

]
, (26)

where

M cl
T,α =

 e−iλ
(1)
α +e−iλ

(2)
α

2 0

0 − e
iλ

(1)
α +eiλ

(2)
α

2

 , (27)

Mq
T,α =

 e−iλ
(1)
α −e−iλ

(2)
α

2 0

0 − e
iλ

(1)
α −eiλ

(2)
α

2

 . (28)

are written in the Nambu space whereas γcl = I and
γq = σ1 represent the Keldysh space. Note the rela-

tionship λ
(1)
α = −λ(2)

α = λα which allows one to simplify
the expressions. After some manipulations, the cumulant
generating function can be written as

χ(λ) =

∫
D[d†, d]D[ψ†α, ψα]ei(SLeads+SQD−MZM+ST).

(29)
Next, we perform Gaussian integration to find

lnχ(λ) =
T
2

∫ ∞
−∞

dω

2π
ln

 det
[
Ĭ4×4 − Q̆0,ddQ̆Mλ

det
[
Ĭ4×4 − Q̆0,ddQ̆M0]

 ,
(30)

where

Q̆Mλ =
∑
α

(∑
i

M i
T,α⊗γi

)†
Q̆0,α

(∑
i

M i
T,α⊗γi

)]
. (31)

Eqs.(30) is a general expression for the CGF. In the next
sections, we will explicitly evaluate χ(λ) for different lim-
iting cases.

B. Results and Discussions

1. QD coupled to two normal leads.

It is instructive to review first a simple case of a non-
interacting QD coupled to two normal leads. Taking the



5

limit κ = 0 in Eq. (22) and substituting it into Eq. (30),
one obtains

lnχ =
T
2

∫ ∞
−∞

dω

2π
ln[(1 + Υ+)(1 + Υ−)] (32)

with the functions Υ± being defined as

Υ± =
4ΓLΓR

(ω ± εd)2 + (ΓL + ΓR)2
(33)

× [nL(1− nR)(ei(λL−λR) − 1) +R↔ L].

The term in the second bracket of the logarithm function
in Eq.(32) is the particle-hole conjugation of the term in
the first bracket. Since we consider a symmetric source-
drain bias (eVL = −eVR = eV/2), the transformation
ω → −ω (e.g. for the terms in the second bracket) will
result in the following changes: nL → 1− nR and nR →
1−nL. Thus, one can see that Eq.(32) is consistent with
the results of Ref. 68. Indeed, at zero temperature and
to the linear order in applied bias eV , one obtains the

well-known result for the shot noise in a QD:

SLL

eV
=
e2

h
(−i)2 ∂

2 lnχ(λL, λR = 0)

∂λ2
L

∣∣∣
λL=0

=
2e2

h

4ΓLΓR[(ΓL − ΓR)2 + ε2d]

[ε2d + (ΓL + ΓR)2]2
. (34)

One can notice that the shot noise (as well as other cumu-
lants) generically depend on the microscopic parameters
for the QD such as, for example, εd. Furthermore, in the
resonant case corresponding to εd = 0 and ΓL = ΓR, the
first eight cumulants are given by

{C1(0), · · ·C8(0)} = {1, 0, 0, 0, 0, 0, 0, 0}, (35)

with Cn(0) being defined as

Cn(0) =
〈〈δnq〉〉
M

. (36)

Notice that at the symmetric point ΓR = ΓL, all higher
order (n > 1) cumulants become zero as εd → 0. This
dependence on εd is a generic feature because density
of states in QD strongly depends on the gate voltage
controlling εd. As we show below, this is not the case
when QD is coupled to a TSC.

2. QD coupled to two normal leads and a TSC

Let us now consider a QD coupled to a TSC through
MZM coupling, i.e. κ 6= 0. Substituting Eqs. (19),
(22), (27), and (28) into Eq. (30), we find the following
expression for the cumulant generating function:

lnχ(λ) =
T
2

∫ ∞
−∞

dω

2π
ln
[
1− C1

K(λ = 0)
nL(1− nL)− C2

K(λ = 0)
nR(1− nR) +

B1

K(λ = 0)
nL(1− nR)

+
B2

K(λ = 0)
nR(1− nL) +

F
K(λ = 0)

nLnR(1− nL)(1− nR) +
J

K(λ = 0)
nLnR(nL − nR)

]
. (37)

The coefficients (C1, C2, B1, B2, F, J, K) in Eq.(37)
are defined in the Appendix-A. Above expression can be
simplified in the zero temperature limit where the terms
proportional to nL(1−nL), nR(1−nR), nLnR(1−nL)(1−
nR), and nLnR(nL − nR) vanish, and the corresponding
expression for lnχ(λ) becomes

lnχ(λ)
∣∣∣
T→0

=
T
2

∫ ∞
−∞

dω

2π
ln
[
1 + N1nL(1− nR)

+ N2nR(1− nL)
]

(38)

where N1(ω) = B1/K(λ = 0) and N2(ω) = B2/K(λ =

0). In addition, at T = 0 we have
(
nL(1 − nR)

)i
=

nL(1 − nR),
(
nR(1 − nL)

)i
= nR(1 − nL), and

(
nL(1 −

nR)
)i(
nR(1−nL)

)j
= 0 (if i, j 6= 0). Assuming µL > µR,

the generating function can be further simplified to
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lnχ(λ)
∣∣∣
T→0

=
T
2

∫ eV
2

− eV2

dω

2π
ln

(
1 +
N (ω)

D(ω)

)
. (39)

where the functions are N (ω) and D(ω) are defined as

N (ω) = e−2iλR
{

8ei(λL+λR)ΓLΓR
[
ε2d + (ΣM(ω)− ω)2

+ (ΓL − ΓR) 2
]

+ 4
(
ΣM(ω)2 + 4e2iλLΓ2

L

)
Γ2
R

(40)

− 4e2iλR
[ (

1−e2iλL
)

ΣM(ω)2Γ2
L+2Γ3

LΓR

+ΣM(ω)2Γ2
R + 2ΓLΓR

(
ε2d + (ΣM(ω)− ω)2 + Γ2

R

) ]}
,

D(ω) =
[
ε2d + (2ΣM(ω)− ω)ω

]2
+ (ΓL + ΓR) 2 (41)

+ (ΓL + ΓR)
2 [

2
(
ε2d + 2ΣM(ω)2 − 2ΣM(ω)ω + ω2

) ]
.

Eq.(77) is the main result of this section which allows one
to compute cumulants as a function of various physical
parameters. We now simplify above expression in the
limit δ = 0 and small bias eV → 0. We keep only the
leading order terms in eV , and simply set ω = 0 in the
integrand. [88]. After the simplifications, we arrive at a
very simple expression for the CGF:

lnχ

M

∣∣∣∣∣
eV→0

= ln

(
ΓLe

iλL + ΓRe
−iλR

ΓL + ΓR

)
, (42)

where M = T V/2π = T V e2/h is the number of incoming
particles during the waiting time. As mentioned above,
the expression (93) only depends on the ratio of ΓL/ΓR,
and is independent of many other microscopic parameters
such as εd and κ. This universality is due to the finite
density of states at zero energy induced by the Majorana
leaking into the QD, and is a characteristic feature of
topological superconductivity.

To get some insight we compute now currents through
the left and right junctions. Using Eq.(3), one finds

IL =
e2

h

ΓL
ΓR + ΓL

V (43)

IR = −e
2

h

ΓR
ΓR + ΓL

V (44)

Clearly, when ΓL 6= ΓR, there is Andreev contribution to
the current due to the presence of a grounded supercon-
ductor:

IA =
e2

h

ΓR − ΓL
ΓR + ΓL

V. (45)

One can notice that when ΓR = 0, we recover the pre-
vious results [46] corresponding to a single lead coupled
to a TSC. Indeed, given that the voltage drop between
left lead and TSC is V/2, linear differential conductance
dI/dV is equal to the universal value of 2e2/h. Next,
at the symmetric point ΓR = ΓL, Andreev current be-
comes zero, and linear differential conductance between

right-left leads is dIL/dV = e2/2h which is consistent
with the previous work on QD coupled to an ungrounded
TSC [42, 45]. In addition, if we reverse the right lead
voltage VR = −V/2 −→ V/2, the linear conductance is
also equal to the universal value 2e2/h which is expected
based on the RG analysis [38, 46].

We now discuss higher order cumulants n > 1. One can
check that the expressions for the shot noise (as well as
other higher order cumulants) through the left and right
leads are the same in the eV → 0 limit. Beyond eV → 0
limit, this relation only holds for the symmetric couplings
ΓL = ΓR. Therefore, we set λR = 0 from now on and
study current fluctuations through the left junction only.
By expanding the CGF in terms of eiλL , one finds

χ(λL) =
( ΓR

ΓR + ΓL

)M ∞∑
n=0

(
M

n

)(ΓL
ΓR

)n
einλL . (46)

The probability Pq can be obtained by the Fourier trans-
form

Pq =
1

2π

∫ 2π

0

dλLe
−iqλLχ(λL)

=

(
M

q

)( ΓR
ΓR + ΓL

)M(ΓL
ΓR

)q
. (47)

As expected, the generating function in the presence of
MZM coupling κ 6= 0 is still described by the binomial
distribution. However, the cumulants, defined as

Cn(0) =
〈〈δnq〉〉
M

= (−i)n 1

M

∂n

∂λnL
lnχ(λ)

∣∣∣
λL,R=0

, (48)

follow a peculiar pattern at ΓL = ΓR

{C1(0) · · ·C8(0)} =

{
1

2
,

1

4
, 0,−1

8
, 0,

1

4
, 0,−17

16

}
,

Cn(0) =
En−1(1)

2
, (49)

with En(x) being the Euler polynomial. Contrary to the
case without MZM, higher order cumulants are nonzero
at ΓL = ΓR and are independent of εd and κ.

