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We theoretically study the symmetry properties of the single-band Hubbard model with general
spin-orbit coupling (SOC) on the Kagome lattice. We show that the global U(1) spin-rotational
symmetry is present in the Hubbard Hamiltonian owing to the inversion symmetry centered at sites.
The corresponding spin Hamiltonian has, therefore, the SO(2) spin-rotational symmetry, which can
be captured by including SOC non-perturbatively. The exact classical groundstates, which we obtain
for arbitrary SOC, are governed by the SU(2) fluxes associated with SOC threading the constituent
triangles. The groundstates break the SO(2) symmetry, and the associated Berezinsky-Kosterlitz-
Thouless transition temperature is determined by the SU(2) fluxes through the triangles, which we
confirm by finite temperature classical Monte Carlo simulation.

PACS numbers: 71.10.Fd, 71.70.Ej, 74.62.-c

I. INTRODUCTION

The Hubbard model1 has been acknowledged as
a paradigm of strongly correlated electron systems.
Despite its simplicity, the Hubbard model can ex-
hibit various phenomena from antiferromagnetism2

to metal-insulator transition3 and high-temperature
superconductivity4. The Hubbard model without spin-
orbit coupling (SOC) has nontrivial symmetry properties
besides the apparent global SU(2) spin-rotational sym-
metry, which has guided us to the exploration of rich
phases and excitations5–8. Yang and Zhang 9 , for ex-
ample, revealed the SU(2) pseudo spin symmetry, which
includes the U(1) phase symmetry as a subgroup, and
predicted the massive collective modes in any phase-
symmetry-breaking superconductivity.

In spin systems, SOC gives rise to frustration on spin
interactions and reduces the symmetry in general.10 The
spin-dependent hopping, the manifestation of SOC in the
kinetic terms of the Hubbard model, can be described by
an SU(2) gauge field.11–14 In open-ended one-dimensional
chains, the SU(2) field can be gauged away by a string of
gauge transformations11, wherein the global SU(2) spin-
rotational symmetry is intact. In rings, however, the
SU(2) field creates a nonvanishing flux in general, which
makes the system frustrated and reduces the symmetry
down to U(1).12 SU(2) symmetry is recovered only when
the enclosed SU(2) flux vanishes.15,16 Two-dimensional
lattices are composed of interconnected loops, each of
which embraces the flux. General SOC breaks the contin-
uous symmetry,17 and engenders a long-ranged magnetic
order escaping the Mermin-Wagner theorem18.

The geometry of the lattice is another source of frus-
tration. The Kagome lattice, a two-dimensional lattice of
corner-sharing triangles, is a prototypical example that
brings geometric frustration to antiferromagnetic materi-
als exemplified by herbertsmithite ZnCu3(OH)6Cl2. The
Kagome lattice Hubbard model without SOC has been

extensively studied in metal-insulator transitions19–21

and the van Hove filling22–24. The corresponding spin
Hamiltonian of the Hubbard model in the large-U limit
at half filling has been studied in search of exotic phases
on the Kagome lattice, such as spin liquids25. The phys-
ical effects of SOC in the spin Hamiltonian have been
studied by including its leading order contribution to the
Hamiltonian known as the Dzyaloshinskii-Moriya (DM)
interaction10,26, which has been known to induce a long-
ranged magnetic order.8,27–33

In this paper, we show that the global U(1) spin-
rotational symmetry is present in the single-band SOC
Hubbard Hamiltonian on the Kagome lattice owing to the
inversion symmetry centered at sites28. The correspond-
ing spin Hamiltonian has, therefore, the SO(2) spin-
rotational symmetry, which can be captured by includ-
ing SOC non-perturbatively. The exact classical ground-
states, which we obtain for arbitrary SOC, are gov-
erned by the SU(2) fluxes associated with SOC thread-
ing the constituent triangles. The groundstates break
the continuous symmetry, and the associated Berezinsky-
Kosterlitz-Thouless (BKT) transition temperature is de-
termined by the SU(2) fluxes through the triangles, which
we confirm by finite temperature classical Monte Carlo
simulation.34

II. SUMMARY OF MAIN RESULTS

We study the the single-band Hubbard model to de-
scribe SOC electron systems on the lattice35:

