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Using a combination of first-principles calculations and experimental transport measurements,
we study the electronic and magnetic structure of the unfilled skutterudite FeSb3. We employ
the hybrid functional approach for exchange-correlation. The ground state is determined to be
anti-ferromagnetic with an atomic magnetic moment of 1.6 µB/Fe. The Néel temperature TN is
estimated at 6 K, in agreement with experiments which found a paramagnetic state down to 10 K.
The ground state is semiconducting, with a small electronic gap of 33 meV, also consistent with
previous experiments on films. Charge carrier concentrations are estimated from Hall resistance
measurements. The Seebeck coefficient is measured and mapped using a scanning probe at room
temperature that yields an average value of 38.6 µV K−1, slightly lower than the theoretical result.
The theoretical conductivity is analyzed as a function of temperature and concentration of charge
carriers.

I. INTRODUCTION

In the context of energy and environmental issues that
have become critical in the XXIst century, there has been
recent increase of interest in thermoelectric (TE) mate-
rials, which have the property to convert waste heat into
electricity. The efficiency of a thermoelectric device is
quantified by the adimensional thermoelectric figure of
merit,

ZT =
S2σ

κe + κl
T (1)

where S is the Seebeck coefficient, σ is the electrical con-
ductivity, κe is the electronic contribution to the thermal
conductivity and κl is the lattice contribution to the ther-
mal conductivity. T is the absolute temperature. Op-
timizing the figure of merit consists in a) increasing the
Seebeck coefficient, which is the ratio between the electric
field and the temperature gradient across the compound,
b) increasing the electrical conductivity in order to lower
the ohmic loss in electrical energy, while c) reducing the
thermal conductivity, which is detrimental to the temper-
ature gradient. However, all these properties are usually
linked to the electronic properties, and in most cases, it
is difficult to optimize all three of them simultaneously.

With this in mind, interest started to gather in the
early 1990s around skutterudite compounds, both filled
and unfilled. These have been intensively studied over
the past two decades, as they display large Seebeck coef-

FIG. 1. (Color Online) Unfilled skutterudite FeSb3 featuring
the corner sharing FeSb6 octahedra.1

ficients, and low thermal conductivities which are mainly
attributed to phonon scattering by the filler atoms. The
most heavily studied compound of this familly is CoSb3,
which can be filled as RCo4Sb12 with monovalent ions
(e.g., R = Na+ for example), divalent ions or even triva-
lent ions. The CoSb3 does not accomodate high degrees
of filling, but this limitation can be overcome by sub-
stituting the Co atoms by Fe atoms. The full substitu-
tion results in unfilled FeSb3, our compound of interest.
While FeSb3 has not yet been synthesized in bulk, thick
films have been grown and studied2–4. Experiments sug-
gest a semiconducting compound with a small gap, which
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is paramagnetic at least down to 10 K. There are some
variations in the lattice constant between studies, and
also carrier densities as we will show below.

Theoretical studies of bulk FeSb3 have been performed
by R̊asander et al, using DFT in the generalized gradi-
ent approximation, with the projector augmented wave
method5. They find a ferromagnetic ground state and
also study phonons and filler atoms. These results have
been confirmed by Xing et al6, finding a ferromagnetic
ground state with LSDA and PBE functionals. These
results will serve as a basis for comparison with our the-
oretical study of bulk FeSb3 and the study of the ther-
moelectric properties.

Additional DFT studies, along with synthesis and
characterization of FeSb3 films, were performed by Daniel
et al4. Their results are quite different from previous
studies. For instance, their films have metallic conduc-
tivities, high carrier concentrations, and all of their (non-
magnetic) DFT calculations result in metallic ground
states, in contrast to the “half-semiconducting” ground
state of R̊asander et al5.

In the present paper, we clarify the properties of un-
filled FeSb3. The structural, magnetic, electronic and
thermoelectric properties will be explored, using a com-
bination of first-principles calculations, Hall effect mea-
surements and Seebeck local probe experiments.