The dependence of the cumulants on Majorana split-
ting energy δ and finite voltage bias (beyond linear in V
contributions) can be obtained using Eq. (77). In this
case, one needs to perform an integration of the cumulant
spectrum Cn(ω) over ω ∈ (−eV/2, eV/2), where

Cn(ω) =
〈〈δnq〉〉(ω)

M
= (−i)n 1

2

∂n

∂λnL
ln

(
1 +
N (ω)

D(ω)

)∣∣∣∣
λL,R=0

.

(50)

The frequency dependence of the cumulants for εd/Γ =
−2 with different κ and δ are shown in Fig. 2 (left
panel: δ = 0; right panel: δ/Γ = 0.02). As one can
see, the cumulants exhibit plateaus corresponding to the
universal values, see Eq.(81), in the frequency range
ω < min{Γ, κ2/Γ} which allows one to distinguish the
Majorana physics from the other non-Majorana effects.
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FIG. 2. The cumulant spectrum Cn(ω) for n = 2, 3, 4 for different κ, δ = 0 (left panel) and δ/Γ = 0.02 (right panel). Here we
set εd/Γ = −2.0, ΓL = ΓR.

Next,we consider the effect of finite Majorana degener-
acy splitting δ 6= 0 which affects the cumulant spectrum
Cn(ω) at small frequencies ω → 0. One can see that, pro-
vided κ & Γ, the cumulants with δ = 0 and δ 6= 0 are sim-
ilar for |ω| � δ. Therefore, in order to observe the univer-
sal values of Cns, one has to adjust the source-drain bias
V to the appropriate regime: min{κ2/Γ,Γ} � eV � δ.
One can notice that there is also a redistribution of the
spectral weight for small κ/Γ. Therefore, large κ/Γ & 1
limit is more favorable for the experimental measurement
of the cumulants.

Finally, we plot the second cumulant spectrum C2(ω)
for εd = 0 in Fig. 3. We can see that although the quanti-
tative value show small changes compared to εd/Γ = −2
result, the conditions for the source-drain bias shown
above still hold indicating that our results are robust
against changes of εd.

IV. WEAKLY INTERACTING SPINFUL QD
COUPLED TO A MZM

In this section, we consider the spinful model for a QD
coupled to a MZM which is relevant in the context of the

Majorana proposals involving topological insulators [9,
10, 15]. Indeed, MZM can be localized, for example, at
the domain wall between an s-wave superconductor and
a magnetic insulator of a Quantum Spin Hall insulator
heterostructure. Assuming that the magnetic insulator,
polarized along z-axis, does not affect the spin in QD (i.e.
Zeeman splitting in QD is negligibly small), one arrives
at the following effective Hamiltonian:

HQD−MZM =
∑
σ

εdd
†
σdσ + Ud†↑d↑d

†
↓d↓

+ iκ(d↑ + d†↑)γ1 + iδγ1γ2. (51)

Here we also include the effect of inter-particle interac-
tion U assuming that it is weak, i.e. U � Γ, κ. The
opposite limit of strong Coulomb interaction in the dot
is considered in Sec.V.

As shown in the previous section, the CGF for spin-
less QD becomes universal (i.e. independent of εd and κ)
due to the MZM coupling. In the spinful case, only one
channel (e.g. spin-up) effectively couples to the MZM,
see Eq.(51). Thus, the CGF will also have a nonuni-
versal contribution from the spin-down channel which is
decoupled from MZM. However, as follows from Eq.(35),
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FIG. 3. The εd = 0.0 result of the second cumulant spectrum C2(ω) for different κ, δ = 0 (left panel) and δ/Γ = 0.02 (right
panel). Here we take ΓL = ΓR.

𝑡 𝑡′Normal propagator  :      𝐺𝑑𝑑 𝑡, 𝑡′ =

𝐹𝑑𝑑 𝑡, 𝑡′ =

𝐹𝑑𝑑 𝑡, 𝑡′ =

𝑡 𝑡′

𝑡 𝑡′
Anomalous propagator  : 

Coulomb interaction  :
𝑈

↑ ↓
(𝒂)

FIG. 4. a) Diagrammatic representation of the normal and anomalous impurity Green functions and the Coulomb interaction;
b) and c) diagrammatic representation of the self-energy due to leading order corrections of the Coulomb interaction.

higher-order cumulants (i.e. n > 1) from the spin-down
channel vanish at εd = 0 and ΓL = ΓR enabling one to
observe the universal part originating from the spin-up
part. Thus, some fine-tuning is necessary in this case (as
opposed to the strongly interacting case in Sec.V). In ad-
dition to the aforementioned corrections to the universal
features in FCS, one should also consider the effect of
Coulomb interactions. Without loss of generality, we set
λR = 0 and calculate effect interactions on charge fluctu-
ations through the left lead. Our conclusions also apply
to charge fluctuations through the right lead.

We now consider effect of weak interactions U �
{Γ, κ} on FCS. We first calculate the contribution of
Coulomb interaction to the self-energy and then obtain
the corrections to the CGF in powers of U . Up to the
second order in U , the corresponding Feynman diagrams
are shown in Fig. 4. The linear in U contribution to
the self-energy ΣλL

dd̄
, see Fig. 4, merely represents the

renormalization of the QD energy level εd. This is a triv-
ial interaction effect which does not modify our previous
conclusions. We, therefore, focus on U2 contributions.
The self-energy in the Nambu space has the following
form

ΣλL =

(
ΣλL
dd̄

ΣλLdd
ΣλL
d̄d̄

ΣλL
d̄d

)
, (52)

where ΣλL
d̄d

and ΣλL
d̄d̄

are particle-hole conjugation of ΣλL
dd̄

and ΣλLdd . We note that all the Green’s functions here
depend on the counting field λL. The details of the cal-
culation of ΣλL is presented in the Appendix B 1. After
some manipulations, the cumulant generating function
for each spin-channel can be written as

lnχ(λ) =
T
2

∫ ∞
−∞

dω

2π
ln

det
[[
Q̆λLdd,U=0

]−1 − ΣλL
]

det
[[
Q̆λL=0
dd,U=0

]−1 − ΣλL=0
]

=
T
2

∫ ∞
−∞

dω

2π
ln

det
[[
Q̆λLdd,U=0

]−1
]

det
[[
Q̆λL=0
dd,U=0

]−1
] (53)

+
T
2

∫ ∞
−∞

dω

2π
ln

det
[
I4×4 − Q̆λLdd,U=0ΣλL

]
det
[
I4×4 − Q̆λL=0

dd,U=0ΣλL=0
] ,

where[
Q̆λLdd,U=0

]−1
=
[
Q̆λL0,dd

]−1 −
∑
α

(∑
i

M i
T,α ⊗ γi

)†
Q̆0,α

×
(∑

i

M i
T,α ⊗ γi

)
, (54)

The first term in the generating function corresponds to
the result for noninteracting case, see Eq. (30) whereas
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the second term originates from the interaction-induced
corrections. We consider weak Coulomb interactions
U � {Γ, λ, eV }, and keep the leading order terms in U :

Q̆λLdd,U=0ΣλL ∼ U2/min{Γ, λ, eV }2 � 1. By expanding

the second term in Eq.(53) up to quadratic order in U ,
we obtain

lnχ(λ) ≈ T
2

∫ ∞
−∞

dω

2π
ln

det
[[
Q̆λLdd,U=0

]−1
]

det
[[
Q̆λL=0
dd,U=0

]−1
]

−T
2

∫ ∞
−∞

dω

2π

[
Tr
(
Q̆λL

dd,U=0ΣλL
)

−Tr
(
Q̆λL=0

dd,U=0ΣλL=0
)]
, (55)

where we used the relation det(I+ xĂ) ≈ 1 + xTr(Ă) for
x� 1.

After some manipulations (see Appendix B 1), the cu-
mulant generating function for small U can be written
as

lnχσ(λL, U) ≈ lnχσ(λL, U = 0)− T U
2

2
ΞK̃λ , (56)

which can be described by Fig. 5. Note that the matrix

formalism of the Green functions has the form
(
GR GK

GK̃ GA

)
(i.e. with a L-O rotation). However, for the convenience
of the calculation, we will also use the matrix Green func-
tions in the Schwinger - Keldysh space (without L-O ro-
tation). Here the function Ξλ (λ here means (λL, λR)) in
the Schwinger - Keldysh space has the form

Ξλ =

(
ΞTλ Ξ<λ
Ξ>λ ΞT̃λ

)
, (57)

where

ΞTλ =

∫ ∞
−∞

dΩ

2π

(
Π̂T
P,↑(−Ω)Π̂T

P,↓(Ω) + Π̂T
H,↑(−Ω)Π̂T

H,↓(Ω)
)
,

ΞT̃λ =

∫ ∞
−∞

dΩ

2π

(
Π̂T̃
P,↑(−Ω)Π̂T̃

P,↓(Ω) + Π̂T̃
H,↑(−Ω)Π̂T̃

H,↓(Ω)
)
,

Ξ<λ =

∫ ∞
−∞

dΩ

2π

(
Π̂<
P,↑(−Ω)Π̂<

P,↓(Ω) + Π̂<
H,↑(−Ω)Π̂<

H,↓(Ω)
)
,

Ξ>λ =

∫ ∞
−∞

dΩ

2π

(
Π̂>
P,↑(−Ω)Π̂>

P,↓(Ω) + Π̂>
H,↑(−Ω)Π̂>

H,↓(Ω)
)
,

(58)

and

ΞK̃λ =
(

ΞTλ + ΞT̃λ − Ξ<λ − Ξ>λ

)
/2. (59)