Ĥ1 ≡ −t
∑
〈j,k〉

ĉ†jUjk ĉk + U
∑
j

n̂j↑n̂j↓ , (1)

where 〈j, k〉 represents the nearest neighbors j and k,

ĉ†j ≡ (ĉ†j↑, ĉ
†
j↓) and ĉj ≡ (ĉj↑, ĉj↓)

T are the electron cre-

ation and annihilation operators, and n̂jα ≡ ĉ†jαĉjα is the
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FIG. 1. (Color online) (a) The site labeling scheme and the
direction of the links, j → k, of the DM vectors djk. (b), (c)
The DM vector djk of the gauge fields Ujk ≡ exp(−idjk ·σ/2)
on the link j → k, directed counterclockwise around triangles
(b) in the original Hubbard Hamiltonian Ĥ1 and (c) in the

gauge-transformed Hamiltonian Ĥ2 (for n̂ = ẑ), respectively.

electron number operator with the spin α. Here, t is a
real hopping magnitude36;

Ujk ≡ exp(−idjk · σ/2) (2)

describes the effect of SOC, which rotates spin of an elec-

tron while hopping37; d̂jk is the direction of the DM vec-
tor; σ is the vector of Pauli matrices; U is the magni-
tude of the on-site Coulomb repulsion. Hermicity of the

Hamiltonian requires Ujk = U†kj , and thus djk = −dkj .
The DM vectors djk are physical, but can be consid-

ered as a particular realization of the SU(2) gauge field
in the lattice gauge theory13, which provides a suitable
language to study the symmetry of the Hubbard Hamil-
tonian. The local SU(2) gauge transformation, ĉj 7→ Vj ĉj
and Ujk 7→ VjUjkV

†
k , corresponds to the rotation of local

spin axes.
The symmetry of the Hubbard Hamiltonian with SOC

is closely related to the SU(2) flux vector Φ enclosed by
loops on the lattice.12,38 It is defined by

exp(−iΦ · σ/2) ≡
∏
j→k

Ujk (3)

for each loop, where j → k means that sites are traversed
counterclockwise around the loop as shown in Fig. 1(a).
In the absence of SOC, the fluxes vanish, which results in
the invariance of the Hamiltonian under the global SU(2)
spin rotation, ĉj 7→ V ĉj . A finite SOC causes nontrivial
fluxes through loops, which would reduce the symmetry
from the continuous SU(2) to the discrete Z2, ĉj 7→ −ĉj ,
generally.

The continuous symmetry, however, can persist even
when SOC is present, if the SU(2) fluxes through the
loops meet a certain condition. Our main discovery is
the U(1) spin-rotational symmetry of the Kagome lattice
Hubbard model with SOC. In the Kagome lattice, the
inversion symmetry centered at sites28 demands match-
ing of the DM vectors of adjacent triangles. As a re-
sult all the triangles share the same SU(2) flux structure,
exp(−iΦ · σ/2) ≡ U12U23U31, with the site labeling as
shown in Fig. 1(a) and 1(b), where Φ ≡ Φn̂ is the SU(2)
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FIG. 2. (Color online) (a) One of the exact groundstates of
the spin Hamiltonian Hs

2 (6) for the angle 0 < φ < 2π/3
and n̂ = ẑ. Any global spin rotation of the state about the
axis n̂ yields also a groundstate. (b) BKT transition tem-
perature of Hs

2 as a function of the angle φ. The transition
temperature TKT is modulated by the flux through triangles,
Φ = 3φ. Dots: finite temperature Monte Carlo simulation re-
sults. Line: theoretical result TKT (16) with the renormalized
spin length S = 0.69.

flux vector threading the triangles. For an isolated trian-
gle, the Hubbard Hamiltonian with arbitrary SOC pos-
sesses the global U(1) spin-rotational symmetry, and it
can be revealed by the local SU(2) gauge transforma-
tions that are determined by the SU(2) flux through the
triangle.11 Sharing the same SU(2) flux between the ad-
jacent triangles in the Kagome lattice extends the U(1)
symmetry of an isolated triangle to the entire lattice,
which becomes visible in the gauge-transformed Hamil-
tonian,

Ĥ2 ≡ −t
∑
j→k

[ĉ′†j e
−iφn̂·σ/2ĉ′k + H.c.] + U

∑
j

n̂′j↑n̂
′
j↓ , (4)

characterized by the single DM vector φn̂ [Fig. 1(c)],
where ĉ′j = Uj ĉj is the new electron operator and Uj de-
scribes the local gauge transformation that is governed
by the SU(2) flux. The angle φ is uniquely determined up
to 2π/3 by the SU(2) flux through the triangle, 3φ = Φ
mod 2π.