II. METHODS

A. Computational details

We compute the structural, electronic and magnetic
properties of FeSb3 within the density functional the-
ory (DFT). We use the CRYSTAL code7, which im-
plements the Linear Combination of Atomic Orbitals
(LCAO) method and the Kohn-Sham ansatz8 to describe
the electronic system of bulk FeSb3 with a local gaussian
basis set. Different basis sets for Fe and Sb atoms were
tested, and we selected the ones from Ref. 9 and 10. The
exchange-correlation energy is modeled within the local
density approximation, with the LDA11 and the B1WC
hybrid functional12, which uses the Becke GGA func-
tional for the exchange energy13, and the Wu-Cohen14

GGA functional for the correlation energy. With this
hybrid functional, we aim to correctly reproduce the
magnetic ground state and confirm the presence of a
band gap in FeSb3, by taking 16% of the Hartree-Fock
(HF) exchange energy E0

x. We also relax the structure
with the B3LYP15 hybrid functional, which takes 20%
of the real exchange energy, for comparison. The B1WC
was designed to reproduce correctly properties of oxides,
specifically perovskite BaTiO3 and PbTiO3. Until then,
semilocal functionals and standard hybrids could not pre-
dict both the electronic and structural properties of these
compounds. The performance of hybrid functionals has
been reviewed in Ref. 16 and 17, concluding that it is an
ideal formalism to get past the typical shortcomings of

semilocal functionals. Numerous papers have been pub-
lished, based on the B1WC functional in several fields
of physics, such has ferroelectrics12,18, ferromagnets19,
bidimensional electron gas at oxide interfaces20 or ther-
moeletrics21,22. The B1WC hybrid has demonstrated its
ability to model magnetic systems, and has the advan-
tage of being parameter free. This motivated the use
of the B1WC functional for predicting the properties of
FeSb3.

Three different phases are computed: a non spin-
polarized phase (NM), a ferromagnetic phase between
first-neighbor Fe atoms (FM), and an antiferromagnetic
phase between first-neighbor Fe atoms (AFM-G). For the
AFM-G phase, the space group has been changed from
cubic Im3 to cubic P23 to allow the antiferromagnetic or-
der in our simulation. The FM phase was also computed
in the P23 space group as a test. A 8x8x8 Monkhorst-
Pack23 k-mesh is used for the relaxation of the structure
from the room temperature experimental3 cell parame-
ters (aexp = 9.1763 Å) and atomic positions (table I).
The total energy criterion for the self-consistent resolu-
tion of the Kohn-Sham problem is fixed to 10−8 Hartree.

For each magnetic arrangement, we relax the atomic
structure of our compound, and we compare at the to-
tal energy for the different phases. As the calculations
performed in the P23 space group have twice as many
atoms as the primitive cells (2×16 atoms), we report the
total energy per formula unit. The results in terms of
total energy are summarized in table I.

After relaxing the geometry, the electronic density is
calculated on a 16x16x16 Monkhorst-Pack k-mesh. The
energy criterion is kept the same. The transport and
thermoelectric properties are calculated from the ground
state electronic band structure within the Boltzmann
transport theory, using the constant relaxation time ap-
proximation. The electronic band structure is computed
non self-consistently with a dense uniform 53x53x53 k-
mesh with 6579 k-points in the irreducible Brillouin zone.
With the resulting first-principles band energies, εik, we
use the BoltzTraP code24 to estimate the Seebeck coef-
ficient and the electrical conductivity. After performing
the Fourier expansion of the band structure, the conduc-
tivity tensor σαβ(i,k) is calculated as

σαβ(i,k) = e2τi,kvα(i,k)vβ(i,k) (2)

where e is the electronic charge, τi,k is the relaxation
time, which will be considered independent of i and k
from now on, and vα(i,k) is the α component of the
group velocity for an electron in band i. This quantity is
expressed as

vα(i,k) =
1

~
∂εi,k
∂kα

(3)

The spectral conductivity tensor σαβ can be written as
a function of energy:

σαβ(ε) =
1

8π3

∑
i,k

δ(ε− εi,k)σαβ(i,k) (4)
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In addition to the constant relaxation time approxima-
tion, an implicit approximation is the “rigid band ap-
proach”: we assume that the band structure does not
vary with temperature or doping. The spectral conduc-
tivity is then used to calculate the tensors of interest.