The polarization functions Π̂α
P,σ and Π̂α

H,σ (see Fig. 4)
are calculated in Appendix B 1. One can notice that, for
εd = 0, the particle parts are exactly the same as the hole
parts: Π̂P,σ = Π̂H,σ. Thus, the functions Ξλ for spin-
up channel have the same form as those for spin-down
channel, and we drop the spin-index in Ξλ from now on.
Lastly, it is well-known that the function ΞK̃λ=0 = 0 (here
λ = 0 means λL = λR = 0) vanishes because of causality
and unitarity. However, the presence of artificial count-
ing field λ(t) having different sign on forward branch and
backward branches of the Keldysh contour breaks uni-

tarity. Therefore, the relation ΞK̃λ=0 = 0 does not hold
for λ 6= 0, and we have to evaluate it explicitly. In gen-

eral, the calculation of ΞK̃λ,A is not very illuminating but
some simplification can be obtained by expanding the
interaction-induced corrections in powers of eV assum-
ing that eV → 0. After some algebra (see Appendices
B 2, B 3, and B 4), we find that the leading contribution
to CGF is proportional to V 3:

ΞK̃λ,A = (eV )3
(

Ξ
K̃,(3)
λ,A + Ξ

K̃,(3)
λ,B

)
, (60)

where the functions Ξ
K̃,(3)
λ,A and Ξ

K̃,(3)
λ,B are given by

Ξ
K̃,(3)
λ,A =

(e−iλL − 1)

6πΓ4
O(κ̃) + (2− π2

4
)
(eiλL − 1)

[
(eiλL − 1)− 2(eiλL + 3)κ̃2

]
12π3(eiλL + 1)2Γ4κ̃2

, (61)

Ξ
K̃,(3)
λ,B =

1

24π3Γ4κ2
(
1 + eiλL

)2 [15κ2
(
eiλL − 1

)
+ κ2

(
e2iλL − 1

)
+ (−2Γ2 − 15κ2)

(
e−iλL − 1

)
+(Γ2 − 8κ2)

(
e−2iλL − 1

)]
+

Π̂T
P2,↑(0

+, 0)− Π̂T̃
P2,↑(0

+, 0)

6π2Γ3

(
e−iλL − 1

)
, (62)

where

O(κ̃) =

∫ ∞
−∞

dΩ̃

2π

[
Π̂T
P,↑(−Ω̃, 0)

−i
(|Ω̃|+ i)2

+ Π̂T̃
P,↑(−Ω̃, 0)

−i
(|Ω̃| − i)2

]
,with Ω̃ =

Ω

Γ
, κ̃ =

κ

Γ
. (63)

One can check that indeed above expression vanish for λL = 0, as required by unitarity. The integral in Eq. (61) is a
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FIG. 5. Diagrammatic representation of the cumulant generating function up to the leading order corrections of the Coulomb
interaction.

dimensionless number depending only on κ/Γ. The functions Π̂T,T̃
P2,↑(0

+, 0) in Eqs. (62) are defined in Eq.(B19); these

functions depends on Γ and κ. [89–92] [93]
Combining all the terms, the final expression for the cumulant generating function of the spinful QD at O(U2)-level

can be written as

lnχ(λL, U) ≈ lnχ↑(λL, U = 0) + lnχ↓(λL, U = 0)− T U2(eV )3
(

Ξ
K̃,(3)
λ,A + Ξ

K̃,(3)
λ,B

)
. (64)

and the leading correction for the current and shot noise (for left junction current) can be written as

δIUL =
e

h

U2(eV )3

Γ4

(
O(κ̃)

6π
+

(
2− π2

4

)
1

6π3
− 1

2π3
+

Π̂T
P2,↑(0

+, 0)− Π̂T̃
P2,↑(0

+, 0)

6π2

)
, (65)

δSULL = − e
h

U2(eV )3

Γ4

(
O(κ̃)

6π
+

(
2− π2

4

)
1 + 2κ̃2

24π3κ̃2
+

1− 62κ̃2

48π3κ̃2
+

Π̂T
P2,↑(0

+, 0)− Π̂T̃
P2,↑(0

+, 0)

6π2

)
. (66)

Thus, the leading order correction to the generating function in the presence of MZM coupling is of the order of
(eV )3 which is the same in the case without MZM considered in Ref. 68. Since the leading order correction to the
cumulants Cn is of the order of (eV )2, the interaction-induced corrections do not affect cumulants at small bias.
Therefore, we expect that one can observe the universal values of the cumulants discussed in Sec.III in realistic
experimental conditions.

V. STRONGLY INTERACTING SPINFUL QD
COUPLED TO A MAJORANA ZERO MODE:
INTERPLAY OF KONDO AND MAJORANA

COUPLINGS

In this section, we study another nontrivial case cor-
responding to a strongly interacting spinful QD in the
limit of single-electron occupancy coupled to a MZM. The
Hamiltonian for the system reads

H = H0L +H0R +HQD−MZM +HT (67)

HQD−MZM =
∑
σ

εdnσ + Un↑n↓

+ iκγ1(d↑ + d†↑) + iδγ1γ2. (68)

HT =
∑

α=L,R,σ

(
tαψ

†
α,σ(0)dσ + h.c.

)
. (69)

Here H0R and H0L correspond to the right and left
non-interacting lead, respectively; d†σ and dσ are elec-
tron creation and annihilation operators in the QD with
nσ = d†σdσ; the energies εd and U correspond to the QD
energy level and the on-site repulsive interaction. κ and δ
represent coupling between QD electrons and MZM and
the degeneracy splitting energy in TSC. The operator

ψ†α,σ(0) corresponds to an electron annihilation opera-
tor in the lead α with spin σ at the junction with the
QD (i.e. x = 0) and tα is the corresponding amplitude
for tunneling. Once again, we assume here that Zeeman
splitting in a QD is negligibly small (see discussion af-
ter Eq.(51)). In the limit of single-electron occupancy
(i.e. large U and εd < 0), considered henceforth, one has
to take into account interplay of Kondo and Majorana
couplings [46]. In the next subsections, we present cal-
culations for the FCS of charge fluctuations using two
different techniques: exact solution at the particle-hole
symmetric point and slave-boson approximation, both of
which show that the zero-frequency cumulants calculated
in the linear response regime exhibit a universal pattern
described by Euler polynomial.

A. Low energy effective theory at the particle hole
symmetric point

In this section, we study FCS of charge fluctuations
at the particle-hole symmetric point where one can solve
the problem exactly, see Ref. 46. First, in the limit
of a large charging energy, one can project out double-
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FIG. 6. Dependence of the cumulants Cn(0) = 〈〈δnq〉〉/M (δ = 0 and eV → 0 limit) on the Majorana coupling κ in Kondo
regime from SBMF calculation. We choose ΓL = ΓR, εd/Γ = −10.0, and band width Λ/Γ = 30.0.

electron occupancy state in the QD using Schrieffer-Wolff
transformation [46]. The effective low-energy Hamilto-
nian at particle-hole symmetric point (εd = −U/2) reads

Heff = H0L +H0R +
∑

j=x,y,z;α=R,L

iJ2αγ1SjΦjα(0)

+
∑

αα′=L,R

J3,αα′
~S ·~sαα′(0). (70)

where ~S = {Sx, Sy, Sz} are spin operators for the
dot, and γ1 is the Majorana zero mode at the end
of TSC wire. We also define the Majorana operators

from the lead fermions: Φα,x(0) = ψα↓(0) + ψ†α↓(0),

Φα,y(0) = i(−ψα↓(0) + ψ†α↓(0)), and Φα,z(0) = ψα↑(0) +

ψ†α↑(0). The lead spin operator is defined as ~sαα′(0) =

ψ†αs(0)(~σ/2)ss
′
ψα′s′(0). The coupling constants J2α and

J3αα′ are given by

J2α = η|tα|
( 1

|εd|
+

1

U − |εd|

)
,

J3αα′ = |tαtα′ |
( 1

|εd|
+

1

U − |εd|

)
(71)

It has been shown in Ref. 46 that the low energy fixed
point corresponding to the Hamiltonian (70) is governed
by the J2 coupling which is the leading relevant perturba-
tion in the model. It has been confirmed by the DMRG
calculation [46] that the strong coupling fixed point cor-
responds to the non-trivial boundary conditions for the
lead fermions - Andreev boundary conditions (BCs) for

spin up electrons and Normal BCs for spin-down elec-
trons. Some insight regarding the strong coupling fixed
point can be obtained by setting J3 = 0 and using the ex-
act solution of the model [46]. The effect of the marginal
perturbation J3 can be taken into account perturbatively.

