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Abstract

We calculate the energy deposition by very short laser pulses in SiO2 (α-quartz) with a view

to establishing systematics for predicting damage and nanoparticle production. The theoretical

framework is time-dependent density functional theory, implemented by the real-time method in

a multiscale representation. For the most realistic simulations we employ a meta-GGA Kohn-

Sham potential similar to that of Becke and Johnson. We find that the deposited energy in the

medium can be accurately modeled as a function of the local electromagnetic pulse fluence. The

energy-deposition function can in turn be quite well fitted to the strong-field Keldysh formula for a

range of intensities from below the melting threshold to well beyond the ablation threshold. We find

reasonable agreement between the damage threshold and the energy required to melt the substrate.

Also, the depth of the ablated crater at higher energies is fairly well reproduced assuming that the

material is ablated with the energy exceeds that required to convert it to an atomic fluid. However,

the calculated ablation threshold is higher than experiment, suggesting a nonthermal mechanism

for the surface ablation.
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Introduction. Ablation of surfaces by intense femtosecond laser pulses is potentially a

useful tool for material machining as well as preparation of nanosized particles1–13,23. It is

important to have good models of the energy deposition and the ablation process to set up

the pulse protocols for the purpose in mind. However, it is not easy to model the laser-target

interaction because one has to deal with the quantum physics at the atomic scale together

with the pulse propagation at a mesoscopic scale.

There is a large literature on the modeling of the laser-target interaction dynamics2,11,14–20,

as reviewed in Ref.21 as well as Ref.13. The fundamental physics is the excitation of particle-

hole pairs, often parameterized by Keldysh’s approximate formulas22,23. The particle and

hole carriers affect the electromagnetic response of the insulator, screening the field when

their density becomes large. Here the effects are often parameterized by hybrid dielectric

functions containing contributions intrinsic to the insulator and plasma contributions from

the excited electrons. Both aspects of this electron dynamics are included in the time-

dependent density functional theory (TDDFT), which is fully quantum mechanical and

doesn’t require any specific assumptions about the dynamics. Employing a carefully chosen

approximate functional, it gives a good compromise between ab initio theory and computa-

tional feasibility. In this work we shall apply the dynamic equations of TDDFT to calculate

the propagation of short, intense electromagnetic pulses upon insulators and compute the

energy transfer to the medium.

In recent work, TDDFT with strong fields has been applied to condensed media in several

contexts: coherent phonon generation24,25 and high-field interactions with diamond, silicon

and quartz26–31. In this work, we treat the energy transfer to a crystalline SiO2, α-quartz,

a material of technological importance. From the transferred energy, we conduct a first

systematic investigation of laser-damage and laser-ablation phenomena in the first-principles

level. The calculations require high-performance computers, so our goal is to also analyze

the results in terms of simpler models that can be easily applied. We only discuss the

deposited energy of the pulse, which is the most important determinant of the subsequent

atomic dynamics. Since TDDFT employing practically usable functionals does not have any

relaxation processes, it is limited to short-time dynamics. The main limitations to consider

are the electron-electron kinetic relaxation time τee, the full electron thermalization time,

and the electron-phonon equilibration time. The latter two processes have time scale much

larger than 100 fs, which is well beyond the time domain considered here. Estimates of τee
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range from 1 fs to 100 fs11,12,32,33. Fortunately for the modeling by TDDFT, the response of

insulators to high fields is rather insensitive to the kinetic equilibration34. We note that on

very long time scales another mechanism that is missing from TDDFT becomes important,

namely an avalanche of electrons in the free carrier bands17.