The continuous symmetry also manifests itself in the
corresponding spin model,

Hs
1 ≡ J

∑
j→k

Sj ·R(djk) · Sk , (5)

that is derived from the large-U limit of the Hubbard
Hamiltonian Ĥ1 (1) at half filling. Here J ≡ 8t2/U sets
the energy scale of spin interactions; R(djk) is the SO(3)

matrix of a rotation about the axis d̂jk with the angle
φjk ≡ |djk|. The summand can be split into three terms
with the aid of Rodrigues’ rotation formula:

JSj ·R(djk) · Sk =J cosφjk Sj · Sk
− J sinφjk d̂jk · Sj × Sk

+ J(1− cosφjk) (Sj · d̂jk)(Sk · d̂jk) .

The first term is the antiferromagnetic Heisenberg inter-
action; the second term is the DM interaction, which is
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antisymmetric in exchanging two spins; the third term is
the symmetric anisotropic interaction which always ac-
companies the DM interaction in insulators.11,12,39 Ap-
plication to the spin Hamiltonian Hs

1 of the SO(3) equiv-

alent of the SU(2) gauge transformation connecting Ĥ1

and Ĥ2 yields the new spin Hamiltonian,

Hs
2 ≡ J

∑
j→k

S′j ·R(φn̂) · S′k , (6)

which has the transparent global SO(2) spin-rotational
symmetry that is possible to obtain only if we treat the
SOC non-perturbatively.

We shall provide the exact classical groundstates of the
spin Hamiltonians Hs

2 (6) later, from which the ground-
states of Hs

1 (5) can be obtained by reversing the gauge
transformation. The groundstates of an isolated triangle
is obtained by the exact diagonalization of the Hamil-
tonian. Inversion symmetry centered at sites makes the
groundstates of adjacent triangles compatible, which al-
lows us to minimize the spin energy on the entire Kagome
lattice. These groundstates break the SO(2) symmetry
of the spin Hamiltonian. We confirm that the associated
BKT transition occurs at a finite temperature TKT mod-
ulated by the flux 3φ through the triangle with the aid
of finite temperature Monte Carlo simulation as shown
in Fig. 2(b).

III. SYMMETRY OF THE SOC HUBBARD
MODEL

A. Symmetry on the 1D lattice

For an open-ended one-dimensional chain
{ĉ1, ĉ2, · · · , ĉN}, one can keep the first electron ĉ1
unchanged, and perform a string of successive SU(2)
gauge transformations on the rest electrons by

ĉ′j ≡

 ∏
1≤k<j

Uk,k+1

 ĉj , (7)

which transforms the original Hubbard Hamiltonian
Ĥ1 (1) to

Ĥ =
∑
j

[−tĉ′†j ĉ
′
j+1 + H.c.] + U

∑
j

n̂′j↑n̂
′
j↓ , (8)

where the global SU(2) spin-rotational symmetry is
evident.11,12

For a one-dimensional ring, the SU(2) symmetry is not
present generally because of nontrivial SU(2) flux pen-
etrating the ring. The Wilson line for the ring is the
product of the link gauge fields, which is given by

e−iΦ·σ/2 ≡
∏

1≤j≤N+1

Uj,j+1 (9)

with the periodic boundary condition cN+1 = c1 as-
sumed, where Φ ≡ Φn̂ is the SU(2) flux vector. The
flux magnitude Φ is uniquely defined up to 2π40, and the
global SU(2) symmetry is restored only when the flux
vanishes, Φ = 0 (mod 2π).12 The flux vector Φ can be
evenly distributed to all links by the local SU(2) gauge
transformation, which is given by

ĉ′j ≡ ei(j−1)Φ·σ/2N
 ∏

1≤k<j

Uk,k+1

 ĉj . (10)

The resultant Hamiltonian is Ĥ2 (4) with φ ≡ Φ/N ,
which is invariant under global U(1) spin rotation about
the axis n̂, ĉ′j 7→ e−iθn̂·σ/2ĉ′j for any angle θ.41