If an external electric field or a temperature gradient
is applied, we can calculate the transport properties re-
lated to the electrical current. The habitual conductivity
tensor is

σαβ(T, µ) =

∫
−∂f(T, µ)

∂ε
σαβ(ε)dε. (5)

We also define the following tensor:

ναβ(T, µ) =
1

eT

∫
−∂f(T, µ)

∂ε
σαβ(ε)[ε− µ]dε. (6)

Equation 6 is used to compute the Seebeck coefficient as:

Sij(T, µ) =
∑
α

(σ−1)αi(T, µ)ναj(T, µ). (7)

These tensors depend on the temperature T and the
chemical potential µ which determines the number of
charge carriers. In equations 5 and 6, f(T, µ) is the
Fermi-Dirac distribution. The Hall resistance tensor RH
can also be computed from BoltzTraP24.

Obtaining a good estimation of the relaxation time is
not an easy task considering our aforementioned approx-
imation. More details on the method to estimate τ are
given in section III. With this estimated relaxation time,
we analyze the behavior of the electrical conductivity σ,
as well as the power factor S2σ.

B. Experimental methods

The investigated samples are the same as in Ref. 2.
The Seebeck coefficient of a FeSb3 film with a thickness
of 1.5 µm was determined at room temperature using a
Seebeck Microprobe25,26. The spatial resolution of the
microprobe is of the order of tens of micrometers. This
microprobe technique underestimates the absolute value
of the Seebeck coefficient, with an error usually between
5-10%, depending on sample properties. The charge car-
rier density was determined from Hall effect measure-
ments in van der Pauw geometry27 using a cryogen-free
measurement system (Cryogenic Limited). Within the
parabolic band model, the charge carrier density n was
calculated from the Hall coefficient RH using nh = 1

(eRH) ,

where e is the electron charge.

III. RESULTS AND DISCUSSION

A. Structural properties and magnetism

Unfilled bulk FeSb3 consists of corner sharing anti-
mony octahedra coordinating iron, as shown in Figure 1,

which displays the conventional cell, in the space group
Im3, where the Fe and the Sb occupy respectively the 8c
( 1
4 , 1

4 , 1
4 ) and 24g (0, y, z) Wyckoff positions. The ex-

perimental cell parameter and atomic positions are given
in table I. When present, filler ions occupy the positions
(0, 0, 0) and ( 1

2 ,
1
2 ,

1
2 ), in other words, the filler ions can

occupy the empty space between the FeSb6 octahedra.

We observe that the non spin-polarized NM case yields
the highest total energy, whereas the spin-polarized
AFM-G case is the one yielding the lowest total energy,
with a significant difference of 480 meV/f.u. Moreover,
the difference in energy between the AFM-G case and
FM case is only 2 meV, which suggests an easy tran-
sition to a paramagnetic phase. This result is in good
agreement with the experimental observation of a para-
magnetic phase above 10 or 20 K in the case of thin
films2, but in disagreement with previous DFT studies
of R̊asander et al5. They report total energy differences
with respect to the non-magnetic case of −0.28 eV for
the FM case, and −0.13 eV for the AFM-G case. In their
case, the FM phase is the most stable, and the energy dif-
ference between the FM phase and the AFM-G phase is
0.15 eV, which is 75 times larger than our result with the
B1WC functional. Our results are in agreement with the
experimental picture provided by Möchel et al2, suggest-
ing that the hybrid functional B1WC provides a better
description of the electronic and magnetic structure of
FeSb3 than the GGA method. Results obtained with the
B3LYP functional are consistent with the B1WC, with
a larger energy gap between each magnetic phase. The
AFM-G phase remains the most stable one.