1. FCS using the exact solution of the model at J3 = 0

The low energy Hamiltonian (70) with J3 = 0 can be
further simplified by noticing that the operators ζj =
2γ1Sj (j = x, y, z) along with γ2 satisfy the Clifford alge-
bra and define the new Majorana operators ζj = 2γ1Sj ,
which maps the model to the following fermion bilinear
Hamiltonian [46]:

Heff = H0L +H0R + iJ2L

∑
j=x,y,z

ζjΦLj(0)

+iJ2R

∑
j=x,y,z

ζjΦRj(0). (72)

In order to study FCS for this model, we intro-
duce the counting field λα by replacing ψ†ασ(0) with
e−iλα(t)/2ψ†ασ(0), and then perform the Gaussian inte-
gration over fermionic fields:

lnχ(λ) =
T
2

∫ ∞
−∞

dω

2π
ln

 det
[
ωĬ3×3 − Q̆Γλ

det
[
ωĬ3×3 − Q̆Γ0]

 , (73)
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where the matrix is defined as Q̆Γλ:

Q̆Γλ =
∑

α=L,R

W †T,αQ̆0,αWT,α. (74)

Here the Green function and the coupling matrix ŴT,α

operate in the Keldysh-Nambu space. The Green func-
tion for the α lead Q̆0,α is defined as

Q̆0,α(ω) =


g0
α↑(ω) 0 0 0

0 g0
α↓(ω) 0 0

0 0 g̃0
α↑(ω) 0

0 0 0 g̃0
α↓(ω)

 (75)

where g0
ασ(ω) and g̃0

ασ(ω) are given in Eqs. (20) and

(21). The matrix ŴT,α describes the coupling be-
tween Majorana modes {ζx, ζy, ζz} and the lead electrons

{ψα↑, ψα↓, ψ†α↑, ψ
†
α↓} at x = 0:

ŴT,α =

 0 iJ2αmλα 0 iJ2αm̃λα

0 J2αmλα 0 −J2αm̃λα

iJ2αmλα 0 iJ2αm̃λα 0


(76)

The matrices mλα = cos(λα)I − i sin(λα)σx and m̃λα =
− cos(λα)I − i sin(λα)σx are defined in Keldysh space.
Note that in order to obtain above expression for the

matrix ŴT,α, we used the relation λ
(1)
α = −λ(2)

α = λα
and applied Larkin-Ovchinnikov rotation [86]. Assum-
ing symmetric applied voltage bias VL = V/2 and VR =
−V/2, see Fig.1, we find the generating function for this
low energy model at zero temperature T = 0:

lnχ(λ)
∣∣∣
T→0

=
T
2

∫ eV
2

− eV2

dω

2π
ln

(
1 +
N (ω)

D(ω)

)
. (77)

where the functions are N (ω) and D(ω) are

N (ω) = −
(
4 (Γ2L + Γ2R) 2 + ω2

)
3 + e−4iλR

(
eiλR

(
4 (Γ2L − Γ2R) 2 + ω2

)
+16Γ2Le

iλLΓ2R

)
2
(
e2iλR

(
ω2 + 4Γ2

2Le
2iλL

)
+ 8Γ2LΓ2Re

i(λL+λR) + 4Γ2
2R

)
,

D(ω) =
(

4 (Γ2L + Γ2R)
2

+ ω2
)3

. (78)

In in the linear response regime, we arrive at the following generating function

lnχ

M

∣∣∣∣∣
eV→0

= ln


(

Γ2Le
iλL + Γ2Re

−iλR
)(

(Γ2L − Γ2R)2 + 4ei(λL−ΛR)Γ2LΓ2R

)
(Γ2L + Γ2R)3

 , (79)

where Γ2α = πρFJ
2
2α and M = T V/2π = T V e2/h has the meaning of the number of incoming particles during the

waiting time.

The cumulants of the current fluctuations through the
left-lead junction are given by

Cn(0) = (−i)n 1

M

∂n

∂λnL
lnχ(λ)

∣∣∣
λL,R=0

, (80)

For the symmetric left-right lead couplings J2L = J2R,
the cumulants follow a peculiar universal pattern

{C1(0) · · ·C8(0)} =

{
3

2
,

1

4
, 0,−1

8
, 0,

1

4
, 0,−17

16

}
,

Cn(0) =
En−1(1)

2
for n ≥ 2, (81)

with En(x) being the Euler polynomial.

2. Corrections to FCS due to finite Kondo coupling J3 6= 0

In this subsection we consider effect of the Kondo cou-
pling and show that it’s contribution to FCS is higher

order in applied voltage bias eV . We first provide qual-
itative arguments based on the RG equations and then
corroborate our conclusions using the perturbative cal-
culation in J3. The perturbative RG analysis [46] shows
that J2 coupling is the leading relevant perturbation in
the model which flows to strong coupling and changes
the boundary conditions for the conduction electrons.
At the strong coupling fixed point, the Majorana oper-
ators ζj are effectively absorbed by the conduction elec-
trons in the leads - spin-up electrons absorb a Majo-
rana mode whereas spin-down electrons absorb a Dirac
fermion mode which leads to new boundary conditions:
Andreev BCs for spin up electrons and Normal BCs
(Kondo) for spin down electrons: A↑ ⊗ N↓. Next, we
rewrite the QD impurity spin in terms of the Majorana
operators ζj :

Si = −2iεijkSjSk = − i
2
εabcζjζk, (82)
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FIG. 7. Diagrammatic representation of the cumulant gener-
ating function up to the leading order corrections of the J3.
The solid lines describe the Majorana propagators, and the
dashed lines describe the propagators of the free electron in
the leads.

Thus, the Kondo Hamiltonian written in terms of the
new operators ζj reads

HK = − i
2

∑
αα′=L,R

J3,αα′

(
ζyζzsx,αα′(0)

+ζzζxsy,αα′(0) + ζxζysz,αα′(0)
)
. (83)

Since Majorana operators are now effectively absorbed
by the conduction electrons, the scaling dimension of the
Kondo term has changed. Indeed, the Kondo coupling
written in the new variables looks like four-fermion in-
teraction term. Therefore, the RG flow for the Kondo
coupling J3 at the strong coupling fixed point is given by

dJ3

dl
= −J3 (84)

and, thus, Kondo term becomes an irrelevant perturba-
tion. Therefore, the second-order in J3 contribution to
the shot noise (as well as other cumulants) is propor-
tional to (eV )2, and is vanishing in the linear response
regime. This conclusion is in complete agreement with
the previous results in Sec. IV where we showed that
the contribution to FCS of the Kondo term is propor-
tional to (eV )3. Following exactly the same procedure
as Sec. IV (refer to Eq. (52−56)), we now calculate the
leading order correction in J3-coupling to the generating
function:

lnχσ(λL, J3) ≈ lnχσ(λL, J3 = 0)−
∑
αα′

T J2
3αα′

2
ΞK̃αα′,λ.

(85)
The Feynman diagrams corresponding to the second-
order correction in J3 to the free energy are shown in
Fig. 7. Following the procedure outlined in Sec. IV and
Appendix B, we first expand the CGF in powers of eV
and calculate the lowest non-vanishing contribution. Af-
ter some algebra, one finds that the leading order correc-

tion to the CGF is proportional to (eV )3:

ΞK̃LR,λ = −5(eV )3ρ2
F

12π3Γ2
2

e−2iλL cos2 λL +O(eV 4), (86)

ΞK̃RL,λ =
(eV )3ρ2

F

12π3Γ2
2

e2iλL cos2 λL +O(eV 4), (87)

ΞK̃LL,λ = − (eV )3ρ2
F

12π3Γ2
2

cos(2λL) cos2 λL +O(eV 4), (88)

ΞK̃RR,λ = − (eV )3ρ2
F

12π3Γ2
2

cos(2λL) cos2 λL +O(eV 4). (89)

Here ρF is the electron density of state at the Fermi
level in the leads, and the coupling Γ2 is defined as
Γ2

2 = πJ2
2ρF (we consider J2L = J2R = J2).

At the end of the day, we find that our prediction re-
garding the universal FCS of current fluctuations is not
modified in the linear response regime since the contri-
bution of the terms proportional to J3 is higher-order in
voltage and, thus, can be neglected. Indeed, this uni-
versal sequence is completely determined by the proper-
ties of the fixed point itself rather than the fluctuations
around it. This is to be contrasted with the Kondo fixed
point where the shot noise and higher order cumulants
are proportional to (eV )3 [94] and, thus, depend on the
details of irrelevant perturbations around the strong cou-
pling fixed point.

B. FCS away from particle hole symmetric point:
slave-boson mean field theory

In this section, we provide a different perspective
on the problem and consider current fluctuations in
QD-TSC system away from the particle-hole symmet-
ric point. In the limit of single-electron occupancy
{Γ, κ} � |εd| � U , one can study the problem, de-
fined by the Hamiltonian (67), using a slave boson mean
field (SBMF) approximation originally developed for an
infinite-U Anderson model [95, 96]. This approach allows
one to eliminate double occupancy in the QD and signif-
icantly simplify the problem. For the sake of complete-
ness, we outline here main steps of SBMF approach. We
refer a reader to Ref. 46 for more details of SBMF calcu-
lation in the presence of MZM. We first rewrite fermion
operators in QD in terms of the auxiliary boson b and
fermion fσ operators, i.e. dσ → fσb

†. This procedure
requires to introduce a constraint b†b +

∑
σ f
†
σfσ = 1

on the Hilbert space. After the transformation, effective
Hamiltonian becomes

HSBMF = HLeads +
∑
σ

εdf
†
σfσ + iκγ1(f↑b

† + f†↑b)

+
∑

α=L,R

∑
σ

tα(ψ†σ,α(0)fσb
† + h.c.) + iδγ1γ2 (90)

where the lead Hamiltonian HLeads is unchanged. Next,
we apply mean field approximation and replace the
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FIG. 8. The cumulants Cn(0) for n = 1, 2, 3, 4 as a function κ and δ. Here εd/Γ = −10.0, ΓL = ΓR, eV/Γ = 0.001, and
Λ/Γ = 30.0.

bosonic operator b and the Lagrangian multiplier η en-
forcing the constraint by their mean-field expectation val-
ues. We choose 〈b〉 = 〈b†〉 = b to be a real positive num-
ber. The mean field parameter b and η can be determined
self-consistently by minimizing the free energy [46]:

b2 +
∑
σ

〈f†σfσ〉 = 1, (91)

2bη + t
∑

α=L,R

∑
σ

(〈f†σψσ,α(0)〉+ c.c.)