B. Symmetry on the Kagome lattice

We show that the Hubbard Hamiltonian on the
Kagome lattice is invariant under the global U(1) spin
rotation, which is protected by the inversion symme-
try centered at sites that are respected in many ma-
terials such as herbertsmithite ZnCu3(OH)6Cl2 and Fe
jarosite compound KFe3(SO4)2(OH)6.8,28,42 The SU(2)
link gauge field Ujk ≡ exp(−idjk ·σ/2) can be attributed
to the electrostatic potential V (r) induced by surround-
ing molecules.43,44 The DM vector djk ∝∇V × (rj − rk)
is invariant under the inversion r 7→ −r centered at sites
provided that V (r) is even under the inversion. For ex-
ample, in Fig. 1(a) and (b), under the inversion centered
at the site 1, the site 2 (operator ĉ2) maps to the site
2′ (operator ĉ2′), which transforms the associated kinetic
term:

−tĉ1 exp(−id12 · σ)ĉ2 → −tĉ1 exp(−id12 · σ)ĉ2′ . (11)

The invariance of the Hamiltonian under the transfor-
mation requires that the right side of the equation is
equivalent to −tĉ1 exp(−id12′ · σ)ĉ2′ , and, thus, dictates
d12 = d12′ .

Each site of the Kagome lattice can be labeled by three
numbers 1, 2, or 3, as illustrated in Fig. 1(a). Once
the link gauge fields U12, U23, and U31 of an arbitrarily-
chosen triangle (e.g., a shaded one in Fig. 1) are fixed,
all the other link gauge fields on the Kagome lattice are
determined by the inversion symmetry. Since all the tri-
angles have the same SU(2) link gauge fields, the gauge
transformations (10) for neighboring triangles are com-
patible. Specifically, the gauge transformation

ĉ′j ≡


ĉj , if j is labelled by 1

eiΦ·σ/6U12ĉj , if j is labelled by 2

eiΦ·σ/3U12U23ĉj , if j is labelled by 3

(12)

on the original Hubbard Hamiltonian Ĥ1 (1) results in

the new Hubbard Hamiltonian Ĥ2 (4) that shows the
global U(1) spin-rotational symmetry clearly.45 Fig. 1(b)
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and (c) show the DM vectors in the original Hamlitonian

Ĥ1 (1) and the gauge-transformed Hamiltonian Ĥ2 (4)
(with n̂ = ẑ), respectively.

IV. GROUNDSTATES OF THE SOC SPIN
HAMILTONIAN

Starting from the Hubbard Hamiltonian Ĥ2 (1), the
large U limit at half filling freezes the charge fluctua-
tion, and eventually ends up with the spin Hamiltonian
Hs

1 (5) on the second order perturbation in t/U .10,12 The
SO(3) counterpart of the SU(2) gauge transformation in
Eq. (12), given by

S′j ≡


Sj , if j is labelled by 1

R(−φn̂)R(d12)Sj , if j is labelled by 2

R(−2φn̂)R(d12)R(d23)Sj , if j is labelled by 3

,

(13)
yields the new spin Hamiltonian Hs

2 (6). The spin Hamil-
tonian Hs

2 is invariant under global SO(2) spin rotation
about the axis n̂, S′j 7→ R(θn̂) · S′j , which is the conse-
quence of the U(1) spin-rotational symmetry of the par-
ent Hubbard Hamiltonian. The full SO(3) spin-rotational
symmetry is respected once the the flux vanishes Φ = 0
(mod 2π), or equivalently, φ = 0, 2π/3, or 4π/3.46

The dependence of the symmetry of the Hamiltonian
on its parameter, φ in our case, indicates the possible
dramatic change in the physical properties when φ cross-
ing the high symmetry points φ = 0, 2π/3, and 4π/3. To
see that, we treat spins classically in the spin Hamilto-
nian Hs

2 (6),27,47,48 which allows us to obtain the exact
groundstates. The groundstates at the high symmetry
points, where the fluxes are zero, are already known.42,49

We thus focus on nonvanishing fluxes.
We start for an isolated triangle. Observing the Hamil-

tonian is quadratic in spin, a straightforward way is to list
all three spins into a large column spin S ≡ (S1,S2,S3),
and diagonalize a 9 × 9 matrix H representing the spin
Hamiltonian Hs