The relaxed cell parameter and ionic positions were
examined for each simulation. For B1WC, the AFM-G
phase yields the lowest difference in the cell parameters
and the ionic positions with respect to experimental data,
underestimating by 2 %. The PBE lattice constants in
Refs. 4 and 5 are larger and close to the experiments in
Ref. 4. The iron keep their initial positions, whereas the
antimony atoms move slightly along the y and z direc-
tions. The magnetic order has a perceptible effect on the
structure: the NM phase is the one yielding the highest
relative error on the cell parameter, around 3 %. The
differences between the FM and AFM-G are less notice-
able. With the B3LYP functional, the error on the cell
volume is decreased with respect to experimental data.

R̊asander et al5 reported the phonon dispersion curves
for the non-magnetic case, showing that the NM case
is structurally unstable, with imaginary phonon energies
over the whole 1st Brillouin zone. In Ref. 4, DFT cal-
culations were performed with the LDA, the PBE and
the PW91 functional, in the non spin-polarized case and
in the spin-polarized case as well. However, they fo-
cused on the non spin-polarized case, which is instable5,
and our hybrid functional results are in agreement with
this observation. In terms of lattice parameters, the NM
phase systematically underestimate the lattice parame-
ters. These results hightlight that the magnetic structure
is important in the case of FeSb3. Comparison with ex-
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Source Magn. a (Å) y z ∆E (meV)

Expt3 (300 K) 9.1763 0.3400 0.1618

Expt2 (300 K) 9.2384 0.3399 0.1573

Expt4 (300 K) 9.154 0.334 0.158

This B1WC NM 8.8958 0.3259 0.1602 0

FM 8.9788 0.3365 0.1585 -478

FM* 8.9696 0.3363 0.1584 -478

AFM-G* 8.9906 0.3369 0.1584 -480

This B3LYP NM 9.0641 0.3275 0.1574 0

FM 9.1571 0.3387 0.1560 -852

AFM-G* 9.1907 0.3398 0.1556 -910

PBE5 NM 9.153 0.327 0.160 0

FM 9.178 0.331 0.160 -280

AFM 9.166 0.331 0.159 -130

PBE4 NM 9.151 0.337 0.161 -

FM 9.167 0.337 0.161 -

PW914 NM 9.153 0.337 0.160 -

FM 9.174 0.341 0.160 -

LDA4 NM 8.947 0.337 0.160 -

FM 8.943 0.337 0.161 -

TABLE I. Experimental and optimized cell parameter, frac-
tional coordinates of Sb ions and total energies (per f.u.) of
relaxed FeSb3 for different magnetic phases. The NM phase
was chosen as the reference. The asterisk * refers to calcula-
tions performed within the P23 space group.

perimental data is also difficult, considering that FeSb3

has never been synthetized in bulk form.
The spin contributions to the magnetic moment are

reported in table II, for both functionals. The mag-
netic moments are localized in the iron 3d orbitals. With
B1WC, the ferromagnetic phase shows an effective mag-
netic moment per Fe lower than that in the antiferro-
magnetic phase by 0.31 µB with B1WC, and 0.41 µB
with B3LYP. These results are higher than what has
been observed experimentally with the effective param-
agnetic moments of 0.57(6) µB in thin films of FeSb3

2.
Sb remains spin-free in the AFM-G phase, but displays a
small spin in the FM phase with an effective moment of
−0.09 µB . The AFM-G magnetic moment relaxes to 1.60
µB/Fe. Isosurfaces of spin-density are plotted in figure 2
and display dz2 orbital shape, which is a clear indication
that crystal field effects due to the distorted octahedra
lift the degeneracy on the eg orbitals, where the dz2 hold
the spin.

We calculate the magnetic coupling constants between
first (J1) and second (J2) Fe neighbours (when possible
in the conventional cell), in the Heisenberg hamiltonian
model,

HHeisenberg = −
∑
i<j

Jij si.sj (8)

where i and j are labels on the iron. If we work at fixed

FIG. 2. (Color Online) Isosurface of spin-density of the AFM-
G magnetic phase, with B1WC. The Fe atoms carry the dz2

orbitals, oriented towards the center of the cube.28

M (µB) FM AFM-G*

B1WC Fe 1.29 1.60

Sb 0.10 0.00

B3LYP Fe 1.43 1.84

Sb 0.14 0.00

TABLE II. Optimized magnetic moment per atoms. The as-
terisk * refers to calculations performed within the P23 space
group.