+iκ
〈
γ1(f†↑ + f↑)

〉
= 0. (92)

Here, we assume the eV � max {TK , κ} and thus neglect
the dependence on voltage bias eV in the SMBF calcu-
lations, see also discussion in Ref. [97]. Above equations
determine thermodynamics of the system, and we are
now ready to compute transport properties. Once the
mean field values of the auxiliary parameters are deter-
mined in SBMF approximation, spin-up and spin-down
channels become decoupled. Thus, effectively the prob-
lem reduces to the previous model - spin-up channel is
coupled to a MZM whereas the spin-down channel is not.
The chemical potential and couplings are renormalized:

εd → ε̃d = εd + η, tα → t̃α = btα, Γα → Γ̃α = b2Γα, and
κ→ κ̃ = bκ.

Using the results of Sec.III, it is rather straightforward
to obtain the CGF at small voltage bias eV → 0 in this
case

lnχKM

M

∣∣∣∣∣
eV→0

= ln

(
Γ̃Le

iλL + Γ̃Re
−iλR

Γ̃L + Γ̃R

)

+ ln

(
1 +

4Γ̃LΓ̃R

ε̃2d + (Γ̃L + Γ̃R)2
(ei(λL−λR) − 1)

)
.(93)

Here the first and second terms correspond to the spin-
up and spin-down channels, respectively. As discussed
below, the renormalized QD energy ε̃d is close to the
Fermi level, i.e. ε̃d → 0, for a large parameter range
{κ,Γ} < |εd| (so-called universal limit). Thus, in the
case of symmetric right-left lead couplings ΓR = ΓL, the
second term in Eq. (93) is simply given by i(λL − λR)
and, therefore, does not contribute beyond the first cu-
mulant. Thus, the shot noise as well as other higher order
cumulants are once again given by the universal pattern:

{C1(0) · · ·C8(0)} =

{
3

2
,

1

4
, 0,−1

8
, 0,

1

4
, 0,−17

16

}
,

Cn(0) =
En−1(1)

2
for n > 1. (94)

with En(x) being the Euler polynomial. Note that this
result agrees perfectly with the FCS calculation at the
particle-hole symmetric point, cf. Eq. (81). One may
wonder here whether fluctuation corrections around the
mean field solution modify the universal pattern pre-
dicted for FCS of current fluctuations. This is an impor-
tant question which is outside the scope of this paper but
it is certainly encouraging that the SBMF theory agrees
well with the exact solution obtained at the particle-hole
symmetric point.

C. Results and Discussion

The SBMF solution discussed above allows one to an-
alyze different perturbations in more details. We begin
with the case of zero degeneracy splitting δ = 0 and
study the dependence of the cumulants on the MZM cou-
pling κ. In the linear response regime, the dependence
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of the cumulants on κ can be obtained numerically and
is shown in Fig. 6. A recent study based on SBMF
approach [46] shows that there is a crossover between
Kondo- and Majorana-dominated regimes as a function
of the MZM coupling κ. For κ � κc ≡

√
TK/Γ|εd|, the

mean field solution is determined by the Kondo temper-
ature TK :

Γ̃ ≡ Γb2 = TK ≡ Λ exp(−π|εd|/2Γ) (95)

and the renormalized energy level is ε̃d ≡ |εd + η| ∼ Γb4.
Here Λ is the bandwidth and Γ = ΓR+ΓL . Since b� 1,

the renormalized energy ε̃d is small ε̃d � Γ̃ [46]. Thus,
the cumulants at exactly zero frequency and ΓR = ΓL
are given by Eq.(94). At finite temperature, there will
be corrections to the universal values which are governed
by Kondo temperature TK . In the case of intermedi-
ate MZM coupling κ � κc, the parameter b ∼ κ/|εd|
is determined by the Majorana coupling. Therefore, the
finite-temperature corrections to the universal values of
the cumulants are determined by the Majorana coupling
rather than the Kondo temperature.

Next we consider the effect of a finite energy splitting
δ 6= 0 and voltage bias on our prediction, which is impor-
tant for the experimental detection in realistic settings.
The cumulants Cn(0) for n = 1, 2, 3, 4 as a function κ
and δ are shown in Fig. 8, where we focus on the limit
|εd| � {Γ, κ}. One can see that in order to resolve the
universal quantized values, one has to adjust the voltage
bias in the following range min{κ2/Γ,Γb2} � eV � δ

where b =
√
TK/Γ for κ � κc and b = κ/|εd| for

κc � κ � |εd|. The plot of the cumulant power spectra
as a function of the splitting δ and Majorana coupling κ
is shown in Fig. 8. One can notice that the width of the
plateau around the quantized values gradually shrinks
with increasing δ.

VI. CONCLUSIONS

In this paper, we study the full counting statistics of
current fluctuations in a QD device with a side-coupled
TSC, see Fig.1. Two normal-metal leads, coupled to a
QD, are also introduced in order to detect electric cur-
rent fluctuations. Using Keldysh path-integral approach,
we compute the cumulant generating function for the QD
with MZM coupling in this two-lead structure. We first
consider a noninteracting spinless system, and find that
for the symmetric left-right lead couplings ΓL = ΓR, the
zero-frequency cumulants exhibit a universal pattern de-
scribed by a series of numbers generated by the Euler
polynomial. We show that the cumulants depend only
on one dimensionless parameter ΓL/ΓR, and are indepen-
dent of other microscopic parameters of the QD (i.e. QD
energy level and QD-MZM coupling). We then consider
another realistic setup - a spinful QD coupled to a topo-
logical superconductor and show that our prediction for
the universal pattern in FCS of current fluctuations holds
there as well. We consider effect of Kondo couplings in
the QD as well as other irrelevant perutbations and show
that their contribution to the FCS is higher-order in ap-
plied voltage bias, and, as such, can be neglected in the
linear response regime. Our results provide a complete
tool set for detecting Majorana modes in tunneling trans-
port measurements which goes far beyond the zero-bias
tunneling conductance paradigm.
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Appendix A: Derivation of the coefficients in CGF Eq. (37)

In this Appendix, we provide details of the calculations of FCS for non-interacting case. To evaluate the generating
function, we first define

K(λL, λR) = det
[
I4×4 − Q̆0,dd

∑
α

(∑
i

M i
T,α ⊗ γi

)†
Q̆0,α

(∑
i

M i
T,α ⊗ γi

)]
. (A1)

We consider a symmetric source-drain bias (µL = eV/2 and µR = −eV/2), and insert Eq. (19), (22), and (27), (28)
into K(λL, λR), and obtain

K(λL = 0, λR = 0) = 1 + (ΓL + ΓR)2
(

[GR0,d̄d]
2 + (ΓL + ΓR)2[FR0,dd]

4 − 2[FR0,dd]
2
(
− 1 + (ΓL + ΓR)2GR0,dd̄G

R
0,d̄d

)
+[GR0,dd̄]

2
(
1 + (ΓL + ΓR)2[GR0,d̄d]

2
))

(A2)

and

K(λL, λR) = K(0, 0)− C1nL(1− nL)− C2nR(1− nR) + B1nL(1− nR) + B2nR(1− nL)

+FnLnR(1− nL)(1− nR) + JnLnR(nL − nR), (A3)
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where

C1 = 4e−i(λL+λR)ΓLΓR

(
4ΓLΓRe

i(λL−λR)(eiλL − eiλR)2
(
[FR0,dd]

2 −GR0,dd̄G
R
0,d̄d

)2 − (1− ei(λL+λR))2[FR0,dd]
2
)
, (A4)

C2 = 4e−i(λL+λR)ΓLΓR

(
4ΓLΓRe

−i(λL−λR)(eiλL − eiλR)2
(
[FR0,dd]

2 −GR0,dd̄G
R
0,d̄d

)2 − (1− ei(λL+λR))2[FR0,dd]
2
)
, (A5)

B1 = 4e−2iλL

(
−2eiλL

(
eiλL − eiλR

) (
[FR0,dd]

2 −GR0,dd̄G
R
0,d̄d

)2

Γ3
LΓR + e2iλL

(
− 1 + e2iλR

)
[FR0,dd]

2Γ2
R

−eiλL
(
eiλL − eiλR

)
ΓLΓR

(
[GR0,dd̄]

2 + [GR0,d̄d]
2 + 2

(
[FR0,dd]

2 −GR0,dd̄G
R
0,d̄d

)2

Γ2
R

)
+Γ2

L

(
−
(
−1 + e2iλL

)
[FR0,dd]

2 + 4eiλR
(
−eiλL + eiλR

) (
[FR0,dd]

2 −GR0,dd̄G
R
0,d̄d

)2

Γ2
R

))
, (A6)

B2 = 4e−2iλL
(
− 2eiλL

(
eiλL − eiλR

) (
[FR0,dd]

2 −GR0,dd̄G
R
0,d̄d

)2

Γ3
LΓR

+e2iλL
(
−1 + e2iλR

)
[FR0,dd]

2Γ2
R − eiλL

(
eiλL − eiλR

)
ΓLΓR

(
[GR0,dd̄]

2 + [GR0,d̄d]
2 + 2

(
[FR0,dd]

2GR0,dd̄G
R
0,d̄d

)2

Γ2
R

)
+Γ2

L

(
−
(
−1 + e2iλL

)
[FR0,dd]

2 + 4eiλR
(
−eiλL + eiλR

) (
[FR0,dd]

2 −GR0,dd̄G
R
0,d̄d

)2

Γ2
R

))
, (A7)

F = 256Γ2
LΓ2

R

(
[FR0,dd]

2 −GR0,dd̄G
R
0,d̄d

)2(
sin

λL − λR
2

)4

, (A8)

J = 128iΓ2
LΓ2

R

(
[FR0,dd]

2 −GR0,dd̄G
R
0,d̄d

)2(
sin

λL − λR
2

)2

sin(λL − λR). (A9)

where the Green functions, i.e. G0,d̄d,G0,dd̄, and F0,dd, are defined in Eq. (23) (24) (25) of the main text.