Computational method. The theory and its implementation used in the present calculation

has been described elsewhere28, so we describe it briefly. The laser pulse that enters from

the vacuum and attenuates in the medium varies on a scale of micrometers, while the

electron dynamics takes place in a sub-nanometer scale. To overcome this conflicting spatial

scales, we have developed a multiscale implementation introducing two coordinate systems:

macroscopic coordinate X for the laser pulse propagation and the microscopic coordinate

~r for local electron dynamics. The laser pulse is described by the vector potential ~AX(t)

which satisfies
1

c2
∂2 ~AX(t)

∂t2
−
∂2 ~AX(t)

∂X2
= −

4πe

c
~JX(t). (1)

At each point X , we consider lattice-periodic electron dynamics driven by the electric field

EX(t) = −(1/c)(dAX(t)/dt). They are described by the electron orbitals ψi,X(~r, t) which

satisfy the time-dependent Kohn-Sham equation,

ih̄
∂

∂t
ψi,X(~r, t) =

{

1

2m

(

−ih̄~∇r +
e

c
~AX(t)

)2

− eφX(~r, t) + µxc,X(~r, t)

}

ψi,X(~r, t), (2)

where the potential, φX(~r, t), which includes Hartree and ionic contributions, and the

exchange-correlation potential, µxc,X(~r, t), are periodic in the lattice. The electric current

JX(t) is provided from the electron orbitals as

JX(t) = −
e

Ω

∫

Ω
d~r

∑

i

1

2m

[

ψ∗

i,X

(

~p +
e

c
AX

)

ψi,X + c.c.
]

+ JPS, (3)

where Ω is a volume of the unit cell, JPS is a current contribution coming from the pseud-

potential. We solve Eqs. (1) - (3) simultaneously as an initial value problem where the

incident laser pulse is prepared in a vacuum region in front of the surface, while all Kohn-

Sham orbitals are set to their ground state.

For a quantitative description of the laser-damage process, theoretical inputs should meet

the following demands. First it is important that the band gap is described reasonably,

since the number of photons required to excite electrons across the band gap is a crucially

parameter for electronic excitations. It is also important that the dielectric function at

around the laser frequency, 1.55 eV in most measurements, should be described reasonably.
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In this work we use a modified Becke-Johnson exchange potential (mBJ)35 as given by

Ref.36 (Eq. 2-4) with a LDA correlation potential37 in the adiabatic approximation. We

show in Fig. 1 real and imaginary parts of the dielectric function calculated by the real-time

method28, the same computational method as that will be used for nonlinear dynamics. The

calculated indirect band gap with this potential is 1.3 eV lower than the experimental gap

of 8.9 eV, but more relevant to electromagnetic interactions is the optical gap. This is seen

to be 9 eV from the absorptive part of the dielectric function shown in Fig. 1, compared to

the experimental value of 9− 10 eV. The real part of the dielectric function at around 1.55

eV is also described reasonably. We note that there is no long-range exchange-correlation

contribution included in the vector potential.

We compute the energy transfer to the medium from the electromagnetic side, since the

calculation from the Kohn-Sham densities would require an explicit energy density functional

for the mBJ potential. The energy transfer rate W is given by

W = −~E · ~J, (4)

where ~E is the electric field associated with the pulse. In comparing different pulse lengths

and intensities, we find the most convenient measure of the pulse strength is its fluence F

given by FX = (c/4π)
∫

dtx̂ · ~E × ~B, where X is the depth from the surface. With these

definitions, the deposited energy density is given by Ex(X) = −
∫

dtWX(t) = −
d
dX
FX .

Our multiscale calculation uses a one-dimensional grid with spacing of 250 au for prop-

agation of laser electromagnetic fields. At each grid point, electron dynamics is calculated

using atomic-scale rectangular unit cell containing 6 Silicon atoms and 12 Oxygen atoms

which are discretized into Cartesian grids of 20× 36× 50. The dynamics of the 96 valence

electrons is treated explicitly; the effects of the core electrons are taken into account by

pseudopotentials39. Both electromagnetic fields and electrons are evolved with a common

time step of 0.02 au.

The laser pulse in the vacuum is described by a gauge field ~AX(t) of the form

~AX(t) = ẑA0 sin
2(πtX/Tp) cos(ωtX) (5)

in the domain 0 < tX < Tp and zero outside. Here ω is the photon’s angular frequency,

tX = t − X/c describes the space-time dependence of the field, and Tp controls the pulse

length. It is related to the usual measure τp (full width at half-maximum intensity) by
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FIG. 1. Real (a) and imaginary (b) parts of the dielectric function of SiO2 in the direction parallel

to c-axis.
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FIG. 2. Deposited energy Ex at the surface of α-quartz is shown, as a function of the fluence and

the peak intensity of the pulse. Red circles show results using mBJ potential, while green squares

show results using LDA functional30.