AFM-G geometry, we find J1 = −3.37 meV, leading to an
estimate of the Néel temperature at TN = 109 K, which
is lower than the predicted value of 175 K by R̊asander et
al5, but still higher than the experimental TN ≈ 0 K. If
we add the interaction with second-neighbours (possible
in the AFM-G unit cell), we find J2 = 0.36 meV and
TN = 133 K, the same order of magnitude, showing that
second neighbours represent at most 20 % of the total
exchange strength.

If we properly take into account the relaxation of the
atomic structure of the FM phase, and restrict interac-
tions between first-neighbours, we find J1 = −0.17 meV
and TN = 6 K, now consistent with the experimental
data of Möchel et al2. This is in contrast with the result
from R̊asander et al5, who also takes into account struc-
tural relaxation. This has to be assigned to the different
Exc functional, as highlighted in the previous section,
both for the phase ordering and the energy difference.
Within B3LYP, the energy difference between the AFM-
G and the FM phases is higher, reaching 58 meV. In this
case, J1 = − 4.82 meV, leading to TN = 198 K, closer
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to Ref. 5, and failing to predict the paramagnetic phase
observed by Möchel et al2.

Summarizing, our results show that both xc function-
als and the relaxation of the crystal structure are crucial
to understand the magnetic interactions of FeSb3. Unfor-
tunately, the differences in final atomic positions between
the FM and AFM-G phases are probably too small to be
detected by XRD. The inclusion of a fraction of HF exact
exchange is essential to obtain the AFM-G ground state,
but too much (B3LYP) overstabilizes the AFM-G.

B. Electronic structure

As the AFM-G configuration yields the closest results
compared to experimental observation, we focus on this
magnetic order for the study of the electronic proper-
ties. The electronic band structure is plotted for high-
symmetry points in the Brillouin zone (Γ → X → M →
R→ Γ) in figure 3. The band structure presents a small
gap of 33 meV, which is close to the reported experimen-
tal value2 of 16.3 meV. In the FM phase, the band struc-
ture also displays a small direct band gap of 130 meV.
The GGA calculations of R̊asander et al produce a fer-
romagnetic ground state and a “quasi-half-metal”, where
one spin channel is dominant at the Fermi level5.

For the NM phase, DFT calculations from Ref. 4 pre-
dicted a fully metallic state for the non spin-polarized
configuration, as we do in the hybrid functional formal-
ism. R̊asander et al find the same metallic behavior but
further show the configuration to be dynamically unsta-
ble, which renders its use in Ref. 4 questionable. We
show below that all of the properties (magnetism, semi-
conducting behavior, and transport) can be explained
with the AFM-G model.

Our electron band structures are rather analogous to
calculations29 on CoSb3, where a single band is present
below the Fermi level. In our AFM-G band structure, be-
low the gap, a single band disperses strongly around the
Γ point, which results in a small density of states, until a
strong peak 0.5 eV below EF. A similar band structure
is obtained for the AFM-G phase with the B3LYP func-
tional. The band gap is much larger, equal to 140.8 meV,
far from the value calculated with the B1WC functional.
Additionally, the density of states has a peak lower in
energy, around −0.75 eV. The discrepancies between the
B1WC and the B3LYP show that exchange-correlation
effects have a non negligible impact on the properties of
FeSb3. There is a competition between the volume and
the exchange-correlation effects on the band gap, which
explains the decrease of the gap despite a smaller vol-
ume with the B1WC functional, which uses less HF ex-
change than B3LYP. The effect of HF exchange has been
investigated by computing self-consistenty the electronic
structure for the AFM-G and FM phase, at fixed opti-
mized B1WC geometry, by changing only the percentage
of HF exchange in the B1WC functional, keeping all the
other parameters the same. It is found that between 13

FIG. 3. (Color online) Electronic band structure for the AFM-
G phase. The dashed red line is the Fermi level. Empty bands
are in black dashed lines.