Appendix B: Calculation of the CGF corrections due to weak interaction effects

1. Derivation of the interaction correction formula

For the convenience of the calculation, we consider the polarization function ( see Fig. 4 ) in the Schwinger -
Keldysh space (without Larkin-Ovchinnikov rotation)

Π̂P(Ω) =

(
Π̂T

P(Ω) Π̂<
P (Ω)

Π̂>
P (Ω) Π̂T̃

P(Ω)

)

= i

∫ ∞
−∞

dω1

2π

(
GT
dd̄

(ω1 + Ω)GT
dd̄

(ω1) + FTdd(ω1 + Ω)FT
d̄d̄

(ω1) G<
dd̄

(ω1 + Ω)G>
dd̄

(ω1) + F<dd(ω1 + Ω)F>
d̄d̄

(ω1)

G>
dd̄

(ω1 + Ω)G<
dd̄

(ω1) + F>dd(ω1 + Ω)F<
d̄d̄

(ω1) GT̃
dd̄

(ω1 + Ω)GT̃
dd̄

(ω1) + F T̃dd(ω1 + Ω)F T̃
d̄d̄

(ω1)

)
.(B1)

Here the subscript P indicates the particle channel, its particle-hole conjugation (i.e. the hole channel) Π̂H(Ω) has
the same form but with replacement Gdd̄ → Gd̄d and Fdd → Fd̄d̄. The respective self-energy for the spin-up channel
can be extracted from

ΣλL
dd̄,↑(ω) = iU2

∫
dΩ

2π

(
GT
dd̄,↑(ω − Ω)Π̂T

P,↓(Ω) G<
dd̄,↑(ω − Ω)Π̂>

P,↓(Ω)

G>
dd̄,↑(ω − Ω)Π̂<

P,↓(Ω) GT̃
dd̄,↑(ω − Ω)Π̂T̃

P,↓(Ω)

)
(B2)

ΣλL
d̄d̄,↑(ω) = iU2

∫
dΩ

2π

FTd̄d̄,↑(ω − Ω)Π̂T
P,↓(Ω) F<

d̄d̄,↑(ω − Ω)Π̂>
P,↓(Ω)

F>
d̄d̄,↑(ω − Ω)Π̂<

P,↓(Ω) F T̃
d̄d̄,↑(ω − Ω)Π̂, ↓

T̃

P(Ω)

 (B3)

ΣλLdd,↑(ω) = iU2

∫
dΩ

2π

(
FTdd,↑(ω − Ω)Π̂T

H,↓(Ω) F<dd,↑(ω − Ω)Π̂>
H,↓(Ω)

F>dd,↑(ω − Ω)Π̂<
H,↓(Ω) F T̃dd,↑(ω − Ω)Π̂T̃

H,↓(Ω)

)
(B4)

ΣλL
d̄d,↑(ω) = iU2

∫
dΩ

2π

(
GT
d̄d,↑(ω − Ω)Π̂T

H,↓(Ω) G<
d̄d,↑(ω − Ω)Π̂>

H,↓(Ω)

G>
d̄d,↑(ω − Ω)Π̂<

H,↓(Ω) GT̃
d̄d,↑(ω − Ω)Π̂T̃

H,↓(Ω)

)
(B5)
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where the spin-up channel couples to MZM and the spin-down channel does not. We want to calculate the following
function, i.e. interaction correction in Eq.(55)∫ ∞
−∞

dω

2π
Tr
(
Q̆λL

dd,↑,U=0(ω)ΣλL

↑ (ω)
)

=

∫ ∞
−∞

dω

2π
Tr
(

Gdd̄,↑(ω)ΣλL

dd̄,↑(ω) + Fdd,↑(ω)ΣλL

d̄d̄,↑(ω) + Fd̄d̄,↑(ω)ΣλL

dd,↑(ω) + Gd̄d,↑(ω)ΣλL

d̄d,↑(ω)
)

=

∫ ∞
−∞

dω

2π
Tr
(
γclGdd̄,↑(ω)γclΣλL

dd̄,↑(ω) + γclFdd,↑(ω)γclΣλL

d̄d̄,↑(ω) + γclFd̄d̄,↑(ω)γclΣλL

dd,↑(ω) + γclGd̄d,↑(ω)γclΣλL

d̄d,↑(ω)
)

(B6)

where γcl = I2×2. Note that the matrix Green functions and self-energies (which are from Eq.(55)) have the form(
GR GK

GK̃ GA

)
(i.e. with the L-O rotation). Therefore, the function above just corresponds to the classical-classical part

(K̃) of a certain polarization function, and we define a function ΞK̃λ,σ for interaction correction

U2 ΞK̃λ,↑ =

∫ ∞
−∞

dω

2π
Tr
(
γclGdd̄,↑(ω)γclΣλL

dd̄,↑(ω)+γclFdd,↑(ω)γclΣλL

d̄d̄,↑(ω)+γclFd̄d̄,↑(ω)γclΣλL

dd,↑(ω)+γclGd̄d,↑(ω)γclΣλL

d̄d,↑(ω)
)
,

(B7)
which can be described by the diagrams shown in Fig. 5. The function Ξλ in the Schwinger - Keldysh space (without
L-O rotation) has the simple form

Ξλ =

(
ΞTλ Ξ<λ
Ξ>λ ΞT̃λ

)
, (B8)

where

ΞTλ =

∫ ∞
−∞

dΩ

2π

(
Π̂T
P,↑(−Ω)Π̂T

P,↓(Ω) + Π̂T
H,↑(−Ω)Π̂T

H,↓(Ω)
)
, (B9)

ΞT̃λ =

∫ ∞
−∞

dΩ

2π

(
Π̂T̃
P,↑(−Ω)Π̂T̃

P,↓(Ω) + Π̂T̃
H,↑(−Ω)Π̂T̃

H,↓(Ω)
)
, (B10)

Ξ<λ =

∫ ∞
−∞

dΩ

2π

(
Π̂<
P,↑(−Ω)Π̂<

P,↓(Ω) + Π̂<
H,↑(−Ω)Π̂<

H,↓(Ω)
)
, (B11)

Ξ>λ =

∫ ∞
−∞

dΩ

2π

(
Π̂>
P,↑(−Ω)Π̂>

P,↓(Ω) + Π̂>
H,↑(−Ω)Π̂>

H,↓(Ω)
)
, (B12)

and

ΞK̃λ =
(

ΞTλ + ΞT̃λ − Ξ<λ − Ξ>λ

)
/2. (B13)

Finally, we reach the formula in Eq.(56) of the main text.

2. Expansion of ΞK̃λ

Now, let’s look at how the correction ΞK̃λ changes as
a function of source-drain bias eV for T = 0. For small
eV , we can expand the function

ΞK̃λ (eV ) = ΞK̃λ (0) + (eV )Ξ
K̃,(1)
λ (0) + (eV )2Ξ

K̃,(2)
λ (0)

+(eV )3Ξ
K̃,(3)
λ (0) + · · · (B14)

Due to the causality reasons (this is still true in the pres-
ence of artificial counting field), the polarization func-
tion at T = 0 and eV = 0 has the following properties:
Π̂<
P,σ(Ω) ∝ n(Ω) and Π̂>

P,σ(Ω) ∝ 1− n(Ω), where n(Ω) =

1 − θ(Ω) is the Fermi-distribution function at T = 0.

Then, we find Ξ<λ (eV = 0) = 0 and Ξ>λ (eV = 0) = 0
for T = 0. Although the time-ordered and anti-time-

ordered parts of the Green functions (GT,T̃
dd̄

,GT,T̃
d̄d

, FT,T̃dd ,

and FT,T̃
d̄d̄

) depends on the counting field λL, their de-
pendence on λL enters in a way such that all the λL
dependent terms have a pre-factor nL(1−nR). At T = 0
and eV = 0, nL(1 − nR) vanishes and time-order and
anti-time-order Green functions are independent of λL.
Therefore, we have ΞTλ (eV = 0) = ΞTλ=0(eV = 0) and

ΞT̃λ (eV = 0) = ΞT̃λ=0(eV = 0). Combining those rela-

tions with ΞK̃λ=0(eV = 0) = ΞTλ=0(eV = 0) + ΞT̃λ=0(eV =
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0) = 0, we can show

ΞK̃λ (0) = 0. (B15)

This is intuitively obvious since there should be no cur-
rent in equilibrium (i.e. eV → 0).