τp = 0.364Tp. Most of the results below were calculated for an average photon energy of

h̄ω = 1.55 eV and the pulse length of τp = 7 fs. We follow the pulse from the time its front

reaches the surface (2̄10) until it has propagated several µm into the material.

Results.The main quantity we can calculate is the deposited energy Ex as a function of

penetration depth x. The range of interest extends roughly from the energy required to

melt the solid to the energy required to vaporize it. The first transition requires about

0.5 eV/atom in quartz, starting from room temperature. The second transition is not as

well defined; we can estimate it as 6 eV/atom either as the heat of formation or from the

“atomic-liquid” transition reported in Ref.40.

A sampling of the results for the multiscale calculation is shown in Figs. 2-7. In Fig.

2, we show the deposited energy density at the surface for a range of laser fluences. The

threshold for achieving melting is ∼ 1.5 J/cm2, while the vaporization threshold as we have

defined it is at ∼ 2.5 J/cm2. Thus, for applications that physically transform the material,
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FIG. 3. Deposited energy Ex in α-quartz as a function of distance below the surface. The curves

show the results for intensities I0 = 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 5.0, 10.0, 20.0 × 1014 W/cm2from

lowest to highest graph. The pulse length is τp = 7 fs for all intensities.

we need to only consider fluences of the order 1.5 J/cm2and and higher. The Figure shows

the deposited energies of lower strength pulses as well, which may be of interest to analyze

the parametric dependence of the energy deposition on the characteristics of the pulse. The

Figure also shows the results for the LDA functional. One sees that lower-fluence pulses

are more highly absorbed in LDA . This is to be expected due to the small band gap. The

difference becomes small and even changes sign at high fluence. A possible explanation

might be an increased screening for the LDA, as was discussed for the reflectivity.

The dependence of Ex on the depth in the medium is shown in Fig. 3 for a range of pulse

intensities, all with pulse length of τp = 7 fs. One sees that the melted region extends to a

depth of 0.5-0.6 µm for the stronger pulses. The depth permitting ablation only extends to

0.13 µm for a pulse of 10 times the threshold intensity.

Fig. 4 compares the pulse profile for the I0 = 1015 W/cm2pulse at two points, in the first

cell and in the 80th cell at a depth of 1.06 µm. At this depth, the intensity has decreased
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FIG. 4. Pulse shapes at the first cell and at the 80th cell located at a depth of 1 µm are shown,

for an incident pulse having intensity I0 = 1015 W/cm2and length τp = 7 fs.

below the melting threshold. One sees that the shapes are quite similar. The main difference

is that the attenuation is stronger in the later arriving cycles of the pulse train. This is to

be expected; the early part of the pulse creates particle-hole pairs which can then modify

the propagation of the rest of the pulse.

Approximate description. The mild changes in pulse shape suggest that the energy depo-

sition might be modeled simply as a function of the strength of the pulse as it is attenuated

in the medium. To see how well this works, we extract the local fluence of the pulses at

the different cells in our simulation. The absorbed energy versus the local fluence for the

range of pulses shown in Fig. 3 is plotted in Fig. 5. We see that they fall on a common

line, extending down to a fluence of 1 J/cm2, well below the damage threshold. Thus, the

change in pulse shapes can indeed be neglected, at least for tp = 7 fs pulses. Remarkably, the

dependence can be very well fitted following Keldysh’s strong-field ionization rate equation23

(Eq. (9)). An approximate formula expressing the energy deposition in terms of the fluence
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FIG. 5. Absorbed energy is plotted as a function of local fluence of pulses. Black solid curve shows

a fit by Keldysh’s formula.

is

Ex = AF 5/4 exp(−B/F 1/2). (6)