FIG. 4. The charge carrier concentration as function of tem-
perate in FeSb3.

and 18% of HF exchange, the stability of one phase versus
the other become ambiguous, which is consistent with the
paramagnetic phase observed by Möchel and coworkers2.

Our B1WC hybrid functional results are fully con-
sistent with experiments, and show that the exchange-
correlation effects are crucial to obtain the correct ground
state, magnetism, and electronic band gap. As the
B1WC predicts more accurately the band gap, the anal-
ysis of the transport properties will focus on the B1WC
band structure.

Slightly above the conduction band minimum, the
DOS increases, which suggests that the transport prop-
erties may be enhanced via n-type doping. This will be
analyzed in the following section.

The charge carrier density obtained from the Hall ef-
fect measurement on a 1.5 µm thick FeSb3 sample is
shown in fig. 4. The noise at close to room tempera-
ture is larger, and attributed partly to the silver paint
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FIG. 5. (Color Online) Carrier densities as computed from
the density of states, and the relative error with respect to
the 1/eRH formula, at 300 K, where RH is computed from
Boltzmann theory. The horizontal line in the top plot indi-
cates nh = 1022 cm−3.

contacts. The charge carrier density is essentially con-
stant at 4(1) × 1019 cm−3 below 180 K, then increases
gradually and reaches 3(1) × 1020 cm−3 at room tem-
perature. This sudden increase of charge carrier density
might be associated with thermal excitation of defects.
The sign of the Hall voltage indicates p-type conductiv-
ity. We will now quantify the relation between 1/RH and
the true carrier density.

The comparison of transport data with experimental
data is complicated by the diversity of the samples and
reported carrier densities. The formula nh = 1

(eRH) , often

used to extract carrier densities, is derived from a free-
electron model and is not valid in case of non parabolic
bands. In figure 3, doping values above 1020 cm−3 shift
the chemical potential into a region where the band
structure is no longer parabolic. In Figure 5 we com-
pare the value of RH derived from our Boltzmann trans-
port theory calculation with the value obtained from the
aforementioned formula. The errors are around 1% for
nh ≈ 1019 cm−3 from 0 K to 300 K but grow rapidly
for larger concentrations. The range where the error is
less than 20%, only goes up to 1.2× 1021 cm−3 hole den-
sity. The invalidity of the parabolic band model for the
higher carrier densities implies an overestimation of the
hole density in Ref. 4, where the combination of a metal-
lic NM band structure and large apparent carrier density
(1022cm−3) leads to calculated S in agreement with ex-
periment. In our AFM-G semiconducting case, we will
show below agreement for the Seebeck coefficient with
lower effective carrier densities.

FIG. 6. Seebeck coefficient, electrical conductivity over τ and
power factor (with τ = 5.5 × 10−15 s) of AFM-G FeSb3 with
respect to the chemical potential, at 300 K. The electronic
density of states computed with the B1WC functional is also
displayed for direct comparison.

C. Thermoelectric properties

The thermoelectric and transport properties are com-
puted from the B1WC electronic band structure within
the Boltzmann transport theory. We plot S, σ/τ and the
Power Factor S2σ as a function of the chemical potential,
at 300 K (figure 6), and with respect to temperature for
fixed charge carrier concentrations (figure 7).

From these plots, we can see that a light n-type dop-
ing enhances the thermopower. However, the large peak
around 0.5 eV below the Fermi level shows that p-type
doping will maximize S2σ (12 µWK−2cm−1) with a con-
centration of charge carriers of about 8.4 × 1020cm−3.
This corresponds to a strong doping. For n-type doping,
the maximum power factor (5 µWK−2cm−1) at 300 K
is obtained for doping of 1.5× 1020 cm−3. One may ex-
pect the n-type to be the easier option to reach the high
power factor, but a similar value can be reached for a
p-type doping of 2.3 × 1020 cm−3. The peak of power
factor in the hole carrier region is due to an increase of
the Seebeck coefficient, related to the presence of new
states below the topmost valence band.