To consider higher order terms, we expand the inte-
grand of the polarization function integral in order of
eV . These integrands have the following form

Fα(ω1,Ω|nL(ω1 + Ω), nL(ω1), nR(ω1 + Ω), nR(ω1))

= Gα
dd̄

(ω1 + Ω)Gα
dd̄

(ω1) + Fαdd(ω1 + Ω)Fα
d̄d̄

(ω1),(B16)

where α = T, T̃ , <,>, The bias eV only enters through
the Fermi distribution function nL and nR: nL(ω) =
1 − θ(ω − eV/2), nR(ω) = 1 − θ(ω + eV/2). Due to the
properties of Heaviside theta function, by expansion and
resummation, one can prove the following relation: If
one has a series of functions ni(ω) = 1− θ(ω − ωi) with
i = 1, 2, · · · , k and ω1 6 ω2 6 · · · 6 ωk, then

F (n1, n2, · · · , nk) =

F (0, 0, · · · , 0) +
[
F (1, 1, · · · , 1)− F (0, 1, · · · , 1)

]
n1 + · · ·

+
[
F (

i︷ ︸︸ ︷
0, · · · , 0, 1, · · · , 1)− F (

i+1︷ ︸︸ ︷
0, · · · , 0, 1, · · · , 1)

]
ni + · · ·

+
[
F (0, · · · , 0, 1)− F (0, 0, · · · , 0)

]
nk. (B17)

Note that this formula depends on the order of the ar-
guments in the Fermi distribution function. We then de-
fine the polarization function for different regions where

the function F has different forms. First of all, we con-
sider Ω ≥ eV such that −eV/2 − Ω < eV/2 − Ω ≤
−eV/2 < eV/2, and define

Π̂α
P1,σ(Ω, eV ) = i

∫ ∞
−∞

dω1

2π
Fα1 (ω1,Ω), (B18)

and Fα1 (ω1,Ω|nR(ω1 +Ω), nL(ω1 +Ω), nR(ω1), nL(ω1)) =
Fα(ω1,Ω|nL(ω1+Ω), nL(ω1), nR(ω1+Ω), nR(ω1)), where
Fα is the same function as the one defined in Eq. (B16),
but the arguments in the function Fα1 have the different
order. Secondly, we consider 0 < Ω < eV such that
−eV/2− Ω < −eV/2 < eV/2− Ω < eV/2, and define

Π̂α
P2,σ(Ω, eV ) = i

∫ ∞
−∞

dω1

2π
Fα2 (ω1,Ω), (B19)

where Fα2 (ω1,Ω|nR(ω1 + Ω), nR(ω1), nL(ω1 +
Ω), nL(ω1)) = Fα(ω1,Ω|nL(ω1 + Ω), nL(ω1), nR(ω1 +
Ω), nR(ω1)). Thirdly, we consider −eV < Ω < 0 such
that −eV/2 < −eV/2 − Ω < eV/2 < eV/2 − Ω, and
define

Π̂α
P3,σ(Ω, eV ) = i

∫ ∞
−∞

dω1

2π
Fα3 (ω1,Ω), (B20)

where Fα3 (ω1,Ω|nR(ω1), nR(ω1 + Ω), nL(ω1), nL(ω1 +
Ω)) = Fα(ω1,Ω|nL(ω1+Ω), nL(ω1), nR(ω1+Ω), nR(ω1)).
Finally, we consider Ω < −eV such that −eV/2 <
eV/2 < −eV/2− Ω < eV/2− Ω, and define

Π̂α
P4,σ(Ω, eV ) = i

∫ ∞
−∞

dω1

2π
Fα4 (ω1,Ω), (B21)

where Fα4 (ω1,Ω|nR(ω1), nL(ω1), nR(ω1 + Ω), nL(ω1 +
Ω)) = Fα(ω1,Ω|nL(ω1+Ω), nL(ω1), nR(ω1+Ω), nR(ω1)).

Following the definition above, the correction ΞK̃λ can be written as (here we consider εd = 0)

Ξαλ = Ξαλ,A + Ξαλ,B , (B22)

where

Ξαλ,A = 2

∫ ∞
0

dΩ

2π
Π̂α
P1,↑(Ω)Π̂P4,↓(−Ω)α + 2

∫ 0

−∞

dΩ

2π
Π̂α
P4,↑(Ω)Π̂α

P1,↓(−Ω)

Ξαλ,B = 2

∫ eV

0

dΩ

2π

[
Π̂α
P2,↑(Ω)Π̂P3,↓(−Ω)α − Π̂α

P1,↑(Ω)Π̂P4,↓(−Ω)α
]

+2

∫ 0

−eV

dΩ

2π

[
Π̂α
P3,↑(Ω)Π̂P2,↓(−Ω)α − Π̂α

P4,↑(Ω)Π̂P1,↓(−Ω)α
]

= Ξαλ,A + Ξαλ,B . (B23)

Here the factor 2 comes from the summation of both particle and hole part (note that Π̂P,σ = Π̂H,σ for εd = 0).
The whole correction includes two parts: the first part Ξαλ,A and a leftover part Ξαλ,B . To check this formalism, we

considered the case without MZM coupling and reproduce the result shown in Eq. (21) of Gogolin and Komnik [68].
Note, in order to obtain the right result, we need to take appropriate order of limits. If we want to reproduce the
κ = 0 result, we have to take the limit κ → 0 before taking the ω → 0 limit for linear response. Then, we focus on
the case with MZM coupling (where if we want to consider zero Majorana splitting, i.e. δ = 0, we have to take the
limit δ → 0 first before taking the ω → 0 limit for linear response).
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3. Derivation of the first part of interaction correction Ξ
K̃,(2)
λ,A

First of all, we focus on the first part Ξαλ,A, and expand it in order of eV . We also notice that after the transformation

of Eq. (B17), the integrands of the polarization functions are linear in the Fermi distribution function. Therefore,
the expansion can be obtained analytically by expanding the Fermi distribution function

n(ω ± eV

2
) = n(ω)− δ(ω)

(
± eV

2

)
− 1

2!
δ
′
(ω)
(
± eV

2

)2

− 1

3!
δ
′′
(ω)
(
± eV

2

)3

+ · · · (B24)

After expanding the Fermi distribution function in order of eV , we further expand the polarization function

Π̂P (Ω, eV ) = Π̂P (Ω, 0) + (eV )Π̂
(1)
P (Ω, 0) + (eV )2Π̂

(2)
P (Ω, 0) + (eV )3Π̂

(3)
P (Ω, 0) + · · · (B25)

After the integration by part for the Dirac-delta function, the linear terms can be obtained

Π̂
α,(1)
P (Ω > 0, 0) =

i

4π

[
− Fα1 (−Ω,Ω|1, 1, 1, 1) + 2Fα1 (−Ω,Ω|0, 1, 1, 1)− Fα1 (−Ω,Ω|0, 0, 1, 1)

−Fα1 (0,Ω|0, 0, 1, 1) + 2Fα1 (0,Ω|0, 0, 0, 1)− Fα1 (0,Ω|0, 0, 0, 0)
]
, (B26)

Π̂
α,(1)
P (Ω < 0, 0) =

i

4π

[
− Fα4 (0,Ω|1, 1, 1, 1) + 2Fα4 (0,Ω|0, 1, 1, 1)− Fα4 (0,Ω|0, 0, 1, 1)

−Fα4 (−Ω,Ω|0, 0, 1, 1) + 2Fα4 (−Ω,Ω|0, 0, 0, 1)− Fα4 (−Ω,Ω|0, 0, 0, 0)
]
, (B27)

where α = T, T̃ , <,>. After simplification of those expression above, we find for both spin-channels at T = 0

Π̂
T,(1)
P (Ω, 0) = 0, Π̂

T̃ ,(1)
P (Ω, 0) = 0, Π̂

<,(1)
P (Ω, 0) ∼ θ(−Ω), Π̂

>,(1)
P (Ω, 0) ∼ θ(Ω). (B28)

We then obtain the linear correction to the generating function

Ξ
K̃,(1)
λ (0) = 2

∫ ∞
−∞

dΩ

2π

[
Π̂T
P,↑(−Ω, 0)Π̂

T,(1)
P,↓ (Ω, 0) + Π̂T̃

P,↑(−Ω, 0)Π̂
T̃ ,(1)
P,↓ (Ω, 0)

+Π̂<
P,↑(−Ω, 0)Π̂

<,(1)
P,↓ (Ω, 0) + Π̂>

P,↑(−Ω, 0)Π̂
>,(1)
P,↓ (Ω, 0)

+Π̂
T,(1)
P,↑ (−Ω, 0)Π̂T

P,↓(Ω, 0) + Π̂
T̃ ,(1)
P,↑ (−Ω, 0)Π̂T̃

P,↓(Ω, 0)

+Π̂
<,(1)
P,↑ (−Ω, 0)Π̂<

P,↓(Ω, 0) + Π̂
>,(1)
P,↑ (−Ω, 0)Π̂>

P,↓(Ω, 0)
]

= 0. (B29)

Similarly, the quadratic terms can be written as

Π̂
α,(2)
P (Ω > 0, 0) =

i

16π

[
∂ω1

Fα1 (ω1 = −Ω,Ω|1, 1, 1, 1)− ∂ω1
Fα1 (ω1 = −Ω,Ω|0, 0, 1, 1)

+∂ω1
Fα1 (ω1 = 0,Ω|0, 0, 1, 1)− ∂ω1

Fα1 (ω1 = 0,Ω|0, 0, 0, 0)
]
, (B30)

Π̂
α,(2)
P (Ω < 0, 0) =

i

16π

[
∂ω1F

α
4 (ω1 = −Ω,Ω|1, 1, 1, 1)− ∂ω1F

α
4 (ω1 = −Ω,Ω|0, 0, 1, 1)

+∂ω1F
α
4 (ω1 = 0,Ω|0, 0, 1, 1)− ∂ω1F

α
4 (ω1 = 0,Ω|0, 0, 0, 0)

]
. (B31)