The two-parameter fit (A = 70 eV-(J/cm2)−5/4,B= 4.0(J/cm2)1/2) is shown as the solid

black line in the Figure. One sees that the fit is valid from fluences from well below the

thresholds to the highest calculated. The fit value B = 4.0 can be compared to the value

obtained from a reduction of Keldysh’s exponential factor,

B = πτ 1/2p m1/2ε1/4∆3/2/2, (7)

in atomic units. Taking the reduced mass m = 1/2, the direct band gap ∆ = 9 eV, and

the dielectric constant ε = 2.3, Eq. (7) gives B = 4.2, a difference of only 5% from the fit

value. The multiphoton process is only relevant at much lower fluences that are needed for

structural changes.

Experimental. While it is not entirely clear how energy deposition profiles link to struc-

tural changes in the surface region, we can still compare the theory and experiment assum-
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FIG. 6. Threshold damage and threshold ablation fluences in SiO2 are shown as a function of pulse

width τp. Red and green circles are the calculated fluences to deposit an energy Ex = 0.5 eV/atom

corresponding to a damage threshold and an energy Ex = 6 eV/atom corresponding to an ablation

threshold in α-quartz, respectively. Experimental data from Ref.11 for fused silica is shown with

green and red squares; data from Ref.23 is shown with red triangle.

ing that the melting and vaporization transitions control the surface damage and ablation.

There are many measurements of thresholds for these quantities, but only a few for pulse

as short as τp ∼ 20 fs or below4,6,11,23. Fig. 6 shows a comparison with the data of Refs.11,23

for fused silica. For the damage threshold shown by red symbols, we compare with calcu-

lated fluences to achieve Ex = 0.5 eV/atom at the surface. We see that the experimental

threshold is in qualitative correspondence with that value. The ablation threshold, shown

by green symbols, is much lower than predicted by the Ex = 6 eV/atom criterion based on

the formation of an atomic liquid40. This may indicate an importance of nonthermal effects

in the ablation process by femtosecond laser pulses41,42. In fact, the reported thresholds for

damage and ablation at τp = 7 fs in Ref.11 are nearly identical. This may be seen by the

sharp edges of the ablation craters formed at the shortest pulse lengths. Perhaps one needs
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the fluence of the original pulse. Experiment is shown in blue squares, from Ref.12. The red circles

show the depth at which the calculated energy deposition falls below Ex = 6 eV/atom.

to consider a different mechanism for ablation at threshold, which may involve the electric

fields produced when excited electrons are ejected from the surface. It should also be kept

in mind that damage threshold depends on structures of the material; a lower threshold is

reported for fused silica than crystalline SiO2 using much longer pulses43.

As a final theory-experiment comparison, we examine the depth of the ablated craters as

a function of the fluence of the pulses. The available experimental data is shown in Fig. 7.

For the theory, we report the depth at which the deposited energy falls to Ex = 6 eV/atom,

as in Fig. 6. The agreement between theory and experiment is quite satisfactory. The theory

reproduces the very sharp rise above threshold as well as the saturation at high fluences.

Conclusion. We have shown that it is feasible to calculate the interaction of intense fem-

tosecond laser pulses with insulating media by the TDDFT, avoiding the detailed modeling

of plasma formation and dynamics required in earlier theoretical treatments. The threshold

for damage is accounted for by the calculated energy deposition needed to melt the quartz
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substrate. On the other hand, the calculated threshold for ablation via a transformation

to an atomic liquid is 50% higher than the low values observed in two experiments. This

may suggest the significance of nonthermal mechanism in the ablation process. It may

also indicate that another mechanism is responsible for the threshold behavior, such as an

electric-field assisted ionic dissociation. However, we find good agreement with experiment

on the depth of the ablation taking the energy deposition criterion to estimate the depth. It

may well be that modeling energy deposition in wide-gap insulators could be greatly simpli-

fied once one has a suitable set of benchmark multiscale calculations based on the TDDFT.

Since those calculations require much computer time, it would be useful to compare them

to existing models2,11,13–21 to validate assumptions in the models and to facilitate improved

modeling of the phenomena.
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