Figure 7 shows the temperature dependence of the See-
beck coefficient (top). The black, red and green curves
are obtained by fixing the hole density respectively to
4.0 × 1019 cm−3, 1.0 × 1021 cm−3 and 4.0 × 1021 cm−3
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FIG. 7. (Color Online) Seebeck coefficient and electrical con-
ductivity evolution of AFM-G FeSb3 with respect to temper-
ature, for fixed hole concentrations and fixed lifetime. Exper-
imental measurements from this work and Ref. 2 and 4 are
given for comparison.

to get the same order of magnitude as the carrier density
extracted from figure 4. The Seebeck coefficient has a
monotonic growth. Experimental results from Ref. 4 and
our room temperature measurement are also displayed in
figure 7 for comparison. Our calculated values underesti-
mate the Seebeck coefficient in comparison to these data,
but the qualitative behavior is consistent. Daniel et al4

reported a high value of hole density, above 1022 cm−3

for the corresponding sample.

The Seebeck coefficient, as measured with the Seebeck
microprobe on an area of 4x3 mm2 of the thin film sam-
ple, is displayed in figure 8. The distribution in Seebeck
coefficient is relatively uniform and narrow with a half
width of 1.5 µV K−1, and a mean value of 38.6 µV K−1,
which is consistent with the predicted value at 300 K
for nh = 4.0 × 1019 cm−3 given the expected underes-
timation with the Seebeck local probe technique. This
suggests that the effective carrier concentration near the
surface is lower than in the bulk, but may also come from
the shortcomings of DFT, or the relaxation time approx-
imation.

In order to have a quantitative appreciation of the elec-
trical resistivity ρ, it is necessary to calculate the relax-
ation time τ for different temperatures and carrier densi-
ties. A common way to estimate τ is to perform the ra-
tio between computed σ/τ and the experimental value,
at the corresponding doping level. However, this task

Seebeck coe�cient (µV/K)

34 36 38 40 42 44
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FIG. 8. (Color Online) The Seebeck coefficient map (up),
where x and y are coordinates, and its distribution (down) on
a representative area of a FeSb3 film at room temperature.

is tricky because the available experimental data on σ
is scarce, moreover, the associated carrier densities are
quite different. The reader shall keep in mind that these
values are only used to simplify the comparison between
our results and the available experimental data. The
resistivity can be compared with the measurements of
Möchel et al2 and those of Daniel et al4. The black, red
and green curves are obtained by fixing the hole concen-
tration respectively, in the same fashion as we did for the
Seebeck coefficient. The relaxation time for the black
curve was estimated by fitting the resistivity to the value
reported by Möchel et al2 whereas the red and green
curves were fitted. Our calculated values of ρ all increase
with the temperature, in contrast to the experiment of
Möchel et al. There is a competition between the increase
in charge carriers (figure 4) which lowers ρ, and the in-
crease of the scattering rate at high temperature, which
increases ρ. In the specific case of FeSb3, the first effect is
dominant, and our results are in agreement with the ex-
periment: increasing the carrier density leads to a much
lower resistivity. Yet, these results have been obtained for
a constant relaxation time. A more realistic prediction,
more accurate with the results of Möchel et al, may be
obtained by taking into account the effect of scattering at
high temperature, which tend to decrease the relaxation
time, competiting with the increase of charge carriers, re-
sulting in a less drastic drop of resistivity. Recent exper-
imental studies4 have highlighted a different behavior of
the resistivity (figure 7, bottom), which display a metallic
behavior, which is more consistent with our theoretical
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FIG. 9. (Color Online) Power factor map with respect to
temperature and doping. The relaxation time was fixed to
5.5 × 10−15 s.