2 = S ·H · S/2. Specifically the matrix H
is given by

H ≡

 0 R RT

RT 0 R
R RT 0

 , (14)

where R ≡ R(φn̂). This scheme is generally invalid as
the eigenstates may not be physical due to the different
lengths of spins, e.g., |S1| 6= |S2|. For the current prob-
lem, however, the eigenvectors with the minimum energy
turn out to satisfy |S1| = |S2| = |S3| always, which makes
them physical. Spins are perpendicular to the SU(2) flux
vector Φn̂ in the continuously degenerate groundstates,
which are given by

S1 = R
(
4πn̂
3

)
S2 = R

(
2πn̂
3

)
S3, 0 < φ < 2π

3

S1 = S2 = S3,
2π
3 < φ < 4π

3

S1 = R
(
2πn̂
3

)
S2 = R

(
4πn̂
3

)
S3,

2π
3 < φ < 2π

. (15)

For two neighboring triangles, their exact groundstates
of the spin Hamiltonian can be patched by matching the
spin of the shared site. This procedure can be extended
to the entire Kagome lattice because all the triangles have
the same DM vectors. Specifically, spins labeled by the
same number [see Fig. 1(a)] point in the same direction in
the groundstates. For example, the groundstates of the
spin Hamiltonian Hs

2 with 2π/3 < φ < 4π/3 have all the
spins pointing in the same direction in the plane perpen-
dicular to n̂. Fig. 2(a) shows a groundstate of Hs

2 for the
angle 0 < φ < 2π/3 and n̂ = ẑ. The exact groundstates
of the spin Hamiltonian Hs

1 (5) can be obtained from
those of Hs

2 (15) by reversing the gauge transformation
in Eq. (13).

The groundstates of the spin Hamiltonian break the
SO(2) spin-rotational symmetry, which signals the exis-
tence of the BKT transition at finite temperature. In the
continuum approximation, the transition temperature is
given by

TKT =
(
π
√

3/4
)
S2 cos(Φ̃/3) , (16)

where Φ̃ = Φ mod 2π, 2π < Φ̃ < 4π, when neglect-
ing spin waves. Fig. 2(b) shows the results for the
transition temperatures from finite temperature classi-
cal Monte Carlo simulation of the spin Hamiltonian Hs

2

and various φ with the spin length of unity, which agrees
well with the theoretical prediction (16) with a renor-
malized spin length S = 0.69. The renormalization of
the spin length can be attributed to thermal spin-wave
fluctuations.

V. DISCUSSION

We have showed that the single-band Hubbard Hamil-
tonian on the Kagome has the global U(1) spin-rotational
symmetry even in the presence of SOC. The U(1) sym-
metry does not demand a specific shape of constituent
triangles, but only requires the inversion symmetry be-
tween neighboring triangles centered at the shared site.
Linear deformation of the Kagome lattice by strain, for
example, would break the three-fold rotational symme-
try about the centers of the triangles, but preserves the
inversion symmetry centered at sites and thus maintains
the associated U(1) symmetry as well50.

We have provided the exact classical groundstates of
the spin Hamiltonian, which spontaneously break the
continuous symmetry. The BKT transition occurs at fi-
nite temperature, which is governed by the SU(2) flux
threading the triangles. This is an example showing the
physical effects of the SU(2) flux associated with SOC.
Its effect on the quantum Hamiltonian would deserve to
be investigated. We would like to mention that the con-
trollable SU(2) gauge field has been created in optical
lattices,51,52 which may afford the platform to observe
the effects of varying flux on the physical properties of
the quantum Hamiltonian.
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Preservation of U(1) spin rotational symmetry depends
on lattice structure. The Kagome lattice (with inversion
symmetry centered at sites) is one of the lattices whose
structure support U(1) spin rotational symmetry even
in the presence of arbitrary SOC. The approach taken
in this paper, however, can be applied to other lattice
systems. For example, on the square lattice, the Hub-
bard Hamiltonian with arbitrary SOC also possesses the
global U(1) spin-rotational symmetry provided the inver-
sion symmetry centered at sites is respected. The classi-
cal groundstates of the corresponding spin Hamiltonian
are the Néel states polarized along the SU(2) flux vector,
for the square lattice is bipartite. The groundstates do
not break the continuous symmetry, and thus the BKT
transition does not occur. It would be worth pursuing

to study other two- and three-dimensional lattices in the
similar approach.
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