The quadratic term of the generating function is therefore

Ξ
K̃,(2)
λ (0) = 2

∫ ∞
−∞

dΩ

2π

[
Π̂T
P,↑(−Ω, 0)Π̂

T,(2)
P,↓ (Ω, 0) + Π̂T̃

P,↑(−Ω, 0)Π̂
T̃ ,(2)
P,↓ (Ω, 0)

+Π̂
T,(2)
P,↑ (−Ω, 0)Π̂T

P,↓(Ω, 0) + Π̂
T̃ ,(2)
P,↑ (−Ω, 0)Π̂T̃

P,↓(Ω, 0)
]
, (B32)

where we use the relations Π̂>(−Ω, 0)Π̂>(Ω, 0) = 0, Π̂<(−Ω, 0)Π̂<(Ω, 0) = 0, Π̂(1),T (−Ω, 0) = 0, and Π̂(1),T̃ (−Ω, 0) =
0. After the simplification of polarization functions , we find that the time-ordered and anti-time ordered parts
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Π̂
α,(2)
P (Ω, 0) (for α = T, T̃ ) do not depend on the counting field λL. Then, we conclude that the quadratic term

Ξ
K̃,(2)
λ (0) is the same as the term with λL = 0, which is zero due to causality and unitarity

Ξ
K̃,(2)
λ (0) = 0. (B33)

The cubic term of the polarization function corresponds to the integral of δ
′′
, and thus reads

Π̂
α,(3)
P (Ω > 0, 0) =

i

3!232π

[
− ∂2

ω1
Fα1 (−Ω,Ω|1, 1, 1, 1) + 2∂2

ω1
Fα1 (−Ω,Ω|0, 1, 1, 1)− ∂2

ω1
Fα1 (−Ω,Ω|0, 0, 1, 1)

−∂2
ω1
Fα1 (0,Ω|0, 0, 1, 1) + 2∂2

ω1
Fα1 (0,Ω|0, 0, 1, 1)− ∂2

ω1
Fα1 (0,Ω|0, 0, 0, 0)

]
, (B34)

Π̂
α,(3)
P (Ω < 0, 0) =

i

3!232π

[
− ∂2

ω1
Fα4 (0,Ω|1, 1, 1, 1) + 2∂2

ω1
Fα4 (0,Ω|0, 1, 1, 1)− ∂2

ω1
Fα4 (0,Ω|0, 0, 1, 1)

−∂2
ω1
Fα4 (−Ω,Ω|0, 0, 1, 1) + 2∂2

ω1
Fα4 (−Ω,Ω|0, 0, 1, 1)− ∂2

ω1
Fα4 (−Ω,Ω|0, 0, 0, 0)

]
. (B35)

We evaluate and simplify the function above for εd = 0 and ΓL = ΓR = Γ/2, and obtain

Π̂
T,(3)
P,↑ (Ω, 0) =

−i(eiλL − 1)
[
(eiλL − 1)Γ2 − 2(eiλL + 3)κ2

]
48π(eiλL + 1)2Γ2κ2

1

(|Ω|+ iΓ)2
, (B36)

Π̂
T̃ ,(3)
P,↑ (Ω, 0) =

−i(eiλL − 1)
[
(eiλL − 1)Γ2 − 2(eiλL + 3)κ2

]
48π(eiλL + 1)2Γ2κ2

1

(|Ω| − iΓ)2
, (B37)

Π̂
T,(3)
P,↓ (Ω, 0) =

−i(e−iλL − 1)

12πΓ2

1

(|Ω|+ iΓ)2
, (B38)

Π̂
T̃ ,(3)
P,↓ (Ω, 0) =

−i(e−iλL − 1)

12πΓ2

1

(|Ω| − iΓ)2
. (B39)

The cubic term of the generating function reads

Ξ
K̃,(3)
λ,A (0) = 2

∫ ∞
−∞

dΩ

2π

[
Π̂T
P,↑(−Ω, 0)Π̂

T,(3)
P,↓ (Ω, 0) + Π̂T̃

P,↑(−Ω, 0)Π̂
T̃ ,(3)
P,↓ (Ω, 0)

+Π̂
T,(3)
P,↑ (−Ω, 0)Π̂T

P,↓(Ω, 0) + Π̂
T̃ ,(3)
P,↑ (−Ω, 0)Π̂T̃

P,↓(Ω, 0)
]

=
−i(e−iλL − 1)

6πΓ2

∫ ∞
−∞

dΩ

2π

[
Π̂T
P,↑(−Ω, 0)

1

(|Ω|+ iΓ)2
+ Π̂T̃

P,↑(−Ω, 0)
1

(|Ω| − iΓ)2

]
+
−i(eiλL − 1)

[
(eiλL − 1)Γ2 − 2(eiλL + 3)κ2

]
24π(eiλL + 1)2Γ2κ2

×
∫ ∞
−∞

dΩ

2π

[
Π̂T
P,↓(−Ω, 0)

1

(|Ω|+ iΓ)2
+ Π̂T̃

P,↓(−Ω, 0)
1

(|Ω| − iΓ)2

]
=

(e−iλL − 1)

6πΓ4
O(κ̃) + (2− π2

4
)
(eiλL − 1)

[
(eiλL − 1)− 2(eiλL + 3)κ̃2

]
12π3(eiλL + 1)2Γ4κ̃2

, (B40)

where

O(κ̃) =

∫ ∞
−∞

dΩ̃

2π

[
Π̂T
P,↑(−Ω̃, 0)

−i
(|Ω̃|+ i)2

+ Π̂T̃
P,↑(−Ω̃, 0)

−i
(|Ω̃| − i)2

]
,with Ω̃ =

Ω

Γ
, κ̃ =

κ

Γ
. (B41)

This correction is nonzero for λL 6= 0.
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4. Derivation of the second part of interaction correction Ξ
K̃,(2)
λ,B

Now, let’s consider the leftover terms

2

∫ eV

0

dΩ

2π

[
Π̂α
P2,↑(Ω, eV )Π̂α

P3,↓(−Ω, eV )− Π̂α
P1,↑(Ω, eV )Π̂α

P4,↓(−Ω, eV )
]

+2

∫ 0

−eV

dΩ

2π

[
Π̂α
P3,↑(Ω, eV )Π̂α

P2,↓(−Ω, eV )− Π̂α
P4,↑(Ω, eV )Π̂α

P1,↓(−Ω, eV )
]

= 4

∫ eV

0

dΩ

2π

[
Π̂α
P2,↑(Ω, eV )Π̂α

P3,↓(−Ω, eV )− Π̂α
P1,↑(Ω, eV )Π̂α

P4,↓(−Ω, eV )
]
. (B42)

We want to expand the following integral in order of eV∫ eV

0

dΩ

2π
Π̂α
Pi,↑(Ω, eV )Π̂α

Pj,↓(−Ω, eV )

=
1

2π
(eV )Π̂α

Pi,↑(0
+, eV )Π̂α

Pj,↓(0
−, eV )

+
1

2π
(eV )2 1

2!

(∂Π̂α
Pi,↑(0

+, eV )

∂Ω
Π̂α
Pj,↓(0

−, eV )− Π̂α
Pi,↑(0

+, eV )
∂Π̂α

Pj,↓(0
−, eV )

∂Ω

)
+

1

2π
(eV )3 1

3!

∂2[Π̂α
Pi,↑(Ω, eV )Π̂α

Pj,↓(−Ω, eV )]

∂Ω2

∣∣∣∣∣
Ω→0+

+ · · · (B43)

In the next step, we will expand the functions Π̂α
Pi,σ(0±, eV ) ∂ΩΠ̂α

Pi,σ(0±, eV ) and ∂2
ΩΠ̂α

Pi,σ(0±, eV ) in the order of

eV . The way to expand Π̂α
Pi,σ(0±, eV ) can be found in appendix B 3. For the ∂ΩΠ̂α

Pi,σ(0±, eV ), for example, we notice
that

∂Π̂α
P2(Ω, eV )

∂Ω
=

i

2π

∂

∂Ω

∫ ∞
−∞

Fα2 (ω1,Ω|nR(ω1 + Ω), nR(ω1), nL(ω1 + Ω), nL(ω1))dω1

=
i

2π

∫ ∞
−∞

{
∂ΩF2(ω1,Ω|0, 0, 0, 0) +

[
∂ΩF2(ω1,Ω|1, 1, 1, 1)− ∂ΩF2(ω1,Ω|0, 1, 1, 1)

]
nR(ω1 + Ω)

+
[
∂ΩF2(ω1,Ω|0, 1, 1, 1)− ∂ΩF2(ω1,Ω|0, 0, 1, 1)

]
nR(ω1)

+
[
∂ΩF2(ω1,Ω|0, 0, 1, 1)− ∂ΩF2(ω1,Ω|0, 0, 0, 1)

]
nL(ω1 + Ω)

+
[
∂ΩF2(ω1,Ω|0, 0, 0, 1)− ∂ΩF2(ω1,Ω|0, 0, 0, 0)

]
nL(ω1)

}
dω1

− i

2π

[
F2(−Ω− eV

2
,Ω|1, 1, 1, 1)− F2(−Ω− eV

2
,Ω|0, 1, 1, 1)

]
− i

2π

[
F2(−Ω +

eV

2
,Ω|0, 0, 1, 1)− F2(−Ω +

eV

2
,Ω|0, 0, 01, 1)

]
. (B44)

Similarly, for ∂ΩΠ̂α
Pj(Ω, eV ) with j = 1, 3, 4. Then, to expand the whole function, we just need to expand the Fermi

distribution function and the function F2 in order of eV , which is very straightforward. For the second derivative
∂2

ΩΠ̂α
Pi,σ(0±, eV ), we can apply the same strategy. Combing all the terms together, we recover Eq. (62).
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