results. However, the order of magnitude is roughly five
times less than what was measured from films by Möchel
et al2. The calculated Seebeck coefficient and electrical
resistivity, for a carrier density of 1021 cm−3, match the
results from Ref. 4 obtained on samples with a doping
of 1022 cm−3. At our level of calculation, for a doping
of carrier density of 4 × 1021 cm−3, the Seebeck coeffi-
cient no longer match the experimental results. There
are several reasons for this; first, we study FeSb3 in its
bulk form, neglecting surface effects, while experimental
studies were performed on thick films. Moreover, the sys-
tem has been synthetized on different substracts, which
may explains the differences between the reported cell pa-
rameters. Additionally, above dopings of 1021 cm−3, the
rigid band approximation may become spurious, leading
to a different energy landscape and ultimately, different
thermoelectric properties.

One question remains: can FeSb3 be a good thermo-
electric ? Figure 9 shows the evolution of power fac-
tor with respect to carrier densities, for a p-type and
n-type doping. As observed previously, p-type dop-
ing is the better strategy to optimize the power fac-
tor over a wide range of temperature, for doping value
around 1021 cm−1. At room temperature, the power
factor reaches 12 µW/K2 cm, which is lower than the
maximum room temperature power factor of unfilled

CoSb3 (30 µW/K2 cm), obtained with optimal p-type
or n-type doping30. However, the power factor goes up
to 20 µW/K2 cm at higher temperatures (600 K). On
the other hand, n-type doping is not as efficient, but
nonetheless manage to improves the power factor up to
14 µW/K2 cm from 500 to 600 K.

IV. CONCLUSIONS

We combine local probe Seebeck experiments with
first-principles calculations to dissect the electronic,
magnetic and transport properties of the unfilled skut-
terudite FeSb3. Using a hybrid functional formalism,
we model the exchange-correlation energy and compute
the structural, magnetic, electronic and thermoelectric
properties. One non-magnetic phase and two magnetic
phases are relaxed. We find that the ground state is
the AFM-G phase, but the differences in total energy
and in structural properties with the FM phase are
slight. This is consistent with the compound being
paramagnetic at finite temperature, in agreement with
previous experiments2. The electronic band structure
of FeSb3 behaves similarly to CoSb3, with a small
density of states in the top 0.5 eV of the valence band,
due to the dispersion of a single band around the Γ
point. There is a small band gap of 33 meV with
B1WC, and 140.8 meV with B3LYP. The thermoelectric
properties were obtained from the electronic structure
using Boltzmann transport theory: the temperature
dependence of the Seebeck coefficient, the electrical
conductivity and the related power factor are computed.
Different behaviors (semiconductor, metallic) are ob-
tained depending on the doping. Results between B1WC
and B3LYP differ slightly: the former gives a better
prediction of the band gap, but yields a smaller volume;
the latter gives a much larger band gap, but the volume
is more accurate with respect to experimental data.
Comparison of our electrical resistivity in bulk FeSb3

with the experiments on thin-films performed by Möchel
et al2 suggests a multivalent defect as the source of the
additional carriers at higher temperature. However, the
qualitative behavior of the resistivity with respect to
temperature match the experiments from Ref. 4. We
measure a Seebeck coefficient of 38.6 µV K−1 at room
temperature, which is consistent with calculated values
for intermediate carrier concentrations, and a lower
surface carrier density. Our theoretical TE properties
are consistent with experimental studies from Daniel
et al. The discrepencies between experimental studies
may point to different properties of the surface from the
bulk. Boltzmann transport analysis has been performed
in the relaxation time approximation4, however the
thermoelectric properties have been computed from
a different band structure, not taking into account
the magnetization of the compound, which has been
demonstrated to be critical. Morever, excess of Sb atoms
lead to n-type doping, which should leads to a negative
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Seebeck coefficient and a negative Hall resistance as
well. However, their hole concentration results does not
match the Sb doping, which is important enough at
300 K (> 1022 cm−3) to change the sign of the majority
carriers. We show that the traditional semi-classical
model to extract carrier densities overestimate the
hole concentration, which may be an explanation for
this discrepancy. The power factor can be significantly
enhanced with experimentally accessible values of n-type
and p-type doping.
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